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ABSTRACT

Modification of the external tearing index, D0ext, by magnetic feedback is analytically investigated for the purpose of controlling the resistive
plasma resistive wall mode (RP-RWM). The matching method is pursued by deriving expressions for the close-loop D0ext and by linking it to
the counterpart from the inner layer. Various feedback coil configurations are found to generally reduce D0ext and stabilize the RWM, with
either proportional or derivative control. Feedback modification of D0ext is found to be generally independent of the inner layer resistive inter-
change index DR, confirming that feedback action primarily modifies the solution in the outer ideal region for the RP-RWM. Exception
occurs when either the inner layer favorable curvature effect becomes sufficiently large or the feedback action is sufficiently strong to intro-
duce a rotating RP-RWM in the static plasma, leading to complex-valued close-loop D0ext. The perturbed magnetic energy dissipation in the
outer region, associated with the eddy current in the resistive wall, is identified as the key physics reason for feedback induced complex D0ext.
Similar results are also obtained for active control of the external kink instability, whose open-loop growth rate is significantly reduced by
inclusion of the plasma resistivity. Within the single poloidal harmonic approximation, which is most suitable for the matching approach,
external active coils combined with poloidal sensors are often found to be more efficient for feedback stabilization of the mode at large pro-
portional gain values. This counter-intuitive result is explained as the lack of (non-resonant) poloidal harmonics for proper description of
the feedback coil geometry.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019233

I. INTRODUCTION

Magneto-hydrodynamic (MHD) instabilities, such as the external
kinks (EK) and (neoclassical) tearing modes ((N)TM), are major con-
cerns for high pressure advanced tokamaks (AT).1 Within a certain
pressure limit, the EK can be stabilized by a perfectly conducting wall
located sufficiently close to the plasma edge.2 However, the wall has
finite conductivity in reality, which allows the leakage of the radial
magnetic flux perturbation through the wall on long time scale. The
resulting residual instability is called the resistive wall mode (RWM).
The RWM often limits the operational space of advanced tokamaks
because such a low-n (n is the toroidal mode number) macroscopic

instability sets a beta (b) limit for the AT operation.3 Here
b ¼ 2l0hpi=B2 is the ratio of the volume averaged plasma pressure to
the magnetic pressure. In order to maximize the benefit of the AT sce-
nario, such as that foreseen in ITER,1 the RWM needs to be stabilized.

Numerical and analytical calculations,4–9 based on the ideal
MHD model, indicate that stabilization of the ideal plasma RWM
(IP-RWM) can be achieved by certain free energy dissipation mecha-
nism(s) inside the plasma in the presence of toroidal plasma rotation.
The critical rotation frequency for a complete stabilization of the
mode was predicted to be several percent of the Alfv�en frequency.
However, early work10–12 employing the resistive MHDmodel showed
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that the toroidal curvature effect, associated with the resistive layer
near the rational surfaces, can stabilize the resistive-plasma RWM
(RP-RWM), though with the stability window being narrow in
toroidal geometry. More recent studies indicated that a slow plasma
rotation flow, with the flow speed several times larger than the typical
tearing mode growth rate, in combination with the resistivity layer
induced energy dissipation, can stabilize the RP-RWM.13–15

Plasmas in future reactors are expected to rotate with low or neg-
ligible speed. Therefore, active control of the plasma instability in the
absence of flow is of particular interest. Active control of the RWM
has been studied for both resistive and ideal plasma models,16–21

showing that a magnetic feedback system, combined with the slow
plasma flow, can stabilize the mode. Reference 22 studied direct feed-
back stabilization of the resistive plasma (tearing-like) modes utilizing
magnetic coils in a cylindrical plasma. The results presented in Ref. 22
show that magnetic feedback can stabilize a resistive mode even when
the open-loop is unstable with an ideal wall. Reference 23 considered
the effects of complex feedback gains and plasma rotation. Active con-
trol of the mode was found possible well above the ideal wall limit and
with finite plasma rotation.

Recently, experimental results on magnetic feedback control of
the RWM were reported in several devices, including RFX-mod,24

KSTAR,25 JT-60SA,26 and DIII-D with discharges simulating the ITER
baseline scenario.27 Feedback stabilization of the mode was found
(or projected to be) possible in all these devices.

This work differs from the previous analytic theory22,23 in several
aspects: (i) the explicit utilization of the matching method, (ii) a sys-
tematic investigation of various feedback configurations, and (iii) con-
sideration of resistive layer physics with (vs without) the favorable
average curvature effect.

In analytic theory, active control of the RWM is often studied
relying on the plasma response model (PRM),28–30 which is suitable
for studying feedback control of the IP-RWM. In contrast, study of the
RP-RWM is conventionally analyzed by proper matching proce-
dures.31 The matching approach is similar to the analysis employed
for studying the TM by separately solving the MHD equations in the
inner resistive layer and in the outer ideal bulk region.32 The matching
condition often involves a key parameter D0 (the tearing index) from
both the internal and external solutions. The external tearing index,
D0ext, is defined as the logarithmic derivative jump of the perturbed
radial magnetic field across the mode resonant surface. In more gen-
eral cases, the outer-region solution possesses regular singularities at
the rational surface, with two independent solutions called small and
big solutions that exhibit different fractional power-like asymptotic
behaviors. The ratio of the leading Frobenius coefficients of the small
to big solutions is defined as D0ext.

33 A recent study has shown that this
tearing index can be modified by a simple magnetic feedback,34 with-
out considering the role played by the resistive wall. The external tear-
ing index is matched to that from the resistive layer solution to obtain
the final dispersion relation for the RP-RWM. It is expected that stabil-
ity of the RP-RWM can be modified by actively controlling the exter-
nal tearing mode index D0ext—a venue pursued in this work.

In this work, we carry out analytic study of feedback stabilization
of the RWM via the matching approach, based on a cylindrical plasma
model. We investigate feedback modification of D0ext while systemati-
cally considering various choices of the feedback coil configuration.
Although the focus of this work is on the RWM, the approach

exploited here is also applicable for controlling stability of the tearing
mode.

In Sec. II, we present the details of our analytic model on feed-
back modification of D0ext. In Sec. III, we investigate feedback stabiliza-
tion of the IP-RWM via modification of D0ext and compare the results
with that from the PRM approach. Based on the matching approach,
Sec. IV reports the feedback study for the RP-RWM with or without
the favorable average curvature effect (i.e., the GGJ effect discovered
by Glasser, Green, and Johnson33). Inspired by Finn’s work,22 we also
carry out a similar study on the resistive plasma external kink (RP-EK)
mode, following the matching approach in Sec. V. All the aforemen-
tioned studies are carried out assuming a simple proportional feedback
controller, with additional results assuming a proportional–derivative
(PD) controller reported in Appendix C. Section VI draws
conclusions.

II. ANALYTIC MODEL

Our analytic model is based on a cylindrical circular plasma. In
what follows, we start by describing the open-loop model, followed by
the closed-loop model with the feedback coils.

A. Open-loop model

In the cylindrical geometry, we consider the linearized,
Newcomb-like equation with finite plasma pressure in the outer
region11

� c2

F
r? � qr?

w
F

� �
¼ 1

r
d
dr

r
dw
dr

� �
�m2

r2
w� m

rF
dJz
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w

� 2m2B2
h

r3B2
zF

2

dP
dr

w; (1)

where r and h are the radial coordinate and the poloidal angle of the
plasma cross section, respectively. Jz is the plasma equilibrium density
along the cylinder and P is the equilibrium pressure. c is the eigenvalue
of the instability (the RWM in our case). w is the m th poloidal har-
monic of the perturbed poloidal magnetic flux function, which has an
expðimh� ikzÞ ¼ expðimh� in/Þ variation, where k ¼ n=R0 with n
being the toroidal mode number, and R0 is the equivalent major

radius. F � mBh � kBz , with B ¼ Bhĥ þ Bzẑ being the equilibrium
field. Finally, the operatorr? is defined asr2

?w � 1
r ðrw

0Þ0 � m2

r2 w.
Simplified equilibrium radial profiles are assumed, as shown in

Fig. 1. The equilibrium current density JzðrÞ is a step function with
Jz ¼ J0 ¼ const at 0 � r < r0 and Jz ¼ 0 at r0 < r � a. The plasma
equilibrium pressure is assumed to be constant, P ¼ P0 ¼ const,
across the whole plasma column. The toroidal equilibrium field is also
assumed to be a constant. As a result, the radial profile of the safety
factor, qðrÞ, is a constant q ¼ q0 at 0 � r < r0 and a parabolic func-
tion at r0 < r � a. The parameters are chosen such that only one res-
onant surface is present inside the plasma for the n ¼ 1 perturbation.

The Laplace equation r2
?w � 0 is satisfied everywhere inside

and outside the plasma region, except at the radial points
r ¼ r0; a; rw, where rw denotes the resistive wall minor radius. The
jump conditions for the radial derivative of the flux function w can be
easily obtained, by integrating Eq. (1) across the above discrete radial
points. We have
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¼ csw; (4)

where b ¼ 2l0P0=B
2
z is the ratio of the plasma pressure to the mag-

netic pressure, qa ¼ q0ða=r0Þ2 is the safety factor value at the plasma
surface, and sw ¼ l0rwdw=gw characterizes the magnetic flux diffu-
sion time through the resistive wall, with dw and gw denoting the wall
thickness and resistivity, respectively.

The solution of the Laplace equation satisfies the following rela-
tion between any two discrete points r1 and r2, provided that the solu-
tion is smooth within the interval ðr1; r2Þ:
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: (5)

The above relation helps to connect different regions separated by
the jump conditions (2)–(4). With the additional conditions of
rw0=wjr0� ¼ m and rw0=wjrwþ ¼ �m, one can derive the jump of the

logarithmic derivative D0ext � ½w
0ðrsþÞ � w0ðrs�Þ�=wðrsÞ across the

mode rational surface rs,

D0ext ¼ �
2m
rs

B
as þ 1� asð ÞB�

A
a0 þ 1� a0ð ÞA

� �
; (6)

where B ¼ 1
1�awarw

� b̂ with arw ¼ csw
cswþ2m, and A ¼ A0 � ðcsAÞ2A1

with A0 ¼ 1
m�nq0 and A1 ¼ q20

2ðm�nq0Þ2
, with the latter often being a neg-

ligible inertia term for the RWM. The additional notations are defined

as b̂ � mb
2ðm�nqaÞ2

, aw � a2m=r2mw , as � r2ms =a2m and a0 � r2ms =r2m0 .

Note that D0ext here is defined as the external tearing index within the
so-called constant-w approximation. Expression (6) is the value of D0ext
in the absence of any active control. The growth rate of the open-loop
IP-RWM can be obtained by setting D0ext ¼ 0.

B. Close-loop with proportional feedback

A magnetic feedback system consists of sensor coils, active coils,
and control logic. We consider three types of sensors (all located at the
wall radius rw). One is the radial sensor, with the sensor signal y
defined as the radial flux wðrwÞ at the wall radius. The other two, the
external poloidal sensor and the internal poloidal sensor, are defined
as y ¼ �rw0jrwþ and y ¼ �rw0jrw�, respectively. Furthermore, we
consider two types of active coils, defined by their relative radial loca-
tion to the wall. For the active coils located outside the wall, rw < rf ,
the field solution can be written as wðrÞ ¼ wf ð rrwÞ

m þ cð rrwÞ
�m in the

vacuum region rw < r < rf , where wf � wf ðrwÞ is the free-space field
at the wall radius and produced by the active coil current solely. For
the active coils located between the plasma surface and the wall,
a < rf < rw, the field solution can be written as wðrÞ ¼ afwf ð rrwÞ

m

þ c1ð rrwÞ
m þ c2ð rrwÞ

�m, with af � r2mw =r2mf , in the vacuum region

a < r < rf and wðrÞ ¼ wf ð rrwÞ
�m þ c1ð rrwÞ

m þ c2ð rrwÞ
�m in the vac-

uum region rf < r < rw.
The simplest feedback logic is wf ¼ �Ky, where K ¼ kP is the

proportional feedback gain. For the external active coils, the above
feedback logic, together with the wall jump condition, Eq. (4), helps to
relate the coefficient c to wf for different types of sensors. For the inter-
nal active coils, similar relations of the coefficients c1 and c2 to wf are
obtained by employing the above feedback logic with condition
rw0=wjrwþ ¼ �m and the wall jump condition (4) on the perturbed
field in the vacuum region rf < r < rw. This allows us to calculate the
logarithmic derivative of the perturbed flux function just outside the
plasma surface

rw0

w

����
aþ
¼ m 1� 2

1� aPa2m=r2mw

� �
; (7)

where aP is a key quantity describing different configurations of the
proportional feedback system

aP ¼

csw þ 2mkP
csw þ 2mkP þ 2m

ext:coil þ rad:sensor;

1� 2mkPð Þcsw þ 2m2kP
1� 2mkPð Þcsw þ 2m� 2m2kP

ext:coil þ ext:pol:sensor;

csw þ 2m2kP
csw þ 2m� 2m2kP

ext:coil þ int:pol:sensor;

csw þ 2mkPaf
csw þ 2mkP þ 2m

int:coil þ rad:sensor;

csw þ 2m2kPaf
csw þ 2mþ 2m2kP

int:coil þ ext:pol:sensor;

1þ 2mkPaf
	 


csw þ 2m2kPaf
1þ 2mkPð Þcsw þ 2mþ 2m2kP

int:coil þ int:pol:sensor:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

FIG. 1. The equilibrium profiles of the plasma pressure P, the axial current density
Jz, and the safety factor q. One rational surface q ¼ m=n ¼ 2 (n ¼ 1) is located
inside the plasma.
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Connecting Eqs. (2), (3), and (7) via relation (5) across various regions,
we derive the following expression for D0ext at the rational surface rs in
the presence of proportional feedback control:

D0ext;P K; cð Þ ¼ � 2m
rs

BP

as þ 1� asð ÞBP
� A

a0 þ 1� a0ð ÞA

� �
; (8)

where BP ¼ 1
1�awaP

� b̂. Comparing the close-loop expression (8) with
the open-loop expression (6), we find that feedback modifies the exter-
nal tearing index only via the BP factor. The proportional feedback
gain K enters Eq. (8) via the aP factor. The change of D

0
ext due propor-

tional feedback is

dD0P ¼ D0ext;P K; cð Þ �D0ext K ¼ 0; cð Þ

¼ �2m
rs

aP � arwð Þasaw
Cþ 1� as �Cð ÞawaP½ � Cþ 1� as �Cð Þawarw½ � ;

(9)

where C ¼ as þ ð1� asÞð1� b̂Þ. We remark that the above result
assumes the same growth rate between the open-loop and close-loop
systems, which is generally not the case. The growth rate needs to be
self-consistently evaluated based on the RWM dispersion relations
(with or without feedback). This will be addressed in Secs. III–V.

C. Close-loop with proportional–derivative feedback

Now we consider proportional–derivative (PD) feedback with the
control logic of wf ¼ �½kP þ skD�y, where kD is the derivative gain
and s is the eigenvalue of the close-loop system. Following a similar pro-
cedure to that outlined for the P-controller, we arrive at the following
expression for the external tearing index in the presence of PD-feedback:

D0ext;PD K; cð Þ ¼ � 2m
rs

BPD

as þ 1� asð ÞBPD
� A

a0 þ 1� a0ð ÞA

� �
; (10)

where BPD ¼ 1
1�awaPD

� b̂ and

aPD ¼

csw 1þ 2mkDð Þ þ 2mkP
csw 1þ 2mkDð Þ þ 2mkP þ 2m

ext:coil þ rad:sensor;

csw 1� 2mkP þ 2m2kDð Þ þ 2m2kP � 2mkD cswð Þ2

csw 1� 2mkp � 2m2kD
	 


þ 2m� 2m2kP � 2mkD cswð Þ2
ext:coil þ ext:pol:sensor;

csw 1þ 2m2kDð Þ þ 2m2kP
csw 1� 2m2kDð Þ � 2m2kP þ 2m

ext:coil þ int:pol:sensor;

csw 1þ kDaf
	 


þ 2mkPaf
csw 1þ 2mkDð Þ þ 2mkP þ 2m

int:coil þ rad:sensor;

csw 1þ 2m2kDaf
	 


þ 2m2kPaf
csw 1þ 2m2kDð Þ þ 2m2kP þ 2m

int:coil þ ext:pol:sensor;

csw 1þ 2mkPaf þ 2m2kDaf
	 


þ 2m2kPaf þ 2mkDaf cswð Þ2

csw 1þ 2mkP þ 2m2kDð Þ þ 2mþ 2m2kP þ 2mkD cswð Þ2
int:coil þ int:pol:sensor:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The change of D0ext, due to PD-control, becomes

dD0PD ¼ D0ext;PD K; cð Þ �D0ext K ¼ 0; cð Þ

¼ �2m
rs

aPD � arwð Þasaw
Cþ 1� as �Cð ÞawaPD½ � Cþ 1� as �Cð Þawarw½ � ;

(11)

where the constant C is the same as that from Eq. (9).

D. Inner layer solutions

Expressions (6), (8), and (10) depend on the mode eigenvalue c,
which is a priori unknown. The only case, where the value of D0ext can
be explicitly calculated, is when the wall time vanishes (i.e., in the
absence of the resistive wall). This was the case considered in Ref. 34.
In more general cases, we need to solve the dispersion relation for the
RWM by setting the external tearing index to zero (for the IP-RWM)

or by matching the external and internal solutions (for the RP-RWM)
in order to find the mode eigenvalue c.

For a pressureless plasma (i.e., b ¼ 0) without the GGJ effect, the
inner tearing index at the resonant surface is conveniently written as35

D0int cð Þ ¼ 2:12 nsð Þ�1=2S3=4 csAð Þ5=4; (12)

where s is the magnetic shear (at the mode rational surface) and S is
the Lundquist number. For a plasma with finite equilibrium pressure
(and pressure gradient) at the rational surface, it is helpful to consider
the GGJ effect. The inner tearing index in this case takes the form36,37

D0int cð Þ ¼ 2:12As csAð Þ5=4 1� p
4
DRBs csAð Þ�3=2

� �
; (13)

where As¼ðnsÞ�1=2ð1þ2q2rsÞ
1=4S3=4 and Bs¼ðnsÞð1þ2q2rsÞ

�1=2S�1=2.
DR is the resistive interchange index, which is roughly proportional to
the plasma pressure at the rational surface. Note that DR is typically a
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small negative number for tokamak plasmas, which we shall treat as a
free parameter in our analytic model. We emphasize that, for a given
plasma equilibrium, the DR value is fixed. Therefore, treating DR as a
free parameter introduces in-consistency in the model, which on the
other hand has minor consequences on our main conclusions reported
later on. Treating DR as a free parameter allows us to examine the
effect of the strength of the GGJ effect on the RP-RWM. We also note
this ad hoc inclusion of the GGJ physics into the inner layer is not con-
sistent with the equilibrium profiles that we choose. For an equilib-
rium with generic current and pressure profiles, the external tearing
index can only be numerically calculated.

Knowing the analytic forms for both the inner and outer tearing
indices, the matching condition

D0ext K; cð Þ ¼ D0intðcÞ (14)

then leads to the dispersion relation for the RP-RWM in the presence
of magnetic feedback. As another remark here, we mention that the
effect of the plasma rotation can also be included into the matching
approach by adding a Doppler shift (associated with plasma rotation)
to the mode eigenvalue when evaluating the inner tearing index (12)
or (13). The outer tearing index remains unchanged since we assume
that a slow (subsonic) flow does not affect the outer region solution.
Plasma rotation has been found to shrink the stable domain near the
marginal stability curve.23 In this work, however, we shall neglect the
plasma flow effect.

Since the above dispersion relation involves the eigenvalue c in a
non-linear manner, we shall provide numerical solutions in Secs.
III–V. We then insert the calculated c value into the external tearing
index in order to find out how the magnetic feedback modifies the
tearing index. We perform the study for the IP-RWM (Sec. III), RP-
RWM (Sec. IV), and RP-EK (Sec. V), respectively. For each type of
instability, we shall consider a proportional control scheme while vary-
ing feedback coil configurations by utilizing Eq. (8). Additional study
of the effect of the derivative feedback gain is reported in Appendix C.
In this study, we neglect the integral control action which mainly
shapes the control performance (e.g., reduces the settling time). We
leave tearing index modification by more advanced controllers to
future studies.

III. FEEDBACK CONTROL OF IP-RWM

Analytic theory of active control of the IP-RWM has been well
developed during past years. The previous study, however, largely
relied on directly solving the coupled MHD-feedback equations38,39 or
on the PRM.28–30 We follow a different approach here, namely, by
requiring vanishing tearing index at the resonant surface for the IP-
RWM. We shall show that both the PRM approach and the matching
approach yield the same feedback results.

We consider two plasma equilibria, one with vanishing plasma
pressure (b ¼ 0) and one with a finite equilibrium pressure
(b ¼ 0:03). Chosen are the following basic parameters: a ¼ 1, m ¼ 2,
n ¼ 1, r0 ¼ 0:63a, and rw ¼ 1:2a. Furthermore, we assume rf ¼ 1:3a
for the external active coil and rf ¼ 1:1a for the internal active coil.
For the resistive wall, the wall time is fixed at sw ¼ 104sA. The value
of the on-axis safety factor q0 will be varied to ensure a typical RWM
regime.

Indeed, the open-loop stability can be tuned by scanning q0. One
example with b ¼ 0 is shown in Fig. 2(a), where we show the mode

growth rate with the resistive wall and also compare with that in the
ideal-wall limit. The growth rate here is obtained by solving the disper-
sion relation D0ext ¼ 0 for the ideal plasma and Eq. (14) for the resistive
plasma, but at feedback gain K ¼ 0. Note that the inertial term, associ-
ated with the A1 factor [cf. expression (6)], has been retained in solving
the aforementioned dispersion relations. It is important to include this
inertial factor in order to recover the ideal-plasma external kink (IP-
EK) and the RP-EK regimes shown in Fig. 2(a). Transition from the
RWM regime to the EK regime occurs at q0 ¼ 1:076 [indicated by the
vertical dashed line in Fig. 2(a)]. In the ideal-wall limit, both the IP-
RWM and the RP-RWM branches become stable when q0 < 1:076.
We emphasize that, with our parameter setting, the threshold value of
q0 ¼ 1:076 is the solution of 1� ðm� nq0Þ � ðr0=rwÞ2m ¼ 0
(Appendix A). The EK regime corresponds to 1� ðm� nq0Þ
�ðr0=rwÞ2m > 0 at q0 > 1:076, and the RWM regime corresponds to
1� ðm� nq0Þ � ðr0=rwÞ2m < 0 at q0 < 1:076. At q0 > 1:076, the
EK is unstable with the ideal wall. The aforementioned inertial term is
negligible for the RWM regime.

We note that Ref. 22 found that the resistive instability cannot be
feedback stabilized when the condition f0 > �D1 is satisfied. In our
notations and with a step-function equilibrium current density, it is
straightforwardly shown that f0 ¼ 2m=½r0ðm� nq0Þ� and �D1

¼ 2ma0=½r0ða0 � 1Þ�, where a0 is defined in Eq. (6). The above condi-
tion from Ref. 22 is thus equivalent to a0 þ ð1� a0ÞA > 0 in our
notations. This condition is satisfied only if q0 exceeds two, or in other
words, when there is no resonant surface anymore within the plasma
for the considered m=n ¼ 2=1 resistive instability. Note also that the
RP-EK instability that we consider in this work (at q0 ¼ 1:2) does not
satisfy the above quoted condition.

Inclusion of the plasma resistivity is found to substantially reduce
the growth rate of the RWM (as well as that of the EK to large extent).
This agrees with our previous finding13,14 although the latter was
obtained via a completely different approach (i.e., the extended energy
principle approach for the open-loop RWM). The relatively small
growth rate for the three instabilities, i.e., the IP-RWM, RP-RWM,
and RP-EK, implies that active magnetic control (with practically rea-
sonable control response time) can be applied to stabilize these modes.
This is precisely the subject of the following studies. At fixed q0, finite
equilibrium pressure modifies the mode growth rate for the IP-RWM
[Fig. 2(b)] as well as for the RP-RWM and the RP-EK [Fig. 2(c)]. The
growth rate of the instabilities generally increases with b. An exception
is the sharp transition near b ¼ 0 in Fig. 2(c). This is associated with
the Pfirsch–Shlutter inertia enhancement (and the lack thereof at
b ¼ 0) at finite plasma pressure. The strong destabilization of the
open-loop growth rate for the IP-RWM is largely due to the pressure
drive on the external tearing index.40 The smooth variation of the
mode instability allows us to choose representative b values for later
studies, specifically b ¼ 0 and b ¼ 0:03 for the RWM and b ¼ 0:05
for the RP-EK. We mention that more systematic analytic study of the
beta effect on the open-loop RP-RWM stability has been made in Ref.
41, assuming a layer model without the GGJ-physics.

As a final remark here, we discuss the open-loop and close-loop
stability of the case without a wall. The open-loop growth rates of the
no-wall IP-EK and RP-EK are plotted in Fig. 2(a) as well, showing that
the growth rate of the IP-EK is large and almost independent of q0.
Inclusion of the plasma resistivity substantially reduces the mode
growth rate even in the absence of a wall. For our equilibrium, the
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growth rate of the no-wall RP-EK is close to that of the RP-EK with
the resistive wall. We point out that the difference between the no-wall
and resistive-wall cases here depends on the ratio of the plasma resis-
tivity to the wall resistivity. For instance, the difference becomes more
pronounced with increasing the wall time at fixed plasma resistivity.
In terms of the close-loop stability, magnetic feedback cannot stabilize
the no-wall IP-EK but can significantly reduce the external tearing
index for the RP-EK, as shown in Ref. 34.

Now we numerically solve the close-loop dispersion relation
D0ext;PðK; cÞ ¼ 0 [i.e., expression (8) ¼ 0] in the presence of a P-
controller. The results are plotted in Fig. 3 while scanning the

proportional feedback gain K ¼ kP . Compared are the growth rates of
the IP-RWM in a plasma with vanishing equilibrium pressure b ¼ 0
[Fig. 3(a)] and with finite equilibrium pressure b ¼ 0:03 [Fig. 3(b)].
Six combinations of the active and sensor coil types are considered as
indicated in the figure.

Proportional feedback can stabilize the IP-RWM, either with or
without pressure, when the proportional gain reaches a certain critical
value. This holds for all six feedback coil configurations. The
stabilizing effect with internal active coils is stronger than that with
external active coils at small feedback gain, independent of the choice
of the sensor type (but assuming the same sensor type). At large gain

FIG. 2. The (a) open-loop growth rate of the n ¼ 1 instability in different regimes, without equilibrium pressure b ¼ 0, while scanning the on-axis safety factor q0: the ideal
plasma external kink (IP-EK) and the resistive plasma external kink (RP-EK), the ideal plasma resistive wall mode (IP-RWM), and the resistive plasma resistive wall mode
(RP-RWM). The vertical dashed line indicates the transition value (q0 ¼ 1:076) from the RWM regime to the EK regime. The dashes-dotted line, star-points, and dotted line
represent the growth rates of the IP-EK without wall (sw ¼ 0), with the resistive wall (sw ¼ 104), and with the ideal wall, respectively. The solid line, inverted-triangle points,
and dashed line represent the growth rates of the RP-EK without wall, with the resistive wall, and with the ideal wall, respectively. Note that the growth grate of the mode in the
resistive plasma nearly overlaps between the no-wall and the resistive wall cases. Shown in (b) is the open-loop growth rate of the IP-RWM with increasing b at fixed
q0 ¼ 1:05. Shown in (c) is the open-loop growth rate of the RP-RWM (at q0 ¼ 1:05) and the RP-EK (at q0 ¼ 1:2) while scanning the equilibrium pressure. For the resistive
plasma instabilities, the plasma resistivity is fixed g ¼ 2� 10�8.
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values and with (either internal or external) poloidal sensors, however,
feedback with external active coils outperforms that with internal
active coils. In fact, we find similar results also for RP-RWM and RP-
EK as will be reported later on.

The above finding appears to be counter-intuitive. The expecta-
tion is that, with the same type of sensor coils, placing the active coils
inside the resistive wall should always be better than placing them out-
side the wall for two reasons. First, the control field is stronger since
the internal active coil is closer to the plasma. Second, with the internal
active coils, the control field does not need to penetrate through the
resistive wall in order to reach the plasma. We remark that the second
argument does not apply to the case of marginal stability (assuming
that the marginal stability is reached at vanishing mode frequency)
since the wall eddy current vanishes in this case. But the first argument
always applies.

It turns out that this counter-intuitive behavior is the result of the
single harmonic approximation that we adopt in this study. The single
harmonic approximation is a natural choice for the matching
approach (as well as for the cylindrical plasma). Note that the equilib-
rium that we choose has only a single resonant harmonic m=n ¼ 2=1.
The multi-harmonic coupling effect thus can only come from the
non-resonant harmonics and is a feedback coil geometry effect.

To illustrate this, we return to the PRM approach (Appendix B).
The latter allows us to include multiple poloidal harmonics into the
plasma response transfer function despite the fact that the 2=1 mode is
the only unstable mode in the spectrum. Inclusion of multiple poloidal
harmonics is needed primarily to properly describe the feedback coil
geometry,28 which is where our intuition develops from. In other
words, window-pane active coils and point-wise poloidal sensor sig-
nals require many poloidal harmonics to resolve. As soon as we add
all the other (non-resonant) harmonics (associated with stable RWM)
into the PRM, we find that the internal active coils always outperform
the external counterpart [Fig. 12(c), Appendix B].

Even more interestingly, it turns out that the major role in
resolving the puzzle is played by the m ¼ �2 harmonic. By only
including the m ¼ 62 contributions into the PRM, the

aforementioned counter-intuitive phenomenon also disappears [Fig.
12(b), Appendix B]. The fundamental reason here is a cancelation
effect between theþm and�m harmonics as discovered in Ref. 30.

As mentioned before, it is unfortunately not straightforward to
include multiple harmonics (in particular that of the non-resonant
sideband) into the matching approach. (The PRM approach as devel-
oped in Refs. 29–31 is suitable for including multiple harmonics but is
not suitable for including the resistive layer physics.) Therefore, cau-
tion needs to be taken when discussing the feedback results (in partic-
ular that with the external active coils and poloidal sensors) predicted
by the matching approach with single harmonic approximation, which
does not properly describe the realistic feedback coil geometry as
adopted in experiments.

As a final remark to the results shown in Fig. 3, we notice that
the open-loop growth rate increases with equilibrium pressure, as
shown in Fig. 2(b). The critical gain required for full stabilization of
the IP-RWM is larger [b ¼ 0:03, Fig. 3(b)].

IV. FEEDBACK CONTROL OF RP-RWM VIA
MODIFICATION OF D0ext

If the IP-RWM feedback study presented in Sec. III can be car-
ried out with either the PRM or matching approach, the latter is much
more suitable for studying feedback control of the RP-RWM. Even
more interestingly, the matching approach allows us to quantify the
effect of magnetic feedback on the tearing index D0ext. In what follows,
we demonstrate that feedback indeed modifies D0ext. Moreover, we
show that feedback modification of the external tearing index does not
depend on the inner layer physics, i.e., on variation of the DR value.
The basic plasma parameters (except those in the resistive layer) are
assumed the same as that from Sec. III.

With proportional control, stability of the close-loop for the RP-
RWM is determined by solving the dispersion relation (14) which
links Eq. (8) with Eq. (12) or (13), depending on whether the GGJ
effect is included into the layer model. As mentioned before, we
include the GGJ physics [Eq. (13)] into the inner layer for the equilib-
rium with finite pressure. The feedback results for both equilibria

FIG. 3. The growth rate of the n ¼ 1 IP-RWM vs the proportional feedback gain value kP , assuming various combinations of the active and sensor coil types and (a) vanishing
equilibrium pressure b ¼ 0 and (b) finite equilibrium pressure b ¼ 0:03. The on-axis safety factor is fixed at q0 ¼ 1:05.
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(with vanishing or finite pressure) are summarized in Fig. 4. Similar to
results reported in Sec. III for the IP-RWM, proportional feedback
reduces the growth rate of the RP-RWM, with all six feedback coil
configurations considered in this work. The combination of
internal active coils with internal poloidal sensor performs the best at
low feedback gain. At higher feedback gain, we again obtain the

counter-intuitive result of the superior performance by the external
active coils. Since the behavior is qualitatively similar to that of the IP-
RWM, we expect that the same reasoning (i.e., the single harmonic
approximation vs the requirement of multiple poloidal harmonics to
correctly describe the feedback coil geometry) also applies here to
explain this counter-intuitive behavior.

FIG. 4. Close-loop results for the n ¼ 1 RP-RWM, assuming equilibria with [(a) and (b)] vanishing pressure b ¼ 0 and [(c) and (d)] finite pressure b ¼ 0:03 with the GGJ
included into the inner layer tearing index (DR ¼ �0:0003). Compared are results with various feedback coil configurations assuming proportional control. Plotted are [(a) and
(c)] the mode growth rate and [(b) and (d)] the external tearing index. Shown in (e) are the open-loop and close-loop growth rates for the RP-RWM while scanning the
Lundquist number S, assuming a combination of external active coils with the internal poloidal sensor. The on-axis safety factor is fixed at q0 ¼ 1:05.
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We now analyze some details of the results presented in Fig. 4,
first focusing on the vanishing equilibrium pressure case without the
GGJ effect. Figure 4(a) shows that the critical gain values for kP , corre-
sponding to marginal stability of the RP-RWMwith the external active
coils and the internal or external poloidal sensors, coincide. This is
because the wall eddy current disappears at the marginal instability.
Therefore, the wall is effectively in absence under this peculiar circum-
stance. In other words, the (normally qualitative) difference between
the internal and external poloidal sensors disappears at the marginal
instability point (and with vanishing mode frequency which is the case
here).

Inserting the mode growth rate shown in Fig. 4(a) back into
expression (8), we obtain feedback modification of the external tearing
index as reported in Fig. 4(b). The overall behavior, among various
combinations of the feedback coils, resembles that of the stability plot
shown in Fig. 4(a). This is understandable since the inner tearing index
in this case scales with the mode growth rate in a simple proportional-
ity manner [Eq. (12)]. Nevertheless, Fig. 4(b) convincingly demon-
strates that feedback reduces the external tearing index, and, by doing
so, it stabilizes the RP-RWM.

Next, we discuss Figs. 4(c) and 4(d) for the finite pressure equilib-
rium case, where the GGJ effect is included into the inner layer tearing
index [Eq. (13)]. The feedback results are generally similar to that
without the GGJ-effect [Figs. 4(a) and 4(b)]. One qualitative difference
though is the appearance of complex eigenvalues (i.e., finite mode fre-
quencies) at large proportional gains as shown in Fig. 4(c). This occurs
for the close-loop with either internal or external poloidal sensors. It is
known that, in the absence of feedback, the GGJ effect can introduce
complex frequency to the RP-RWM even for a static equilibrium if the
DR value is sufficiently negative.14 In our case, however, the DR value
is chosen such that the open-loop eigenvalue is real. The finite mode
frequency is thus introduced by the feedback action (but in the pres-
ence of the GGJ effect).

Figure 4(d) shows the corresponding D0ext for the case with GGJ
effect. The general trend of the proportional feedback is again to
reduce D0ext. The most interesting observation here, however, is that
the corresponding external tearing index becomes complex-valued at
sufficiently large feedback gain. The imaginary part of D0ext is small (by
about three orders of magnitude in this case) compared to that of the
real part, but much larger imaginary part is also obtained as will be
shown in later examples. Note that complex D0ext occurs whenever the
close-loop eigenvalue becomes complex. This feature of complex D0ext
is qualitatively different from the open-loop TM theory, where suffi-
ciently large GGJ effect introduces finite mode frequency but the tear-
ing index remains real-valued.

Close examination of the close-loop external tearing index reveals
two possible perturbed energy sources from the outer region that can
introduce complex D0ext in the presence of a rotating close-loop RP-
RWM (in the static plasma). One is the plasma inertia, while the other
is the presence of a resistive wall. For the RWM, the plasma inertia
(from the outer region) is known to play a minor role on the mode
dynamics. In fact, in our example, the inertia term [associated with the
A1 factor, see Eq. (6)] is about ðsw=sAÞ2 ¼ 108 times smaller than that
due to the resistive wall, with the latter providing an order unity con-
tribution to D0ext. The major role in inducing complex-valued external
tearing index is thus played by the resistive wall, which provides per-
turbed energy dissipation due to the wall eddy current. To further

verify this conclusion, we performed feedback calculations similar to
that presented in Figs. 4(c) and 4(d), but this time assuming sw ¼ 0 in
Eq. (8). The close-loop D0ext indeed becomes real-valued in this case
even in the presence of large feedback gain and complex RP-RWM
eigenvalues.

The results shown in Figs. 4(a)–4(d) assume a fixed Lundquist
number of S ¼ 5� 107. The feedback results remain qualitatively sim-
ilar with different choices of the Lundquist number. Figure 4(e) com-
pares the open-loop and close-loop instabilities while scanning the
Lundquist number at fixed proportional feedback gain. Considered is
a feedback configuration with external active coils and the internal
poloidal sensor. Increasing the Lundquist number reduces the mode
instability for both the open-loop and close-loop systems, with the
open-loop result being consistent with that reported in Ref. 13.

Another interesting observation is that the real part of the exter-
nal tearing index is nearly independent of the assumed DR value when
we scan the feedback gain despite the fact that the close-loop eigen-
value substantially varies with DR. This is illustrated in Fig. 5, where
we assume a control scheme with external active coils and the internal
poloidal sensor. For a given DR value, the close-loop eigenvalue
becomes complex at certain feedback gain, but the mode is still unsta-
ble [Fig. 5(a)]. Further increasing feedback gain results in full stabiliza-
tion of the RP-RWM, with the critical gain value (for marginal
stability) increasing with increasing the amplitude of DR. A small
imaginary part [inset in Fig. 5(b)] of D0ext again appears when the
close-loop eigenvalue becomes complex. But the real part of D0ext is
almost independent of the choice for the DR value. In other words, the
results show that the magnetic feedback system modifies the external
tearing index almost independent of the inner layer physics.

V. FEEDBACK CONTROL OF RP-EK VIA MODIFICATION
OF D0ext

As the final step of investigation, we consider feedback stabiliza-
tion of the RP-EK. Active control of the EK is normally not practically
feasible due to the fast open-loop growth (in Alfvenic timescale). This
is, however, not the case for the RP-EK due to substantial reduction of
the mode growth rate by the plasma resistivity, as shown in Fig. 2. We
shall again consider P-control with or without the GGJ physics in the
inner layer. The basic plasma parameters remain the same as that in
Sec. III, except for the on-axis safety factor q0 ¼ 1:2 and the equilib-
rium pressure b ¼ 0:05. The Lundquist number is fixed at
S ¼ 5� 107. As mentioned before, these choices merely represent typ-
ical values. Our final conclusions are not sensitive to these choices. We
remark that, at q0 ¼ 1:2, a new rational surface (q ¼ 3) appears inside
the plasma (qa ¼ 3:0234). With our parameter settings, the m ¼ 3
mode is stable and is thus not studied here.

The difference from the RP-RWM study is that the plasma iner-
tia is still retained in evaluating the external tearing index. We note
that the plasma inertia is critical for the EK as soon as the mode
growth rate is large. (It can be easily verified that, without including
the inertial term, the IP-EK becomes stable when q0 < 1:076 with our
equilibrium model, leading to un-physical results.) On the other hand,
when the EK instability is significantly weakened by the plasma resis-
tivity (i.e., the RP-EK), the inertial effect again becomes less important.
We nevertheless keep the plasma inertia in the following study for
consistency, so that the IP-EK regime can be recovered at vanishing
plasma resistivity.
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FIG. 5. Close-loop results for the n ¼ 1 RP-RWM for (a) the mode eigenvalues and (b) the external tearing index while scanning the proportional feedback gain and varying
the value of the resistive interchange index. Considered is a plasma with finite equilibrium pressure (b ¼ 0:03). Assumed is a control scheme with the external active coil and
the internal poloidal sensor. The on-axis safety factor is fixed at q0 ¼ 1:05.

FIG. 6. Close-loop results for the n ¼ 1 RP-EK with (sw ¼ 104sA) and without (sw ¼ 0) resistive wall, assuming equilibria with [(a) and (b)] vanishing pressure b ¼ 0 and [(c)
and (d)] finite pressure b ¼ 0:05 with the GGJ included into the inner layer tearing index (DR ¼ �0:01). Compared are results with various feedback coil configurations
assuming proportional control. Plotted are [(a) and (c)] the mode growth rate and [(b) and (d)] the external tearing index. The on-axis safety factor is fixed at q0 ¼ 1:2.
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Figure 6 shows that feedback stabilization of the RP-EK is gener-
ally weak due to weak modification of the external tearing index. The
exception is the coil combination with external active coils and the
internal or external poloidal sensor. However, as pointed out in
Sec. III, the strong stabilization with external active coils should be
viewed with caution due to the artifact associated with the single har-
monic approximation. Another observation is the large difference in
the feedback results between the internal and external poloidal sensors.
This is due to much stronger instability (the open-loop growth rate of
the RP-EK which is about one order of magnitude higher than that of
the RP-RWM); it induces larger eddy currents in the resistive wall.

With external active coils, the two stability curves with internal
and external poloidal sensors intersect at the feedback gain value of
kP ¼ 0:25. This is not a co-incidence. Detailed analysis of the

expression (8) for the external tearing index reveals that, at this gain
value, or more generally at kP ¼ 1=2m, the parameter aP ¼ 1 holds
independent of the wall time, resulting in the same stabilization effect.

Similar to the RP-RWM, inclusion of the GGJ effect results in a
rotating RP-EK at large proportional gain (kP > 0:3) and with exter-
nal active coils [Fig. 6(c)]. The corresponding external tearing index
also becomes complex-valued, with large magnitude of ImðD0extÞ in
this case. The imaginary part of the outer tearing index is again pri-
marily introduced by the wall eddy current induced perturbed energy
dissipation.

To further illustrate the last point, we report the feedback results
for the RP-EK in the limit of sw ¼ 0 in Fig. 7. Note that, by definition,
we are considering here an RP-EK (not RP-RWM) instability here
despite that q0 < 1:076 since sw ¼ 0. The results show that the

FIG. 7. Close-loop results for the n ¼ 1 RP-RWM (q0¼ 1:05) and RP-EK (q0¼ 1:2), assuming equilibria with [(a) and (b)] vanishing pressure and [(c) and (d)] finite pressure
with the GGJ included into the inner layer tearing index (b ¼ 0:03 for RP-RWM and b ¼ 0:05 for RP-EK). Compared are results with (sw ¼ 104sA) and without (sw ¼ 0) wall
by assuming proportional control configuration combined of external active coils with the internal poloidal sensor. Plotted are [(a) and (c)] the mode eigenvalue and [(b) and (d)]
the external tearing index.
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RP-EK can still be stabilized by the combination of external active coils
and poloidal sensors (assuming the single-pole model), similar to that
for the RP-EK with a resistive wall. A slight difference here is the less
stabilization of the RP-EK in the presence of a resistive wall with the
combination of external active coils and internal poloidal sensors. This
is more evident from the comparison shown in Fig. 6. In the case of
sw ¼ 0, the distinction between the external and internal (poloidal)
sensors disappears since these two types of sensors refer to the relative
radial position of the sensors to the wall. Therefore, the comparison of
the close-loop RP-EK growth rates, between with and without wall,
already shows that the presence of a resistive wall does affect the feed-
back results.

The next qualitative difference is that the corresponding
close-loop D0 remains real-valued with sw ¼ 0, whilst D0 becomes
complex-valued with a resistive wall [Figs. 6(c), 6(d), 7(c), and 7(d)].
This clearly shows that the presence of the wall eddy current dissipa-
tion can introduce imaginary part for the tearing index.

Finally, we point out that the difference between the no-wall and
the resistive-wall results disappears at the marginal stability points [Figs.
6(a), 6(b), 7(a), and 7(b)] when the close-loop has zero mode frequency.
This is understandable since the resistive wall eddy current completely
disappears (thus recovering the no-wall case) at the marginal stability
point with zero perturbation frequency. This is not the case with the
inclusion of the GGJ-effect [Figs. 6(c), 6(d), 7(c), and 7(d)], where

FIG. 8. Close-loop results for the n ¼ 1 RP-EK with a resistive wall (sw ¼ 104sA) for (a) the mode eigenvalues and (b) the complex external tearing index, while scanning the
proportional feedback gain and varying the value of the resistive interchange index DR ¼ �0:001–�0:014. Considered is a plasma with finite equilibrium pressure
(b ¼ 0:05). Assumed is a control scheme with the external active coil and the external poloidal sensor. The on-axis safety factor is fixed at q0 ¼ 1:2.

FIG. 9. Open-loop and close-loop results for the n ¼ 1 RP-EK for (a) the mode eigenvalue and (b) the complex external tearing index while scanning the resistive interchange
index. Compared also are the results with proportional feedback and with PD-feedback. Considered is a plasma with finite equilibrium pressure b ¼ 0:05. Assumed is the
feedback configuration with the external active coil and the external poloidal sensor. The on-axis safety factor is fixed at q0 ¼ 1:2.
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the mode has finite frequency at the marginal stability point. The
marginal points, in terms of both the close-loop mode stability and
the corresponding external tearing index, thus differ between the
no-wall and the resistive wall cases.

Coming back to the case with finite wall time, the transition from
the real to complex eigenvalue depends on the value of kP and DR, as
shown in Fig. 8. When the absolute value of DR is sufficiently small
(e.g., DR ¼ �0:001), the eigenvalue of the RP-EK and the value of the
corresponding D0ext are all real. In addition, for the range of kP between
0 and 0.25, D0ext remains real independent of the choice for the DR

value.
In the presence of the GGJ effect, the derivative gain induced

complex mode eigenvalue (and D0ext) appears to be qualitatively differ-
ent from that induced by the proportional action. This is demon-
strated in Fig. 9, where we compare the P- and PD-control of the
RP-EK while scanning the DR value. The feedback scheme combines
the external active coil and the external poloidal sensor. Apparently,
with increasing DR (toward the negative value), the growth rate of the
RP-EK decreases [Fig. 9(a)]. The close-loop eigenvalue becomes com-
plex at certain value of DR. This transition occurs for both the open-
loop and close-loop with either P- or PD-feedback, though at different
DR values.

The real part of the corresponding external tearing index D0ext is
independent of the resistive interchange index in the open-loop or
close-loop with P-feedback. This implies that the RP-EK is controlled
by the proportional feedback via modification of D0ext, not via changing
the inner layer physics. On the other hand, the same derivative action
does result in different D0ext while varying the DR value. Figure 9(b)
shows that, under the same derivative action, the external tearing index
increases with increasing DR (toward negative value), despite the fact
that the growth rate of the RP-EK decreases. The effect of the derivative
feedback action is thus non-trivial in terms of modifying the external
tearing index. On the other hand, the P-feedback, with either kP
¼ 0:25 or kP ¼ 0:3, produces constant D0ext values independent of DR.

VI. CONCLUSIONS

Based on an analytic model, we have carried out systematic inves-
tigation of feedback control of the RP-RWM and RP-EK via the match-
ing method [Eq. (14)]. The same method is also applied to study the
IP-RWM as a special case, i.e., with vanishing inner layer tearing index
at the mode rational surface. A key merit of the matching approach is
that feedback modification of the external tearing index can be quanti-
fied by inserting the self-consistently calculated eigenvalue from the
close-loop Eq. (14) back into expression (8) or (10). For the RP-RWM
and RP-EK, the instability is controlled mainly via feedback modifica-
tion of the external tearing index as demonstrated in this work.

Assuming six feedback coil configurations combining different
types of active and sensor coils, we calculate modification of D0ext by
the P- or PD-control systems and map out the results in parameter
spaces involving the proportional gain kP , the derivative gain kD, and
the resistive interchange index DR. We find that increasing either the
proportional or derivative gain generally reduces D0ext and stabilizes
the RP-RWM or RP-EK with all six feedback configurations.

Feedback generally affects the external tearing index D0ext indepen-
dent of the inner layer physics, implying that feedback stabilizes the
RP-RWM or RP-EK primarily via modification of the solution in the
outer ideal region. One exception is the case where either sufficiently

large GGJ effect or strong control action produces a rotating instability
in the static plasma. The close-loop external tearing index then
becomes complex-valued due to the perturbed magnetic energy dissi-
pation in the outer region, associated with the eddy current flowing in
the resistive wall. The plasma inertia (again from the outer region) in
principle plays a similar role as the wall eddy current, but the effect on
D0ext is several orders of magnitude weaker during feedback stabilization
of the RP-RWM and RP-EK. For the latter, the inertia effect is already
significantly reduced by plasma resistive damping in the open-loop.

With the single harmonic approximation, which is the constraint
for the matching method, we find that the combination of external active
coils and poloidal sensors often outperforms the other feedback configu-
rations at large feedback gain. This counter-intuitive result is explained
as the lack of (non-resonant) poloidal harmonics for proper description
of the feedback coil geometry. This is confirmed by including multiple
poloidal harmonics in the alternative control model based on the plasma
response transfer function (the PRM model), which has previously been
developed to study feedback control of the IP-RWM.

The fact that multiple poloidal harmonics are needed in order to
better resolve the feedback coil geometry and thus to obtain quantita-
tively more correct results shows the drawback of the single-pole
matching method employed in this study. Future work will exploit the
possibility of multi-pole matching methods (as well as plasma flow) in
conjunction with magnetic feedback. An alternative, which we also
plan to pursue, is to study feedback modification of the tearing index
utilizing toroidal codes. Nevertheless, we emphasize that most of the
conclusions reached in this study still hold in the qualitative sense. In
particular, we explicitly demonstrate that (i) magnetic feedback stabil-
izes the RP-RWM largely via modification of the external tearing
index, (ii) magnetic feedback generally stabilizes the RP-RWM and
RP-EK with various feedback coil configurations, and (iii) feedback
can induce a complex external tearing index, due to the wall eddy cur-
rent energy dissipation.

This work provides a theoretical basis for interpreting the experi-
mental results of magnetic feedback control of resistive-plasma instabil-
ities in fusion devices. Compared to the previous analytic work, we show
a clear separation of the feedback effect on the outer and inner regions
via the matching method. This is of fundamental importance since mag-
netic feedback is not expected to help control an instability which is
“interior” to the plasma. In other words, magnetic feedback, based on
coils outside the plasma, cannot be effective if the required action is pri-
marily targeting the inner resistive layer. Our findings also suggest a way
of quantifying the feedback action on the resistive modes in modeling
with toroidal codes. More specifically, it will be extremely useful if a
toroidal code simulation can extract the modification of the tearing
index by magnetic feedback. This subsequently allows (i) separating the
feedback problem into two independent problems for the outer and
inner regions; (ii) verifying whether our analytic approach (and the
associated assumptions) is qualitatively reasonable; and (iii) verify-
ing certain physics consequences such as whether the resistive wall
eddy currents can indeed induce a complex tearing index.

As already implied above, our approach can also be applied to
study magnetic control of other MHD modes, in particular, the TM
and NTM. Conventionally, NTM is controlled by non-magnetic
means such as the electron cyclotron current drive. Magnetic control
can provide a complementary method as long as feedback can help to
modify (reduce) the external tearing index.
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APPENDIX A: SPECIAL CASES OF IP-RWM

This appendix lists simplified versions for the open-loop and
close-loop growth rates of the IP-RWM in special cases. The open-
loop growth rate of the IP-RWM is derived from Eq. (6),

cnfsw ¼ �2m
1� m� nq0ð Þ

1� r0=rwð Þ2m � m� nq0ð Þ
: (A1)

For the plasma with vanishing equilibrium pressure (b ¼ 0), the
close-loop growth rate with the P-controller can be straightfor-
wardly obtained for the IP-RWM, assuming various combinations
of the active and sensor coil types

csw ¼

�2mkP þ C1 ext:coil þ rad:sensor;

�C2mkP þ C1ð Þ= 1� 2mkPð Þ ext:coil þ ext:pol:sensor;

�C2mkP þ C1 ext:coil þ int:pol:sensor;

�C3kP þ C1 int:coil þ rad:sensor;

�C3mkP þ C1 int:coil þ ext:pol:sensor;

�C3mkP þ C1ð Þ= 1þ C3kPð Þ int:coil þ int:pol:sensor;

8>>>>>>>>>>><
>>>>>>>>>>>:

(A2)

where C1 ¼ cnfsw, C2 ¼ �2m 1�ðm�nq0Þþðr0=rwÞ2m

1�ðm�nq0Þ�ðr0=rwÞ2m
and C3

¼ 2m 1�ðm�nq0Þ�ðr0=rf Þ2m

1�ðm�nq0Þ�ðr0=rwÞ2m
are all positive constants.

Assuming the combination of internal active coils and the
radial sensor, the close-loop growth rate with a PD-control is calcu-
lated as

csw ¼
�C3kP þ C1

�C4kD þ 1
; (A3)

where C4 ¼ � 2m½1�ðm�nq0Þ��ðr0=rf Þ2m

1�ðm�nq0Þ�ðr0=rwÞ2m
is also a positive constant.

APPENDIX B: ALTERNATIVE APPROACH TO STUDY
IP-RWM FEEDBACK

This appendix exploits the PRM approach for feedback control
of the IP-RWM in order to compare with the matching approach
adopted in the main part of this work and to explain certain
counter-intuitive results obtained with the matching approach.
Specifically, Sec. III finds that the combination of the external active
coil and the poloidal sensor provides more efficient control at large
proportional gain than the internal active coil.

Below we repeat the key steps in deriving the PRM model.28–30

For each poloidal harmonic m, the corresponding transfer func-
tion MmðsÞ, from the control current to the sensor signal, is
obtained for the same equilibrium (with vanishing pressure) as
specified in Sec. II.

(i) The perturbed radial field component br satisfies the ideal
MHD force balance condition at the plasma boundary sur-
face r ¼ aþ,

rb0r
br

����
aþ
¼ C; (B1)

where C is a constant independent of feedback.
(ii) The wall equation (thin wall is assumed)

r b0r
� �
br

����
rw

¼ 2s; (B2)

where s ¼ csw is the growth rate of the RWM with
feedback.

(iii) The total field in various vacuum regions outside the plasma
can be written as the sum of contributions from the plasma,
the wall, and the active coil currents

br ¼ bpr
r
a

� �sgn a�rð Þl�1
þ bwr

r
rw

� �sgn rw�rð Þl�1
þ bfr

r
rf

� �sgn rf�rð Þl�1
:

(B3)

The above three conditions yield a relation

l� 1� C
lþ 1þ C

a
rw

� �2l

¼ �
cnf sw þ l

cnf sw
; (B4)

where cnf sw ¼ �l 17ðm�nq0Þ
17ðm�nq0Þ�ðr0=rwÞ2l

is the growth rate of the ideal

external kink mode, with l ¼ jmj and 7 stands for �sgnðmÞ.
Define the open-loop transfer function for the radial and

poloidal sensors as

Mm
r sð Þ � bsr

bfr
(B5)

and

Mm
h sð Þ �

jbshjrs
bfr

; bshjrs ¼
j
m

rbsr
	 
0jrs (B6)

respectively, where bsr is the total radial field at the sensor position,
which is assumed to be the wall radial position. Considering various
combinations of the active and sensor coil types, the transfer func-
tions for the radial and poloidal sensors are obtained by expressing
bpr , bwr and bsr via b

f
r , yielding

Mm
r sð Þ ¼

a
s� cnf sw

rf < rwð Þ;

b
s� cnf sw

rw < rfð Þ;

8>>><
>>>:

(B7)
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Mm
h sð Þ ¼

lþ 2s
m s� cnf swð Þ

a rf < rs < rwð Þ;
l

m s� cnf swð Þ
a rf < rw < rsð Þ;

lk
m s� cnf swð Þ

rs < rw < rfð Þ;

l k� 2jsð Þ
m s� cnf swð Þ

rw < rs < rfð Þ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(B8)

where

a ¼ lðrw=rf Þl�1 þ cnf sw½ðrw=rf Þl�1 � ðrw=rf Þ�l�1�;
b ¼ lðrw=rf Þl�1;
k ¼ 2cnf swðrw=rf Þl�1 þ lðrw=rf Þl�1;
j ¼ ðrw=rf Þl�1:

8>>>><
>>>>:

The open-loop total transfer functions29 for different poloidal
harmonics are coupled via a window-pane representation of the
active coils and the point-wise sensor signal (for either the radial or
poloidal sensors), resulting in a total transfer function of

P sð Þ ¼
X
m

Mm sð Þfm exp jmhcð Þexp jmhsð Þ;

where hc (hs) is the poloidal angle of the center of the active (sensor)
coil locations, and fm is the geometrical coupling factor

fm ¼
m
2l

sin mhf
	 

sin hf

r2w þ r2f � 2rwrf cos hf

r2f

with hf being the half-width of the poloidal coverage by the active
coils. Here, we consider one set of feedback and sensor coils, both
placed at the low field side near the outboard mid-plane.

FIG. 10. The growth rates of the n ¼ 1 IP-RWM vs the feedback gain, assuming various combinations of the active and sensor coil types. The poloidal coverage by the active
coil is fixed hf ¼ p=9. (a) single-m poloidal harmonic (m ¼ 2), (b) two poloidal harmonics (m ¼ 62) and (c) multiple poloidal harmonics (m ¼ �10–�10) are considered in
the transfer function PðsÞ, respectively.
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With a proportional controller and feedback gain G, the close-
loop eigenvalue is determined by the solution of the characteristic
equation

1þ GP sð Þ ¼ 0: (B9)

Taking the single-m poloidal harmonic approximation, the close-
loop eigenvalue is readily calculated

s ¼

cnf sw �Hb ext:coil þ rad:sensor;

mcnf sw �Hkl

m� 2Hjl
ext:coil þ ext:pol:sensor;

mcnf sw �Hkl

m
ext:coil þ int:pol:sensor;

cnf sw �Ha int:coil þ rad:sensor;

mcnf sw �Hal

m
int:coil þ ext:pol:sensor;

mcnf sw �Hal

mþ 2Ha
int:coil þ int:pol:sensor;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(B10)

where H ¼ fmG for the single row of active coils and sensor coils
located at the outboard mid-plane (hc ¼ 0 and hs ¼ 0). It is evident
that the PRM approach yields the same feedback result, (B10), as
that from the matching approach from the IP-RWM [setting
expression (8) ¼ 0], i.e., (A2) from Appendix A. The difference in
the coefficients comes from different definition of the control
signals.

The above expression (B10) [or equivalently expression (A2)]
shows that a P-control with the internal active coil and the inter-
nal poloidal sensor provides more stabilization than that of the

external active coil (
mcnf sw�Hkl

m >
mcnf sw�Hal

mþ2Ha ) if the feedback gain is

sufficiently small 0 < H <
cnf swþ1

k � 1
a. However, at large feedback

gain H >
cnf swþ1

k � 1
a, the external active coil becomes more

effective (
mcnf sw�Hkl

m <
mcnf sw�Hal

mþ2Ha ). These results are also plotted in
Fig. 10(a).

On the other hand, we can also numerically solve Eq. (B9) by
including two harmonics (m ¼ 62) or even multiple harmonics
(m ¼ �10 � 10) in the transfer function PðsÞ. The calculated
close-loop growth rates for the IP-RWM are plotted in Figs. 10(b)
and 10(c), respectively. In both cases, we find that the internal
active coil provides stronger stabilization to the mode than the
external active coil, independent of the proportional feedback gain
value.

APPENDIX C: EFFECTS OF DERIVATIVE CONTROL
ACTION

Active control of the IP-RWM, RP-RWM, and RP-EK with
proportional–derivative feedback is discussed below. For each type
of instability, we shall consider expression (10), instead of expres-
sion (8) which is valid for the proportional controller. We shall vary
the derivative gain kD at fixed proportional gain.

1. Control of IP-RWM with PD-feedback

We again numerically solve the IP-RWM dispersion relation
D0ext;PDðK; cÞ ¼ 0 [i.e., expression (10) ¼ 0] with PD-feedback. The
results are reported in Fig. 11, again assuming various combinations
of the active and sensor coil types. For both plasmas (with vanishing
or finite equilibrium pressure), the derivative action reduces the
mode growth rate, except the case of internal active coil combined
with the radial sensor. The latter, somewhat surprising, result can
be analytically understood. For this specific case, the growth rate of
the close-loop system becomes csw ¼ ð�C3kP þ C1Þ=ð�C4kD þ 1Þ
with vanishing equilibrium pressure b ¼ 0 [Eq. (A3), Appendix A].
At fixed proportional gain of kP ¼ 0:1, the numerator
�C3kP þ C1 > 0. Since C4 > 0, increasing derivative gain (up to
certain limit) also increases the mode growth rate.

FIG. 11. The growth rate of the n ¼ 1 IP-RWM vs the derivative gain, assuming various combinations of the active and sensor coil types. The proportional feedback gain is
fixed at kP ¼ 0:1. Considered are two equilibria with either (a) vanishing pressure b ¼ 0 or (b) finite pressure b ¼ 0:03. The on-axis safety factor is fixed at q0 ¼ 1:05.
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We note that the IP-RWM cannot be fully stabilized by the deriva-
tive action. At fixed proportional gain, the mode growth rate approaches
a positive constant at infinite derivative gain. This is understandable since
the stabilizing effect of the derivative action diminishes as the mode
approaches the marginal stability point (at vanishing mode frequency).

2. Control of RP-RWM with PD-feedback

We now solve Eq. (14) but with the external tearing index
defined by expression (10). The results are presented in Fig. 12,
without [(a) and (b)] or with [(c) and (d)] the GGJ effect. Note that
the general trend remains similar between the two cases (with or
without the GGJ effect). For the case with the GGJ effect [(c) and
(d)], the proportional gain is chosen such that the close-loop eigen-
value is real at vanishing derivative gain. The latter, when intro-
duced, does not yield finite mode frequency.

The feedback results with either external or internal poloidal sen-
sors remain similar while scanning the derivative gain. This is largely
because the mode growth is already weak at kP ¼ 0:1 and kD ¼ 0. A
weakly growing instability does not introduce large eddy current in the
resistive wall. We also note that the derivative gain is stabilizing with
all types of feedback coil configurations, including the combination of
internal active coils and the radial sensor (albeit with very weak effect).

Similar to the case for the IP-RWM, the derivative action does
not fully stabilize the RP-RWM. Both the mode growth rate and the
external tearing index tend to saturate at large kD values.

3. Control of RP-EK with PD-feedback

Figure 13 reports the PD feedback results by numerically solv-
ing Eq. (14), which links expression (10) with (12) or (13), while

FIG. 12. Close-loop results for the n ¼ 1 RP-RWM, assuming equilibria with [(a) and (b)] vanishing pressure b ¼ 0, and [(c) and (d)] finite pressure b ¼ 0:03 with the GGJ
included into the inner layer tearing index (DR ¼ �0:0003). Compared are the results with various feedback coil configurations while scanning the derivative gain. The propor-
tional gain is fixed at kP ¼ 0:1. Plotted are [(a) and (c)] the mode growth rate and [(b) and (d)] the external tearing index. The on-axis safety factor is fixed at q0 ¼ 1:05.
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scanning the derivative gain kD at fixed proportional gain of
kP ¼ 0:25. Among various combinations of the active and sensor
coils, the external active coil, combined with poloidal sensors, stands
out as the most effective one in reducing the mode growth rate by
the derivative action. An interesting new observation here is that, for
the RP-EK, the derivative action at large gain value can also introduce
complex close-loop eigenvalue [Fig. 13(c)] and complex D0ext
[Fig. 13(d)]. Moreover, the real part of D0ext increases with increasing
the derivative (at large gain values). This is in contrast to the mono-
tonic decrease in the mode growth rate with increasing kD.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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