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1.  Introduction

To have confidence in the predictions of any given model 
in unproven conditions, it must first be rigourously tested 

to show it behaves as expected and to understand its range 
of validity, through a process called model verification and 
validation (V&V) [1]. However, with a complex non-linear 
system, such as a tokamak plasma device, the interpretation 
of experimental data and the verification and validation of any 
resulting models becomes increasingly difficult [2], though no 
less important.
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Abstract
This paper outlines an approach towards improved rigour in tokamak turbulence transport 
model validation within integrated modelling. Gaussian process regression (GPR) techniques 
were applied for profile fitting during the preparation of integrated modelling simulations 
allowing for rigourous sensitivity tests of prescribed initial and boundary conditions as both 
fit and derivative uncertainties are provided. This was demonstrated by a JETTO integrated 
modelling simulation of the JET ITER-like-wall H-mode baseline discharge #92436 with the 
QuaLiKiz quasilinear turbulent transport model, which is the subject of extrapolation towards 
a deuterium–tritium plasma. The simulation simultaneously evaluates the time evolution 
of heat, particle, and momentum fluxes over  ∼10 confinement times, with a simulation 
boundary condition at ρtor = 0.85. Routine inclusion of momentum transport prediction in 
multi-channel flux-driven transport modelling is not standard and is facilitated here by recent 
developments within the QuaLiKiz model. Excellent agreement was achieved between the 
fitted and simulated profiles for ne, Te, Ti, and Ωtor within 2σ, but the simulation underpredicts 
the mid-radius Ti and overpredicts the core ne and Te profiles for this discharge. Despite this, 
it was shown that this approach is capable of deriving reasonable inputs, including derivative 
quantities, to tokamak models from experimental data. Furthermore, multiple figures-of-merit 
were defined to quantitatively assess the agreement of integrated modelling predictions to 
experimental data within the GPR profile fitting framework.
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This paper outlines a rigourous and automatable approach 
to data processing and profile fitting, through the use of 
Gaussian process regression (GPR) techniques [3, 4], and the 
consequent improvements to V&V within the field of nuclear 
fusion research, as applied to the JETTO transport code  
[5, 6], coupled with the QuaLiKiz quasilinear turbulent trans-
port code [7, 8]. While Bayesian techniques have been applied 
to experimental data from tokamaks before [9–12], including 
the implementation of GPR techniques [13], the novelty of 
this work lies in its extension into validation efforts for inte-
grated models. The simulated results and distributions from 
Monte Carlo studies are compared against the GPR fit distri-
butions, themselves being determined based on experimental 
data from the JET tokamak. Specifically, this paper applies 
it to JET discharge #92436, a JET-ILW baseline discharge 
with plasma parameters BT = 2.77 T, Ip = 2.98 MA, and 33 
MW of input heating power, 28 MW from neutral beam injec-
tion (NBI) and 5 MW from ion cyclotron (IC) heating. This 
discharge was selected as it recorded the highest experimental 
D-D neutron rate to date at JET and is also the subject of 
extrapolation towards a D-T plasma. In order to proceed with 
the proposed V&V procedure, the experimental data needs to 
first be processed into the appropriate inputs for the code.

For the combined JETTO  +  QuaLiKiz transport code, the 
primary quantities under investigation are the simultaneous 
time evolution of the following plasma kinetic profiles:

	 •	�main ion density, ni,
	 •	�electron temperature, Te,
	 •	�ion temperature, Ti,
	 •	�and toroidal flow angular frequency, Ωtor.

Note that the current density, j , and densities of the primary 
impurity ions, nimp, within the discharge are also self-consis-
tently evolved in time for completeness, although these results 
are not validated in this study due to the lack of experimental 
measurements of these quantities. However, JETTO com-
bines the main ion and impurity ion densities, along with their 
respective charges, to form the electron density profile, ne, for 
which experimental data exists. The profiles are evaluated by 
the simulation over a sufficient number of confinement times 
to reach steady state, due to the high sensitivity of the simula-
tion on these quantities at the simulation boundary, especially 
on the ratio Ti/Te [14]. These inputs are typically expressed 
on the square-root normalized toroidal flux coordinate, or 
simply toroidal rho, ρtor, defined as follows:

ρtor =

√
ψtor

ψtor,LCFS
� (1)

where ψtor is the toroidal magnetic flux associated with  
the radial point in the plasma and LCFS is the 
last-closed-flux-surface. The advantage of using GPR for pro-
file fitting is the estimation of both the fit uncertainty based 
on the measurement uncertainties, as well as the analytical 
calculation of the fit derivative and its uncertainty as well. This 
additional information allows for statistically rigourous sensi-
tivity studies regarding the impact of the boundary conditions 
of the simulation, set at ρtor = 0.85 within the simulations 

performed in this study, as well as an improved measure of 
the agreement of and confidence in the transport model when 
compared to experimental data.

As the quantities of interest, ne, Te, Ti,Ωtor, are also inputs in 
the calculation of the heat sources, Qe, Qi, the particle sources, 
Si, and the fast ion population quantities, nfast, Efast, from the 
various plasma heating devices, it is in principle possible to 
propagate these uncertainties through these calculations as 
well. However, this particular application is outside the scope 
of this study. Additional measurements, such as the effective ion 
charge, Zeff, neutron rate, N, total diamagnetic energy, Wtot, total 
radiated power, Prad and normalized internal inductance, li, were 
used to adjust and filter the measurement data and constrain the 
fits further, via an automatised data processing algorithm.

Section 2 outlines the specific measurement data in the 
JET database used to generate these profiles, as well as briefly 
discussing the pre-processing steps required in order to auto-
mate this procedure, highlighting the generality inherent in 
the GPR techniques for profile fitting. Section 3 introduces the 
novel figures-of-merit (FOM) used in this study, discussing 
their application and interpretation. Section  4 discusses the 
sensitivity and consequent validation studies performed, high-
lights their implications, and showcases the statistical rigour 
and validation metrics made possible with GPR profile fitting. 
Finally, a summary and future outlook is provided in section 5.

2.  JET data extraction and processing

In general, the raw measurement signals from the diagnostic 
devices have already been converted into the physical quanti-
ties and profiles. Although this process accrues its own errors, 
it is assumed that the reported measurement uncertainties 
associated with the processed data sufficiently capture these 
effects and that they do not warrant further discussion. To that 
effect, this paper refers to these converted measurement sig-
nals as the raw data. This section discusses the GPR fitting 
algorithm and the pre-processing done to the raw data at JET.

2.1.  Data processing and profile fitting

Table 1 shows the primary data fields in the public JET exper
imental data storage system, and their corresponding diag
nostic devices, from which the raw profile data was derived 
from. Due to the potential presence of erroneous data as a 
result of drifting diagnostic calibrations or data processing 
faults within this database, a workflow was devised to filter out 
any non-physical data points in a broad and generic fashion. 
These filters were designed to be generic in nature such that 

Table 1.  List of diagnostics used for most crucial physical 
quantities.

Quantity Diagnostic type

ne Thomson scattering
Te Thomson scattering

Electron cyclotron emission
Ti Charge exchange spectroscopy
Ωtor Charge exchange spectroscopy
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they may be applied to any appropriate raw data, regardless 
of the origin of that data, such that the resulting workflow can 
be used for large-scale automation of data extraction and pro-
file fitting. This level of automation was desired to support the 
collection of a JET 1D profile database, for purpose of sam-
pling QuaLiKiz inputs for creating neural network training sets 
to extend previous work [15]. Figure 1 shows the developed 
workflow and outlines the various criteria determined to pro-
duce sufficiently reasonable profile fits from a wide variety of 
discharges.

The basic requirements of the workflow are the existence 
of electron density, ne, and electron temperature, Te, measure-
ments, along with the magnetic geometry/equilibrium in order 
to define the radial coordinate systems on which the profiles 
are to be mapped. If additional diagnostics or post-processed 
results are available, such as the ion temperature, Ti, toroidal 
angular frequency, Ωtor, and impurity densities, nimp, measure-
ments, these are also extracted. A number of basic data filters 
are then applied to the data, such as the removal of corrupted 
or missing data and non-physical values7.

Then, a number of data points are added to the raw data to 
enforce a small positive boundary constraint at the separatrix, 
due to known behaviours from scrape-off layer modelling, 
and a zero derivative constraint is applied at the magnetic 
axis, due to the assumed symmetry across the magnetic 
axis. Note that the boundary value constraint for the Ωtor 
profile is a linearly extrapolated value as the rotation profile 
can switch signs in the separatrix region. Finally, the data 
is organized into a standardised format and the appropriate 
kernels are selected according to approximate properties of 
the filtered profile data. This standardised structure is passed 
to the newly-created ‘GPR1D’ Python package8 to perform 
the GPR fits.

The GPR algorithm is derived by applying Bayesian sta-
tistical principles to the mathematics of regression model-
ling, with the assumption that the input noise is described 
by Gaussian probability distribution functions [3, 13]. The 
resulting algorithm effectively performs the regression using 
an infinite set of basis functions, represented by a careful 
choice of the covariance function, or kernel function, of the 
underlying model. This theoretically gives it the capability of 
a universal function estimator. However, as this section will 

Figure 1.  Workflow diagram of the filters and consistency checks applied to the raw data in order to ensure an adequate level of data 
quality for the fitting algorithm to produce useful profiles.

7 Due to the identified discrepancies in the equilibrium reconstruction for 
this discharge, the mid-plane major radius vector of the equilibrium was 
shifted by  ∼5 cm inwards before remapping the raw data to ρtor and applying 
the GPR. This shift was calculated by applying a least-squares tanh fit to 
the temperature pedestal data and setting the separatrix at the location where 
Te  =  100 eV, as is understood to be the Te boundary condition for H-mode 
plasmas from scrape-off layer modelling results.

8 An open-source one-dimensional GPR algorithm, available on GitLab at 
https://gitlab.com/aaronkho/GPR1D.git
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discuss, the exact details of its implementation and usage 
often enforce some constraints on this capability.

The algorithm calculates the mean fit profile and its error 
through the following predictive equations [3, 16]:

K(X, X′) = k(x, x′, θ) |x=X,x′=X′

R(X, X′) = r(x) r(x′) δ(x − x′) |x=X,x′=X′

Y∗ = K(X∗, X) L−1 Y

σ2
Y∗

= L∗ − K(X∗, X) L−1K(X, X∗)

�

(2)

where θ represents the hyperparameters of the chosen 
kernel function, k, the lower-case and upper-case variables 
denote continuous functions and discrete data points, respec-
tively, (X, Y) represents the input data points, (X∗, Y∗) rep-
resents the points at which the model is evaluated, and the 
short-hand K = K(X, X), R = R(X, X), K∗ = K(X∗, X∗), 
R∗ = R(X∗, X∗), L  =  K  +  R, and L∗ = K∗ + R∗ was used to 
improve readability. Due to the numerical details of the GPR 
implementation, it is assumed and advised to select the pre-
diction points such that X∗ /∈ X . The resulting regression fit 
distribution for each point is then Gaussian-distributed, or 
normally distributed, by the definition of the GPR procedure, 
which is a probability distribution described by the following 
expression:

N
(
Y∗,σ2

Y∗

)
≡ 1√

2πσ2
Y∗

exp

(
− (y − Y∗)

2

2σ2
Y∗

)
� (3)

where y  is the variable coordinate corresponding to the input 
data, Y.

Within the GPR framework, the hyperparameters of 
the chosen kernel, θ, act as the free variables which can be 
adjusted to fine-tune the resulting fit. One optimization 
technique for these hyperparameters maximizes the log-
marginal-likelihood (LML), ln p(Y|X, θ), through the use of 
its derivative with respect to each of the hyperparameters, θj, 
which is expressed as follows [3]:

∂ ln p(Y|X, θ)
∂θj

=
1
2

YTL−1 ∂K
∂θj

L−1Y − λ

2
tr
(

L−1 ∂K
∂θj

)
� (4)

where the hyperparameter-dependence is also present in 
L ≡ L(θ) and λ is the regularization parameter, used to con-
trol the degree of complexity in the model. This optimization 
scheme assumes that an analytical form, or a sufficiently 
accurate numerical approximation, exists for the derivative 
of the kernel function with respect to these hyperparameters 
and attempts to find the model that maximizes the probability 
for observing the experimental data. However, it provides no 
guarantee that the chosen model accurately depicts the phys-
ical process which produced the input data.

The desired optimized solution will then be the combi-
nation of hyperparameters, θ, which satisfy the following 
criteria:

∇θ ln p(Y|X) = 0.� (5)

However, since equation  (4) typically forms a non-linear 
system of equations  for the set of θ, it is difficult to calcu-
late the solution explicitly. Thus, an iterative method, such as 

a gradient-based optimization algorithm, is used to find the 
closest desired solution.

The primary advantage of the GPR technique, over other 
common fitting techniques such as spline fitting, is that it pro-
vides statistically rigourous uncertainties of the fit, including 
the fit derivatives, based on the input measurement errors. 
More information about the theory and terminology behind 
the GPR can be found in appendix A and in [3].

A common issue with current fitting practices is that, when 
a pedestal is present within the profile, it is normally difficult 
to accurately fit both the core and pedestal regions. This is 
typically due to the dramatic difference in properties between 
these two neighbouring regions. The GPR methodology offers 
a potential solution to this without modifying the radial coor-
dinate space through the use of a Gibbs kernel, mathemati-
cally as such [3]:

k(x, x′) = σ2

√
2l(x) l(x′)

l2(x) + l2(x′)
exp

(
(x − x′)2

l2(x) + l2(x′)

)

� (6)

where l(x), known as a warping function, is chosen based 
on the desired behaviour of the length scale of the fit. The 
hyperparameters of this kernel are θ = {σ,Θ}, where Θ rep-
resents the set of additional hyperparameters introduced by 
the chosen warping function. In order to obtain the required 
behaviour of the length scale for capturing the pedestal, an 
inverted Gaussian warping function was selected, expressed 
as follows:

l(x) = l0 − l1 exp

(
(x − µ)

2

2σ2
l

)
� (7)

where the additional hyperparameters are Θ = {l0, l1,µ,σl}. 
The ability to avoid the modification of the coordinate space 
is desired, as it would introduce an interpretation bias in the 
data which is inconsistent towards the Bayesian treatment 
and eliminates the need for complex data processing algo-
rithms to handle this in an automated fashion. When a large 
jump in the data is detected within ρ > 0.8, for any of the 
kinetic profiles, which is indicative of the formation of an 
H-mode pedestal, the workflow attempts to fit the data using 
this Gibbs kernel.

When a potential pedestal is not detected in the profile 
data, the Gibbs kernel is entirely replaced with the more basic 
rational quadratic (RQ) kernel, as it is generally more stable 
and yields sufficiently reasonable results in these cases. The 
RQ kernel can be expressed mathematically as follows [3]:

k(x, x′) = σ2

(
1 +

(x − x′)2

2αl2

)−α

� (8)

where the hyperparameters are given by θ = {σ,α, l}.
The noise function required by the GPR algorithm, r(x), 

is generated by applying a separate GPR on the measurement 
uncertainties, also using the RQ kernel. Typically, a large 
regularization parameter (λ � 10) is applied to the fitting of 
the measurement errors, due to the overprediction of the fit 
derivative uncertainties as a direct result of steep gradients in 
the noise function.

Nucl. Fusion 59 (2019) 056007
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The profile fitting routine is designed to execute the GPR 
a number of times per physical quantity, first using a defined 
initial guess and afterwards with a number of randomized 
guesses within set boundaries, in order to ensure that the 
hyperparameter optimization routine does not fall into a local 
maximum. If a pedestal is detected in the profile data and all 
the attempts to perform a fit using a Gibbs kernel fail, then the 
workflow reverts to using the RQ kernel into order to provide 
a reasonable estimate, albeit with a lower fit quality. In prac-
tice, this is a rare occurance since the algorithm is more likely 
to overfit if a reasonable solution cannot be found, wherein 
the algorithm converges on a solution which does not model 
the underlying smooth structure but the radial variation due to 
noise instead.

Overfitting is a common problem with GPR fitting, espe-
cially if the initial guess is too far from the optimal spot, and 
typically results in a poor quality profile fit which varies errat-
ically in the radial coordinate. To remedy this, the regulariza-
tion parameter of the fit itself can also be increased, which 
then applies a greater penalty to erratic fits. Another solution 
to this problem within this profile fitting routine is to increase 
the number of random hyperparameter restarts, which can sig-
nificantly increase the amount of time required to fit each pro-
file, and may reduce the efficacy of the algorithm in capturing 
the behaviour of the pedestal.

2.2.  Application of data extraction process

A demonstration of the GPR profile fitting routine was per-
formed on JET-ILW discharge #92436, a high-power H-mode 
baseline scenario plasma with BT = 2.73 T, Ip = 2.98 MA, 
and 28 MW neutral beam injection (NBI) and 5 MW ion 
cyclotron (IC) auxiliary heating applied. This discharge is 
of particular interest as it is the JET-ILW baseline with the 
highest measured neutron rate to date at JET and is the subject 
of extrapolation towards a D-T plasma. The input data used 
to generate these fits were averaged over a 0.5 s time window, 
specifically from 9.75 s–10.25 s, after all the discussed fil-
ters were applied to the raw data. The results of these fits are 
shown in figures 2–49, showing reasonable fits and error esti-
mates, including good performance over the pedestal region 
and even in the absence of inner core data, as seen in the Ti fit.

With the selection of an appropriate kernel and optimizer, 
a single profile fit can be performed in  ∼10 s on a single pro-
cessor. This means that a single discharge time window can be 
processed in 1–3 min, depending on the amount of raw data 
available. A significant portion of this time is spent extracting 
data from the storage system and performing the pre-pro-
cessing required such that the fit procedure can be automated. 
While this demonstration is limited to a single discharge, 
profiles from 13 000 time windows from over 2000 different 
JET discharges have been processed for the aforementioned 

purpose of sampling QuaLiKiz inputs for creating neural 
network training sets. This will be the subject of a future 
publication.

3.  Validation metrics

To improve the validation efforts of plasma kinetic profiles 
predicted by these complex transport codes, validation met-
rics need to be developed from which the model results can be 
compared to experimental data. These metrics typically require 
a degree of generality such that they can be applied across 
a large range of foreseen scenarios, but also retain enough 
information as to provide a proper quantification of any agree-
ment between the model and experiment [1]. Although many 
different validation metrics have been previously formulated 
for fusion data [1, 2], their applicability is normally problem-
dependent. This section outlines two figure-of-merits (FOM), 
which are intended to be applied specifically to the compar-
ison of kinetic profiles with Gaussian-distributed uncertain-
ties, such as those provided by GPR fitting. The first is for 
comparing profiles without any known uncertainty estimate 
to the GPR fit uncertainties and the second is for comparing 
other profiles with Gaussian-distributed uncertainties to the 
GPR fit uncertainties.

3.1.  Point-distribution comparisons

In the cases where an estimate of the output uncertainty is 
unavailable, an analysis of statistical agreement can be per-
formed by evaluating the probability density function of the 
experimental distribution at the point of the simulation output 
value, as a function of space. As the GPR technique neces-
sarily provides fit uncertainties with a normal distribution, 
the degree of trust that can be placed on these output profiles 
given the input distributions can be calculated simply by eval-
uating a modified form of equation (3), which is as follows:

S ≡ exp

(
− ln(2)

2
(yo − µi)

2

2σ2
i

)
� (9)

where y o is the simulation output value, and µi and σi are 
the mean and standard deviation of the experimental fit dis-
tribution, respectively. The normalising prefactor of equa-
tion  (3) was removed such that S  =  1 indicates a perfect 
match, and the additional factor in the exponent was added 
such that S  =  0.5 when the simulation output is at the ±2σ 
boundary of the GPR uncertainty. In principle, an evaluation 
of the agreement between simulation and experimental fit via 
this methodology does not strictly require the assumption of 
Gaussian-distributed uncertainties. Thus, its application is not 
exclusive to the GPR fit methodology but is demonstrated in 
this paper using the GPR fit uncertainties.

3.2.  Distribution-distribution comparisons

On the other hand, if an estimate of the output uncertainty is 
provided and assumed to be Gaussian-distributed and denoted 

9 An error in the radial coordinate specification for the Thomson scattering 
diagnostic, HRTS, has been discovered inside the data extraction routine 
after the completion of this study. However, it does not change the data 
extraction and profile fitting methodology and a sensitivity scan shows there 
is little impact on the simulation results.
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as N
(
µo,σ2

o

)
, as defined in equation (3), a comparison can be 

made between the input and output distributions based solely 
on their statistical properties, 

(
µi,σ2

i

)
 and 

(
µo,σ2

o

)
, respec-

tively. The proposed FOM developed in this work, denoted as 
M, accounts both the difference of the distribution means in 
relation to their widths and the ratio of the distribution widths 
in relation to their means, expressed as follows:

M = A Pi Po

= exp

(
− (µi − µo)

2

2
(
σ2

i + σ2
o

) − (3σi)
2

µ2
i

− (3σo)
2

µ2
o

)
� (10)

where A represents the accuracy of the output distribution 
compared to the input distribution, and Pi and Po represent 
the individual precision of the input and output distributions, 
respectively. These components can then be expanded further 
into the desired terms as a function of µ and σ using logical 
considerations.

The accuracy component can be derived by calculating the 
area under the product of the two distributions, expressed as 
follows:

A = exp

(
− (µi − µo)

2

2
(
σ2

i + σ2
o

)
)

.� (11)

By examining equation (11) intuitively, it compares the abso-
lute difference between their means, |µi − µo|, while taking 
into account the combined width of their distributions, 
σ2

i + σ2
o, making it a suitable measure of accuracy. The nega-

tive exponent ensures that A ∈ (0, 1], with a value of unity 
meaning a perfect match between the two means and a value 
of zero meaning no statistical overlap between the two distri-
butions, corresponding to no overlap of the 3σ boundaries of 
the two distributions. Equation  (11) is similar to the metric 
proposed by Ricci [17], except with the inclusion of the nega-
tive exponential operator and the 1/2 factor. In order to pro-
vide a rule-of-thumb for the interpretation of A, it is generally 
noted that distribution pairs with A � 0.8 typically have their 
mean values lie within the ±1σ range of the distribution of 
the other.

However, in equation (11), A → 1 as σi → ∞ or σo → ∞, 
which is undesired behaviour as it would award high scores 
to distributions that are too dispersed to be meaningful. The 
precision component is then introduced to provide a penalty 
for this behaviour based simply on the ratio of the distribution 
width to its mean, as follows:

P = exp

(
− (3σ)2

µ2

)
� (12)

where 3σ was chosen as the reference width as  ∼99.7% of the 
distribution lies between [µ− 3σ,µ+ 3σ] in Gaussian statis-
tics, effectively meaning 99.9% of the probability distribution 
lies on one side of zero when |µ| = 3σ. Similarly to equa-
tion (11), the negative exponent ensures that P ∈ (0, 1], with 
a value of unity meaning the quantity in question is perfectly 
known and a value of zero meaning that the given distribu-
tion can be regarded as meaningless due to its width in com-
parison to its mean. This particular method for qualifying the 

distribution width is only useful for quantities which have a 
non-zero expected value, as P  =  0 when µ = 0. In order to 
provide a rule-of-thumb for this component, it is generally 
noted that distributions with P � 0.7 have a relative error 
of σ/µ � 0.2. When applying this to fusion profiles, which 
generally have strictly positive values, regions with P  <  0.3 
can effectively be regarded as meaningless without additional 
information. Due to the dependence of this parameter on the 
absolute value of the distribution mean itself, it is only suit-
able for comparing distributions of quantities which do not 
fluctuate around zero, as is generally the case for fusion pro-
file quantities. In that sense, extra care should be taken when 
applying this to toroidal rotation profiles, as they can cross 
zero in certain plasma regimes.

By considering the heuristic statements for each indi-
vidual component in equation  (10), a good rule-of-thumb 
for the proposed FOM is that a value of M � 0.1 implies 
the two distributions do not match at all, i.e. inaccurate, or 
the data is inconclusive, i.e. imprecise. On the other hand, 
a value of M � 0.9 implies an excellent match between the 
two distributions, meaning they are both precise and accurate 
in comparison to each other. A pair of distributions whose 
means lie within ±2σ of each other, each having a relative 
error of  ∼10%, yields M � 0.5, which indicates a reasonable 
match for fusion data. The constant factors added in equa-
tions (11) and (12) were chosen such that this interpretation is 
consistent with that described for the point-distribution metric 
discussed in section 3.1.

The performance and suitability of the proposed FOM can 
be determined by comparing it to other known statistical dis-
tance tests which evaluate the agreement between two distri-
butions. The chosen tests are the validation metric proposed 
by Ricci [17] and the Kullbeck–Leibler (K–L) divergence test 
[18, 19] for continuous probability distributions, specifically 
the Gaussian distribution in this case. These tests were modi-
fied with a negative exponential operator to simplify their 
comparison with the proposed FOM in equation (10) and were 
computed as follows:

MRicci = exp

(
− (µi − µo)

2

(
σ2

i + σ2
o

)
)

MK-L c. = exp

(
−
∫ ∞

−∞
po(y) ln

(
po(y)
pi(y)

)
dy
)�

(13)

where N is the number of bins in the discrete probability his-
togram, po(y) ∼ N (µo,σo) is the naïve Gaussian envelope 
computed from the Monte Carlo results, po(yj) is the histo-
gram of the Monte Carlo results, pi(y) ∼ N (µi,σi) is the 
GPR fit distribution and pi(yj) is calculated from the GPR fit 
distribution as such:

pi(yj) =

∫ yj,upper

yj,lower

pi(y) dy.� (14)

Depending on the application of these profiles, the spa-
tially-resolved FOM, M, can be reduced even further into a 
single number via its integration with respect to an appro-
priate quantity. For example, integrating it with respect to 
volume, V , i.e. 

∫
MdV/

∫
dV , can provide a rough estimate of 
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similarity of the profiles for applications involving volumetric 
considerations, such as total plasma energy, Wp , or neutron 
rate, Rn. Although the uncertainty of the numerical integration 
can be made small by selecting an appropriate algorithm, the 
uncertainty of the multiplied quantity provides an additional 
source of error which could significantly influence the inter-
pretation of this single number. As such, this paper does not 
comment further on the use of an integrated FOM, as it is 
highly dependent on the application.

As a final note, both the proposed figures-of-merit discussed 
in this paper for evaluating the agreement and trustworthiness 
between simulation inputs and outputs, found in equations (9) 
and (10), should not be confused with other statistically mean-
ingful quantities, i.e. probability, likelihood, etc. Although the 
derivations of these metrics are based on statistical principles, 
they are intended only to provide a simple, quantitative, but 
still inherently heuristic measure of agreement between the 
experimental fits and the simulation output while simultane-
ously incorporating any knowledge on the experimental and 
simulation uncertainties.

4.  Integrated modelling results

The macroscopic transport phenomena within fusion plasmas 
are governed by a system of coupled differential equations, 
which must be solved self-consistently in order to determine 
the time evolution of the system. The one-dimensional energy 
transport equation for a given species, s, in cylindrical geom-
etry is provided below as an example of one such equation:

3
2
∂ (nsTs)

∂t
+

1
r
∂ (rqs)

∂r
= Qs(r, t)� (15)

where ns and Ts are the density and temperature, respectively, 
qs represents the heat transport flux within the plasma, and Qs 
represents the heat source of the plasma. This equation along 
with the mass transport, momentum transport and current dif-
fusion equations form the basic equations of a plasma trans-
port simulation code.

Due to the complexity of these equations, they are typically 
solved numerically and in an iterative manner, requiring that 
the spatial and temporal coordinates be divided into discrete 
points, or grids, to make its computation viable. Due to the 
effective timescales of the most influential plasma physics 
phenomena, the temporal grid typically has small intervals, 
typically on the order of 10−5–10−3 s, to resolve and inves-
tigate their behaviour and underlying mechanisms. Such an 
approach effectively linearises the system of transport equa-
tions, allowing the separation of plasma transport processes 
into distinct sets of linearised equations which can be solved 
individually, using results from other models as inputs if nec-
essary. The amalgamation and interconnection of these sepa-
rate components back into a larger simulation suite is called 
an integrated model. The plasma transport simulation code 
used in this study, JETTO, is an example of such an integrated 
model, schematically depicted in figure 5, and QuaLiKiz is 
the module used for the calculation of the turbulent trans-
port fluxes, known to be the dominant contributor to trans-
port fluxes, i.e. qs within equation (15), within the core region 

of tokamak plasmas. This section discusses the settings used 
in this integrated modelling exercise and the results of the 
simulation.

4.1.  Nominal simulation settings for JET #92436

Once processed by the GPR1D tool, the resulting kinetic 
profiles, along with their associated derivatives, can be used 
to calculate the input quantities needed by various plasma 
models. The uncertainties of the fit calculated by the GPR 
technique, which are themselves derived from the measure-
ment uncertainties, allow for rigourous model V&V efforts, 
described further in sections 3.1 and 3.2.

The fitted kinetic profiles were given as inputs to an inter-
pretive TRANSP [20] calculation, along with the experimental 
input heating parameters, in order to determine the associ-
ated particle, heat, and momentum source profiles. Then, 
both the fitted kinetic profiles and calculated source profiles 
were used to define the initial and boundary conditions for 
the JETTO  +  QuaLiKiz integrated model, which then self-
consistently evaluates the particle, heat, and momentum flux 
within the chosen steady-state time window, then consequently 
the kinetic profiles themselves. Due to the focus on steady-
state solutions, it is assumed that only the boundary condition, 

Figure 2.  Profiles for JET #92436, averaged over a 0.5 s time 
window, from 9.75 s–10.25 s, with  ∼50 ms data resolution. Left: 
electron (green line) and ion (red line) densities with experimental 
data (black points), showing good fitting of pedestal shoulder for 
use as the boundary condition for core transport modelling, ni 
estimated using ne, Zeff . Right: normalized logarithmic gradients for 
ne and ni, only shown for ρtor � 0.8. All errors are depicted as ±2σ, 
corresponding to a confidence interval of  ∼95% within Gaussian 
statistics.

Figure 3.  Profiles for JET #92436, averaged over a 0.5 s time 
window, from 9.75 s–10.25 s, with  ∼50 ms data resolution. 
Left: electron and ion temperatures with experimental data, with 
assumption that Ti = Timp. Impurity ion temperature measurements 
concatenated over three charge exchange diagnostics: one core 
diagnostic and two edge diagnostics. Right: normalized logarithmic 
gradients for Te and Ti, only shown for ρtor � 0.8. All errors are 
depicted as ±2σ, corresponding to a confidence interval of  ∼95% 
within Gaussian statistics.
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set at ρtor = 0.85 for the simulation of this discharge, will 
have a significant impact on the simulation results. Although 
the initial condition can affect steady-state solutions through 
the switching of plasma turbulence regimes, the variations in 
the initial condition required for such effects to be important 
are typically much larger than the uncertainties given by the 
GPR profile fits. Thus, any initial condition dependencies can 
be safely neglected in this study. As the TRANSP calculation 
also provides the fast ion density and energy density profiles, 
it was decided to also include them inside the quasilinear tur-
bulent transport model, QuaLiKiz, as additional Maxwellian-
distributed ions species. This implementation only accounts 
for the linear component of the fast ion species as the non-
linear saturation rules for the fast ion turbulence contributions 
are still under study. For reference purposes, a list of other 

relevant settings and parameters for the simulation can be 
found in appendix B.

A number of modifications were made to the input pro-
files in order to increase the self-consistency of the simu-
lation. Some complications are foreseen in incorporating 
modifications of this nature into any automatised version of 
the proposed verification workflow, due to their reliance on 
additional signals and consequent analysis, but the modifica-
tions themselves are still presented here for completeness.

Firstly, the input safety factor, q, profile was not prescribed 
using the standard equilibrium fitting (EFIT) routine at JET, 
but was instead calculated from a separate interpretive JETTO 
simulation with the fitted profiles as inputs. Within the frame-
work of integrated modelling, this is justified by the knowl-
edge that the current profile evolves on a slower time scale 
than the kinetic profiles. Thus, to avoid non-physical feedback 
loops in the time evolution of the kinetic profiles due to exces-
sively far initial conditions, the chosen q profile was such that 
the time evolution of the simulated internal inductance, li, had 
a reasonable match with the measured values at the desired 
simulation start time, 10 s. Figure  6 shows the comparison 
study of the li traces and their corresponding q profiles.  
The q profile chosen to be used as the base setting was the 
t  =  8 s option.

Secondly, an inspection of the time-resolved temperature 
measurements from the ECE heterodyne radiometer revealed 
the presence of MHD behaviour, as can be seen in figure 7. 
The presence of sawteeth behaviour is visible throughout the 
discharge at a frequency of  ∼1 Hz but is only plotted around 
the crash at 10.77 s for clarity. From these measurements, the 
inversion radius of the sawtooth crash was estimated to be 
located at ρtor,inv � 0.25, but the presence of similar behav-
iour with a different inversion radius before sawtooth crash is 
indicative of additional MHD behaviour. As the explicit mod-
elling of all the complex MHD behaviour within the inner core 
is not necessary for the validation of the turbulent transport 
model, an ad-hoc emulation of the expected transport of this 
phenomena was implemented in the model instead. As such, 
the q profile was further modified with a linear multiplication, 
such that q  =  1 at the observed inversion radius, and the dif-
fusion coefficients in the simulation were manually increased 
in the central core region, i.e. ρtor < ρtor,inv, as a proxy for 
sawtooth-induced transport in this region. Both the electron 
and ion thermal diffusion coefficients, χe and χi  respectively, 

Figure 6.  Comparison of the simulated li time traces from the 
various interpretive JETTO runs against the measured li signal taken 
from EFIT/LI3D.

Figure 5.  Workflow diagram of the JETTO integrated model, 
showing the coupled calculation of several smaller models and 
integrating their results in the core transport solver. The green 
modules are the primary focus of this study, while the yellow 
modules were used but not involved in the statistical study and the 
red modules were not used.

Figure 4.  Profiles for JET #92436, averaged over a 0.5 s time 
window, from 9.75 s–10.25 s, with  ∼50 ms data resolution. Left: 
toroidal flow angular frequency with experimental data. Toroidal 
flow measurements concatenated over three charge exchange 
diagnostics: one core diagnostic and two edge diagnostics. Right: 
normalized toroidal flow shear. All errors are depicted as ±2σ, 
corresponding to a confidence interval of  ∼95% within Gaussian 
statistics.
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were modified according to a Gaussian-shaped function, cen-
tered on ρtor = 0.0 with a height of 1.0 m2 s−1 and a standard 
deviation of 0.15 in the toroidal rho coordinates, such that the 
additional contribution is sufficiently reduced but non-zero at 
the inversion radius. The density diffusion coefficient, D, was 
also modified using an identical function except with a height 
of 2.0 m2 s−1.

Thirdly, based on the presence of nickel within the vessel 
during this discharge observed via spectroscopy and a sus-
pected population of beryllium due to the first wall materials 
and tungsten from the divertor tiles, the impurity transport 
module, SANCO [5], was employed to self-consistently 
evolve the impurity density profiles. The boundary conditions 

of the impurity densities were chosen such that the simulation 
converged on a 0.8% beryllium (Be) and 0.07% nickel (Ni) 
impurity ion composition within the inner core, with both spe-
cies computed with variable ionisation levels and the percent 
composition referenced to the measured electron density, ne. 
The constraint applied was that the beryllium concentration 
should be between 0.5% and 1.0%, as given by the accept-
able impurity concentration for the observed IC heat deposi-
tion. The tungsten concentration in the plasma was adjusted 
such that the total radiated power of the simulation was within 
10% of the measured value, leading to a core tungsten den-
sity around 0.004% of ne. The computed radiated power 
profile from SANCO was then used self-consistently in the 
simulation.

Finally, since QuaLiKiz is an electrostatic code, an ad-hoc 
emulation of electromagnetic (EM) β-stabilisation of ITG tur-
bulence was added as a non-standard option. However, as JET 
#92436 is a baseline discharge with a reasonably low βN, it is 
anticipated that these effects will play a minor role in the pre-
dicted profiles of the discharge. The effect of this stabilisation 
mechanism is shown to be important for high performance 
hybrid scenarios with βN > 2.5 and significant fast ion popu-
lations [21–24], where:

βN = β
aBT

Ip
� 2µ0a

BTIp

〈∑
s

nsTs

〉

V

� (16)

where 〈 〉V  denotes a volume-average operation. For JET 
#92436, with βN,th = 1.88 and βN,tot = 2.11, the impact 
of the EM stabilisation is not expected to be significant but 
the option is retained in the simulation for completeness. 
The ad-hoc implementation applies a numerical reduction 
of the normalised ion temperature gradient, R/LTi, input to 
QuaLiKiz by the ratio of the local thermal energy density over 
the local total energy density, Wth/Wtot

10. This ad-hoc correc-
tion does not imply that fast ions are solely responsible for 
the EM-stabilisation effect, but rather acknowledges that the 
expected level of stabilisation, including contributions from 
the thermal component, βN,th, is strongly correlated with the 
fast ion content in discharges with substantially high NBI and 
IC auxiliary heating powers.

In order to test the applicability of known physical phe-
nomena for recovering the plasma conditions in JET #92436, 
including the ad-hoc electromagnetic stabilisation factor, a 
number of sensitivity studies were performed based on the 
exclusion of certain physics from the JETTO  +  QuaLiKiz 
simulation. In order to increase the rigour of these tests, the 
results were evaluated against the fit uncertainties provided 
by the GPR. The sensitivities performed for this identification 
analysis are as follows:

	 •	�moving the simulation boundary condition to ρtor = 0.9; 
	 •	�switching off the calculation of electron temperature 

gradient (ETG) scale turbulence in QuaLiKiz; 

Figure 7.  Time traces of the core ECE radiometer channels, 
showing the signature behaviour of MHD activity in the core and 
the inversion radius, ρtor,inv ≈ 0.25, of the sawtooth instability 
located at t ≈ 10.77. The sawtooth behaviour continues throughout 
the discharge at a frequency of  ∼1 Hz, with the smaller sawtooth-
like behaviour before the crash begin indicative of additional MHD 
instabilities.

Figure 8.  Results of the sensitivity studies regarding the addition 
or inclusion of known physical phenomena, where the input profiles 
(green lines) are compared against the output profiles (see legend) 
and the base case scenario (blue line). Upper left: electron density 
profiles. Upper right: electron temperature profiles. Lower left: 
ion temperature profiles. Lower right: toroidal angular frequency 
profiles.

10 The implementation used in this paper has since been determined to 
overestimate Wfast by a factor of 2.25. While the effect of this ad-hoc factor 
on the Ti simulation results is significant, it is expected to have a negligible 
effect on the conclusions made by this study.
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	 •	�removing the ad-hoc EM-stabilization based on Wth/Wtot 
from QuaLiKiz; 

	 •	�removing the linear contribution of the fast ion popula-
tions from QuaLiKiz.

Figure 8 shows the results of the base simulation and the 
described sensitivity studies established earlier in this section.

From the simulation using the base settings, the blue line in 
figure 8, there is a slight overprediction of ne and Te within the 
inner half of the core, ρtor � 0.5, and an underprediction of Ti 
near the mid-radius, ρtor ∈ [0.3, 0.6]. The agreement of these 
profiles are considered to be good given the 2σ uncertainties of 
the input profiles and the complexity of the simulation under-
taken. However, further discussion on the possible explana-
tions of these discrepancies are relegated to section 4.2, after 
the introduction of results from a more statistical rigourous 
study.

The extension of the simulation boundary to ρtor = 0.9 
yields similar results for the ne, Te, and Ti profiles, which 
indicates good performance of the turbulent transport model 
in H-mode baseline plasmas up until the pedestal top and 
potentially into the pedestal. However, as this radial loca-
tion is just inside the pedestal region, as seen in the ne pro-
file, it was chosen to forego using this extended boundary 
condition as the base settings for this validation exercise. 
The reduced agreement of the Ωtor profile at the edge when 
using the extended boundary condition is attributed more to 
a poorly resolved pedestal in the angular frequency measure-
ments, as further evidenced by the overall smoothness of the 
GPR fit.

The exclusion of ETG scale turbulence from QuaLiKiz yields 
a significantly higher Te profile, likely due to the supression of 
electron heat transport generated by the ETG instabilities. The 
QuaLiKiz ETG model contains a rudimentary multi-scale model 
[21] which is not fully verified against nonlinear multiscale 

simulations [25–27]. Nevertheless, the excellent agreement for 
the Te profile using the QuaLiKiz predictions, with a significant 
ETG contribution, provides a compelling case for further non-
linear investigation of ETG impact in this discharge. Such an 
investigation is outside the scope of this paper.

The addition of the ad-hoc EM-stabilization factor signifi-
cantly increases the density and ion temperature profile, as the 
reduction of the normalized ion temperature gradient input, 
R/LTi, to QuaLiKiz reduces the driving mechanism of ITG tur-
bulence. As this instability is a significant transport channel for 
both particles and ion heat, it effectively causes the integrated 
modelling suite to drive the local density and ion temperature 
gradients higher, in order to achieve the fluxes required to bal-
ance the source terms in the simulation. While its removal 
improves the ne and Te predictions, the reduction of the Ti pre-
diction to values outside the 2σ GPR uncertainties motivated 
the decision to retain this ad-hoc factor in the base settings.

Finally, the contribution of the fast ion species in the simu-
lations only had a minor impact on the results. However, the 
fast ion impact on turbulence in QuaLiKiz is currently limited 
to dilution and electrostatic kinetic effects. In this discharge, 
it is possible that the EM-stabilisation of ITG modes is further 
enhanced by sharp fast ion gradients, particularly those gener-
ated by IC heating at inner radii [21]. This effect is not cap-
tured by the simple ad-hoc EM-stabilisation model employed 
here and may partially explain the Ti underprediction. Further 
investigation of this effect, which would involve nonlinear 
gyrokinetic simulations, is left for future work as it is outside 
the scope of this paper.

Due to the physical arguments for the settings chosen 
for this execution, they were designated as the base settings 

Figure 9.  Point-distribution validation metric for sensitivity 
study results regarding the addition or inclusion of known 
physical phenomena (see legend). Upper left: electron density 
profiles. Upper right: electron temperature profiles. Lower left: 
ion temperature profiles. Lower right: toroidal angular frequency 
profiles.

Figure 10.  Comparison of GPR fit profiles (green line) and error 
(green shaded region) for JET #92436 against JETTO  +  QuaLiKiz 
output (blue line), using the GPR fits as the initial / boundary 
conditions and the base scenario parameters. The mean output 
(red dashed line) and output distribution (red shaded region) was 
determined from a Monte Carlo sampling of the four respective 
initial / boundary conditions simultaneously, with 100 sample 
points. Upper left: electron density profiles. Upper right: electron 
temperature profiles. Lower left: ion temperature profiles. Lower 
right: toroidal angular frequency profiles.
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to  represent this particular time window in this discharge. 
This is further supported by the level of agreement between 
the input profiles from the GPR technique and the output 
profiles from the converged JETTO  +  QuaLiKiz execution, 
as shown by the blue line in figure 8. From these base case 

settings, a wide variety of additional sensitivity studies were 
performed, as further discussed in sections 4.3 and 4.4.

4.2.  Validation of the nominal settings

Figure 9 shows the results of applying equation  (9) to the 
profiles shown in figure 8. As shown in this figure, the level 
of agreement between the experimental fit and the simula-
tion output profiles is quantitatively captured by the proposed 
metric, with a value of S � 0.5 indicating that the profile lies 
within the ±2σ boundary of the experimental fit distribution. 
The negative impact of the removal of the ETG scale turbu-
lence calculation in QuaLiKiz on the Te and Ωtor agreement 
is clearly evident in figure 9. In addition, the negative impact 
of the removal of the ad-hoc EM stabilisation factor on the Ti 
agreement is also clearly shown.

Also, since the predicted ne and Ti profiles lie at the edges 
of the uncertainty envelopes, as shown in figure 10, a quantifi-
cation of the agreement between prediction and experiment is 
desirable and will be further discussed in section 3.2. However, 
this was still chosen as the base settings as no parameter com-
binations were found to remedy this while simultaneously 
remaining strictly consistent with the experimental data.

Based on the uncertainty information provided by the GPR 
fits, the JETTO  +  QuaLiKiz boundary conditions for the elec-
tron density, ne, electron temperature, Te, ion temperature Ti, 
and angular frequency, Ωtor, set at ρtor = 0.85, were simulta-
neously varied within their uncertainties using a Monte Carlo 
approach and a normally-distributed random number gen-
erator (RNG). The red shaded regions in figure 10 represent 
the results from the Monte Carlo study with 100 samples11, 

Figure 11.  Comparison of GPR fit profile derivatives with respect 
to ρtor (green line) and error (green shaded region) for JET #92436 
against JETTO  +  QuaLiKiz output derivatives (blue line), using the 
GPR fits as the initial/boundary conditions and the base scenario 
parameters. The mean output (red dashed line) was determined from 
a Monte Carlo sampling of the initial/boundary conditions, with 
100 sample points. Upper left: electron density profile derivatives. 
Upper right: electron temperature profile derivatives. Lower left: 
ion temperature profile derivatives. Lower right: toroidal angular 
frequency profile derivatives.

Figure 12.  Distribution-distribution validation metric, M, for the 
kinetic profiles (black line) and associated components, A, Pi, 
Po (red, blue and green lines, respectively) calculated from the 
Monte Carlo sampling of the JETTO  +  QuaLiKiz initial/boundary 
conditions, based on the GPR fit uncertainties and the base scenario 
parameters. Only ρtor < 0.8 is displayed since the profiles are not 
evolved for ρtor � 0.8, as a result of the chosen boundary condition 
for the JETTO  +  QuaLiKiz simulations. Upper left: FOM for 
electron density profile. Upper right: FOM for electron temperature 
profile. Lower left: FOM for ion temperature profile. Lower right: 
FOM for toroidal angular frequency profile.

Figure 13.  Comparison of the validation figure-of-merit profiles 
(black line), calculated from the Monte Carlo sampling of the 
JETTO  +  QuaLiKiz initial / boundary conditions based on the 
GPR fit uncertainties and the base scenario parameters, against 
other metrics, (red, blue, green, and yellow lines, respectively). 
Only ρtor < 0.8 is displayed since the profiles are not evolved for 
ρtor � 0.8, as a result of the chosen boundary condition for the 
JETTO  +  QuaLiKiz simulations. Upper left: metrics for electron 
density profile. Upper right: metrics for electron temperature 
profile. Lower left: metrics for ion temperature profile. Lower right: 
metrics for toroidal angular frequency profile.
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executed with the sampled profiles as both the initial and 
boundary condition, computing over 2 s of plasma, or  ∼10τE, 
with simultaneous predictive updates on eight channels: the 
current, j , main ion density, ni, three impurity ion densities, 
nBe, nNi and nW, electron and ion temperatures, Te and Ti, and 
angular frequency, Ωtor. A more quantitiative statement on 
the level of agreement is discussed further in this section but 
can be considered in good agreement for the four channels 
for which experimental measurements exist, ne, Te, Ti and 
Ωtor, except for an overprediction in the central ne and Te and 
an underprediction in the mid-radius Ti. Similar informa-
tion about the derivatives of the profiles with respect to the 
radial coordinate, ρtor, is shown in figure 11. From this plot, 
it becomes evident that the source of the discrepancies seen 
in the profiles result from differences between the fitted and 
simulated derivatives within ρtor ∈ [0.4, 0.7] for ne, and within 
ρtor ∈ [0.25, 0.8] for Ti.

Figure 12 shows the proposed FOM, given by equation (10), 
and its associated components, A, Pi, and Po as a function of 
ρtor, determined from the naïve Gaussian envelope approx
imation calculated from the Monte Carlo boundary condition 
study performed on JET #92436. The level of agreement 
graphically shown in figure  10 is successfully captured by 
the proposed FOM for the comparisons of all profile quanti-
ties, with regions having M � 0.5 indicating sufficiently good 
agreement between the input and output profile distributions. 
As expected from previous analysis, the central core ne, Te 
and the mid-radius Ti all exhibit M  <  0.5, though it is not low 
enough to exclude these profiles to be untrustworthy.

By combining all the Monte Carlo study results into a single 
data set and calculating the variance, σ2

o, of that data set using the 
base case result as the mean, µo, a probability distribution can be 
constructed to act as the simulation output uncertainty. By using 
only these two statistical moments of the data set, it is naïvely 
assumed that its distribution can be described as Gaussian, as 
given by equation (3). Figure 13 shows a comparison between 
the proposed FOM, given in equation  (10), and the other 
tests which evaluate the agreement between two distributions 

described in section 3.2. The other tests provide lower scores 
for the simulated ne and Ti profiles and provide higher scores 
for the simulated Te and Ωtor profiles compared to the proposed 
FOM. This is expected behaviour as the standard tests only pro-
vide a measure of how similar the input and output distribu-
tions are to each other, in both location and shape, resulting in 
values of unity at the boundary condition (not shown) where 
the distributions are identical. The proposed FOM attempts to 
provide a measure of the likelihood that a profile drawn from 
the output distribution belongs to the input distribution and vice 
versa, regardless of the match in the distribution shapes, by the 
addition of the terms, Pi and Po. Since these tests do not answer 
the same question, the comparison shown is cannot be taken as 
quantitatively meaningful. However, the fact that the trends in 
the figure-of-merit profiles are similar provide confidence that 
the proposed FOM provides a valid measure of the agreement 
between the two distributions.

In preparation for future extrapolation exercises, table  2 
shows a comparison of results of the neutron rate sensitivity 
studies, performed with TRANSP, against the experimental 
total neutron rate, measured using calibrated time-resolved 
neutron counters with a quoted calibration error of  ∼10% 
[28]. All uncertainties are given with ±2σ or at the  ∼95% 
confidence interval of the mean. These results provide fur-
ther evidence that the Ti profile from JETTO  +  QuaLiKiz is 
underpredicted, as the neutron rates using the simulated pro-
files consistently fall under the measured neutron rate, though 
still within the ±2σ uncertainty ranges for pure Ni. These 
results are consistent with previous works on this matter [29] 
and accentuate the importance of reliable impurity composi-
tion and profile estimations for any extrapolation exercises, 
due to the impact of fuel dilution on the total fusion rate.

Table 2.  Results of neutron rate studies performed using TRANSP 
based on simulation data for JET #92436, with a line-integrated 
Zeff measurement of 1.76 and an impurity composition of 0.8% 
Be, 0.07% Ni, and 0.004% W. Measurements taken from calibrated 
time-resolved neutron counters with a quoted calibration error 
of  ∼10% [28]. The uncertainty ranges for the TRANSP results 
come from setting the Ti profile at its ±2σ values and leaving all 
other inputs identical.

Data source
Neutron 
rate (n s−1)

With 
Zeff + 20%

Uncertainty 
(±2σ)

Measured 2.8 × 1016 — 0.3 × 1016

GPR, Be/Ni/W mix 3.2 × 1016 3.0 × 1016 0.7 × 1016

JETTO  +  QLK,  
Be/Ni/W mix

2.9 × 1016 2.5 × 1016 0.3 × 1016

Figure 14.  Results of the sensitivity studies regarding the toroidal 
rotation profile modifications, where the input profiles (green lines) 
are compared against the output profiles (see legend) and the base 
case scenario (blue line). These simulations were performed using 
interpretive momentum transport. Upper left: electron density 
profiles. Upper right: electron temperature profiles. Lower left: 
ion temperature profiles. Lower right: toroidal angular frequency 
profiles.

11 The Monte Carlo analysis was originally performed using a slightly 
different boundary condition. The statistics from the original analysis was 
carried over to the simulations presented in this work due to limitations from 
its computational expense, as these statistics are not expected to change 
significantly as a result of the adjusted boundary condition.
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The Ti underprediction is suspected to come from the 
underestimation of the EM-stabilization factor provided by the 
ad-hoc implementation. The presence of IC auxiliary heating 
within the analyzed time window generates a large fast ion 
pressure gradient in the energy deposition region, with a max-
imum absolute value of ∂pfast,IC/∂ρtor = (5.2 ± 0.3)× 105  
J m−3. Due to the known dependency of this effect on large 
fast ion pressure gradients [21, 30], generated in this discharge 
by IC auxiliary heating, the ad-hoc EM-stabilization factor, 
based on Wth/Wtot, may underestimate the magnitude of the 
stabilization effect. However, the quantification of this short-
coming is outside the scope of this study and deeper invest
igations are left as future work.

4.3.  Impact analysis of rotation profiles

In addition to the Monte Carlo analysis of the model sensitivity 
to boundary conditions, the GPR fit uncertainties also allow for 
greater statistical rigour in the modification of prescribed input 
profiles for the integrated model. A typical example of such a 
prescribed input profile is the toroidal angular frequency, Ωtor, 
within simulations using interpretative momentum transport, 
meaning that the Ωtor profile remains fixed to its initial con-
dition. To demonstrate this capability and the effects of this 
modification within this discharge, the following sensitivity 
studies were performed:

	 •	�switching off the rotational contributions to the fluxes 
calculated by QuaLiKiz, applied only to ρtor � 0.5 in the 
base settings [7]; 

	 •	�adjusting the angular rotation, Ωtor, profile within ±2σ to 
have a steeper gradient at the simulation boundary; 

	 •	�adjusting the angular rotation, Ωtor, profile within ±2σ to 
have a shallower gradient at the simulation boundary.

Figure 14 shows the results of these sensitivity studies.
The impact of the rotation shear in QuaLiKiz appears pri-

marily on the density profile, which is attributed to a strong 
E × B shear stabilisation effect on ITG instabilities within 
QuaLiKiz. Despite the fact that ITG instabilities also drive 
ion heat transport, this effect is not as prevalent in the Ti pro-
file. It is likely that the increasing density gradient prevents 
further increase of Ti with increasing E × B shear, as this sim-
ulation performs both predictive heat and particle transport. 
This increasing density gradient increases the turbulence drive 
and compensates the stabilising effect of the E × B shear on 
the ion heat flux. The sensitivity of density peaking to the 
rotational shear is consistent with previous works [22, 31], 
although a more detailed transport analysis of this effect is 
recommended and left for future work.

Figure 15 shows the analysis of these sensitivities according 
to the FOM given in equation (9). The negative impact of the 
removal of the rotation contributions within QuaLiKiz on the 
ne and Ti agreement can be seen.

4.4.  Impact analysis of impurity concentration  
and composition

Due to the inclusion of predictive impurity transport calcul
ations via SANCO, sensitivity tests were also performed 
regarding the impurity concentration and composition in order 
to assess the validity of the chosen base settings. The sensitivi-
ties performed for this analysis are as follows:

	 •	�increasing the initial Zeff condition by 20%; 
	 •	�setting Zeff = 1 in the JETTO simulation by disabling the 

impurity transport module.

Figure 15.  Point-distribution validation metric for sensitivity 
study results regarding the toroidal rotation profile modifications 
(see legend). These simulations were performed using interpretive 
momentum transport, thus the Ωtor figure-of-merit calculation is not 
meaningful here. Upper left: electron density profiles. Upper right: 
electron temperature profiles. Lower left: ion temperature profiles. 
Lower right: toroidal angular frequency profiles.

Figure 16.  Results of the sensitivity studies regarding impurity 
concentration and composition modifications, where the input 
profiles (green lines) are compared against the output profiles (see 
legend) and the base case scenario (blue line). These simulations 
were performed using interpretive momentum transport. Upper left: 
electron density profiles. Upper right: electron temperature profiles. 
Lower left: ion temperature profiles. Lower right: toroidal angular 
frequency profiles.
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Figure 16 shows the results of these sensitivity studies.
The dilution is expected to strongly stabilize ITG turbu-

lence [32, 33], which is reflected in the increase of Ti with 
increasing Zeff. However, the trend is also noticed in the Te and 
an inverse trend is seen in the Ωtor profile, where increased Zeff 
slows down the plasma rotation. An analysis of the QuaLiKiz 
growth rates show that the ETG instabilities become less 
dominant as the Zeff increases, possibly explaining the rise in 
the Te. This is consistent with known ETG critical threshold 
dependencies [34]. It is uncertain whether the impurities have 
a direct impact on the momentum transport or the observa-
tions are a result of an indirect effect through the modifica-
tion of other profiles, particularly the Te profile in this case. 
However, the clarification of the underlying mechanisms and 
their relative strengths is left for future work.

Overall, all of the performed physics studies appear to agree 
with current literature, with the largest impact on the forma-
tion of these particular profiles being the stabilizing effect of 
flow shear. This highlights the importance of ensuring self-
consistent profiles through the predictive calculation of the 
Ωtor profile simultaneously with the other quantities, espe-
cially for extrapolation to D-T plasmas.

The application of the point-distribution metric described 
in equation (9) to the data presented in figure 16 were omitted 
from this paper as they did not reveal additional insights.

5.  Conclusions

A novel implementation of model validation, incorporating 
the use of Gaussian process regression techniques in pro-
file fitting, has been proposed and demonstrated in JETTO 
integrated modelling of JET-ILW discharge #92436 with 
the QuaLiKiz quasilinear turbulence model. A comparison 
between the fitted and simulated profiles showed that an 
excellent level of agreement was achieved in all channels, 
with discrepancies in both the core ne and Te profiles as well 
as in the mid-radius Ti. However, due to the high sensitivity 
of the ne prediction in the model to the simulation boundary 
conditions, only the temperature profile discrepancies are con-
sidered to warrant more in-depth studies. Two figures-of-merit 
were proposed, one for comparing a point and a distribution 
and one for comparing two distributions, which were shown 
to sufficiently quantify the level of agreement between the 
experimental profiles and the simulated profiles, with figure-
of-merit scores �0.5 indicating the two profiles fall within ±
2σ uncertainty bounds of each other. All four of the major pre-
dictive channels in the base simulation have figure-of-merit 
scores  >0.5 for the point-distribution metric and  ∼0.5 for the 
distribution-distribution metric, effectively and quantitatively 
evaluating the degree of trust that can be assigned to these 
simulation results.

Additionally, the neutron rates calculated from the fitted 
and simulated profiles, using interpretive TRANSP, were 
compared against the measured neutron rate, agreeing with the 
experimental value within the ±2σ uncertainties. This showed 
the sensitivity of the neutron rate prediction to the various 
impurity composition estimates and relative concentration 

estimates, made via Zeff. The discrepancy in the simulated Ti 
profile is suspected to be the result of an incomplete descrip-
tion of the fast ion contributions to the instabilities driving 
turbulent transport. It was also shown that the Ωtor profile is 
crucial to the accuracy of integrated modelling results of JET 
discharges and that QuaLiKiz is capable of providing rea-
sonable momentum transport predictions within the studied 
plasma regime. This capability is expected to be important for 
extrapolating to future scenarios, such as deuterium–tritium 
plasmas.

As the proposed data processing and fitting procedure lends 
itself well to automatization, provided that the hyperparam
eter optimisation settings have been properly tuned, it opens 
the possiblity of large-scale model verification and validation 
through the comparison of thousands of different discharges. 
However, a bottleneck remains in performing the integrated 
modelling executions due to the complexity of setting up the 
simulations and ensuring self-consistency between any addi-
tional inputs to the model. Future work is foreseen in applying 
this procedure to similar data from other tokamak devices, 
such as ASDEX-Upgrade, Alcator C-Mod, and WEST, with 
the aim of developing a large database of discharges suitable 
for performing model verification and validation studies on a 
wide variety of gyrokinetic codes. Furthermore, when com-
bined with their corresponding model outputs, this large data-
base can be used to generate training sets for neural network 
emulations of the target model. Such emulations not only 
reduce the computational resources required for Monte Carlo 
uncertainty quantification studies, similar to the one presented 
in this paper, but also allow for the development of extremely 
quick and reliable model emulators for use in scenario optim
ization and tokamak controller design.
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Appendix A.  Gaussian processes

A Gaussian process (GP) [3, 4] is strictly defined a collec-
tion of random variables whose joint distribution, along with 
the joint distribution of any finite set of them, is Gaussian. As 
such, a GP is completely specified by its mean function, m(x), 
and its covariance function, k(x1, x2), also known as kernel, 
where x, x1 and x2 all represent the same coordinate space. In 
general, the theory assumes that m(x) = 0, as it is simple to 
devise a transformation which makes this true and is easy to 
apply to the data before and reverse after the completion of 
the algorithm.

Given a N-dimensional set of data, (X, Y), a kernel function 
describing the covariance between the data points, k(x1, x2, θ), 
and a measurement error function, r(x), a Gaussian process 
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regression (GPR) attempts to fit the data in a statistically rig-
ourous manner. One advantage of this approach lies in the 
replacement of pre-defined basis functions with the kernel, 
allowing for a more generalized fit. However, the disadvan-
tage is that the fitted function cannot be expressed in an ana-
lytical form, excluding further analysis of the fits in terms of 
comparing the mathematical model selection against equa-
tions  derived from theoretical interpretations of the under-
lying process producing the data. All algorithms mentioned in 
this section are implemented within the ‘GPR1D’ tool, written 
in the Python programming language for applying the GPR 
technique to one-dimensional data.

A.1.  Mathematical overview

As mentioned in section 2.1, the GPR applies Bayesian statis-
tical principles to general regression fitting. This section pro-
vides a brief synopsis of the mathematical concepts used in 
the derivation of the GPR algorithm.

The generalized regression model is represented as follows:

y = Φ(x,β) + ε�
(A.1)

where Φ represent the set of basis functions in the regression 
analysis, β represents the set of fit coefficients or free param
eters to be adjusted by the fitting routine, and ε represents the 
residuals of the model.

The derivation starts with the assumption that the optimal 
value of β lies within a probability distribution, p(β), known 
as the prior. Then, as data points, (X, Y), are added to test 
this hypothesis, the Bayesian inference framework can be 
applied to updating the prior to form the posterior distribution 
as follows:

p(β|X, Y) =
p(Y|X,β) p(β)

p(Y|X)� (A.2)

where the denominator, p(Y|X), is known as the marginal 
likelihood which is a normalization factor determined by the 
combined likelihood over all possible models. The poste-
rior distribution effectively describes all the possible models 
within the confines of the pre-defined basis functions, Φ, and 
their respective probabilities of being the correct model given 
the available data, (X, Y).

However, the purpose of a regression algorithm is usually 
to make predictions of points, (X∗, Y∗), that are not explic-
itly provided as input data, as a means of interpolating or 
extrapolating to unexplored territory. The predictive distribu-
tion, p(Y∗|X∗, X, Y), determines the probability distribution of 
predictions across all the regression models described by the 
posterior distribution, as follows:

p(Y∗|X∗, X, Y) =
∫ ∞

−∞
p(Y∗|X∗,β) p(β|X, Y) dβ.� (A.3)

The normalization factor of the predictive distribution is 
omitted from the previous equation as it is often unnecessary 
in practice, i.e. only the moments of the predictive distribu-
tion are regularly calculated. However, for completeness, this 

normalization factor is identical to the marginal likelihood 
from the posterior distribution.

Furthermore, if all the probability distributions in this frame-
work are assumed to be Gaussian or normally-distributed, 
then these equations can be analytically solved and simplified, 
resulting in the equations  of the GPR predictive algorithm. 
This analytical solution provides an added advantage that the 
explicit definition of the basis functions, Φ, can be replaced 
by a more generic concept, the model covariance function, 
k(x1, x2). This replacement, known as the kernel trick, effec-
tively allows for the use of an infinite set of basis functions 
through a clever selection of the model covariance function, 
making the GPR technique more similar to an universal func-
tion approximator.

A.2.  Predictive algorithm

Firstly, the contribution of the measurement noise, or the 
output noise, to the kernel must be defined. In order to account 
for the possibility of spatially-varying noise, it was decided to 
implement this noise as such:

R(x1, x2) = r(x1) r(x2) δ(x1 − x2) .� (A.4)
Then, after selecting the hyperparameters, denoted as a set 
with θ, for the kernel, a prediction of the fit and its confidence 
interval, evaluated at the points, X*, can be made using the fol-
lowing set of equations [3, 16]:

Y∗ = K(X∗, X) L−1 Y

σ2
Y∗

= L∗ − K(X∗, X) L−1K(X, X∗)
�

(A.5)

where the short-hand K = K(X, X), 
R = R(X, X), K∗ = K(X∗, X∗), R∗ = R(X∗, X∗), L  =  K  +  R, 
and L∗ = K∗ + R∗ was used to improve the readability. 
Most GPR implementations, including this one, modify the 
Y-values such that Ȳ = 0 and Y ∈ [−1, 1] and reverse these 
changes afterwards, in order to improve the numerical sta-
bility of the algorithm.

Additionally, provided that the derivatives of the kernel 
can be calculated, the derivatives of the fit and its confidence 
intervals can also be predicted directly from the data using the 
following equations [35]:

Y ′
∗ =

∂K(X∗, X)
∂X∗

L−1 Y

σ2
Y′
∗
=

∂2L∗

∂X∗ ∂X∗
− ∂K(X∗, X)

∂X∗
L−1 ∂K(X, X∗)

∂X∗
.

�

(A.6)

If the error function, r(x), is not known, it can be estimated 
using a separate GPR on the data set, (X,ΣY), where ΣY  rep-
resents the standard deviation of the Y-values [16]. For this 
GPR, it is recommended to assume a constant error function 
with a normalized value of ∼ 10−3.

A.3.  Hyperparameter optimization

Within the GPR framework, the hyperparameters of the chosen 
kernel, θ, act as the free variables which can be adjusted to 
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fine-tune the fit. The optimal value for these hyperparameters 
can be obtained by maximizing the log-marginal-likelihood 
(LML), given as follows [3]:

ln p(Y|X) = −1
2

YTL−1Y − λ

2
ln |L| − N

2
ln 2π� (A.7)

where the hyperparameter-dependence is given by L ≡ L(θ), 
the vertical brackets represent the determinant of the enclosed 
matrix, λ is the regularization parameter, used to control the 
degree of complexity in the model, and N is the number of data 
points to be fit. By maximizing this value, the chosen model 
is the most probable match to the input data but provides no 
guarantee that the physical process behind the data is modelled 
correctly. Note that this is only one optimization criterion that 
can be applied to the hyperparameters and that other criteria 
may provide models that have different relations to the data.

Most maximization algorithms require the derivative of 
equation  (A.7) with respect to each of the hyperparameters, 
θj, which can be calculated directly, provided that an analyt-
ical form exists for the derivative of the kernel function with 
respect to these hyperparameters, as such:

∂ ln p(Y|X)
∂θj

=
1
2

YTL−1 ∂K
∂θj

L−1Y − λ

2
tr
(

L−1 ∂K
∂θj

)
� (A.8)

where tr(...) represents the trace, the sum of all the entries 
along the main diagonal, of the enclosed matrix. The desired 
solution will then be the combination of hyperparameters, θ, 
which satisfy the following criteria:

∇θ ln p(Y|X) = 0.� (A.9)

However, since equation  (A.8) typically forms a non-linear 
system of equations for the set of θ, it becomes difficult to cal-
culate the solution explicitly. Thus, an iterative method, such 
as a gradient-based optimization algorithm, is used to find the 
desired solution. Of the optimization methods discussed below, 
the nominal implementation uses the Adam method for fitting 
both the plasma profiles and the associated error function.

A.3.1.  Gradient ascent method.  The most basic gradient-
based optimization algorithm for maximization problems is 
known as the gradient ascent method. It starts with an initial 
guess, θ0 , and iteratively updates that guess in increments, 
labelled with index i, as follows:

θi+1 = θi +∆θi� (A.10)

where the step, ∆θi, is calculated according to a step estimator.
The step estimator used in this method is as follows:

∆θi = γ Gi� (A.11)

where γ , called the learning rate, was set to a value of 10−5 
and

Gi ≡ ∇θ ln p(Y|X)|θ=θi .� (A.12)

This simple method is considered to be the most robust out 
of all the gradient-based optimization algorithms but it also 

suffers from a slow convergence rate. Thus, a number of addi-
tional methods were implemented in an attempt to improve 
the performance of the algorithm, though only the ones rel-
evant to this application will be discussed here.

A.3.2.  Adaptive moment estimation method (Adam).  This 
method introduces a way for the algorithm to autonomously 
adjust the learning rate for each hyperparameter individually, 
such that a more intelligent approach path to the optimal solu-
tion can be determined. This is done by including some mem-
ory of both the gradient with respect to the hyerparameters 
and the square of the gradient to the step estimator. This is 
done as follows [36]:

∆θi = γ
[
V̂

1
2
i + ε

]−1
M̂i� (A.13)

where all operations are done element-wise, γ  was set to 10−2, 
ε ∼ 10−8 is provided to avoid division-by-zero errors in the 
algorithm and

Table B1.  Summary table of most pertinent JETTO settings of the 
base case simulation, discussed in section 4.1.

Field name/option Value/setting

JAMS version v080817
Shot number 92436
Number of grid 
points

101

Start timea (s) 50
End timea (s) 52
Min. time step (s) 10−13

Max. time step (s) 10−3

Ion (1) mass (u) 2
Simulation 
boundary

ρtor = 0.85

Equilibrium ESCO
Equilibrium 
boundary

0.998

Toroidal field 2.8 T
Plasma current 2.9 MA
Neoclassical 
transport model

NCLASS

Additional 
transportb

Electron heat Ion heat Particle

Shape Gaussian Gaussian Gaussian
Centre 0.0 0.0 0.0
Height (cm2 s−1) 104 104 2 × 104

Width 0.212 0.212 0.212

a The reference time, t  =  0, in the PPF data system at JET is set as the time 
when the magnetic coils start ramping up, instead of the time of plasma 
breakdown as is usual in the fusion physics community. The time interval 
between these two events is typically 40 s at JET. This interval is not 
subtracted here such that the entries in this table represent the exact inputs to 
the simulation suite for replication purposes.
b These transport coefficients were added to the computed ones before 
advancing the transport calculation iteration, and were used here to emulate 
the MHD-induced transport within the central core for reasons of simplicity.
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M̂i =
1

1 − βi
1

Mi, Mi = β1Mi−1 + (1 − β1)Gi

V̂i =
1

1 − βi
2

Vi, Vi = β2Vi−1 + (1 − β2)G2
i

�
(A.14)

where β1 ∈ [0, 1], β2 ∈ [0, 1] and Gi is given by equa-
tion  (A.12). For fusion data, β1 = 0.4 and β2 = 0.8 were 
found to adequate choices for these memory factors.

Mathematically, this algorithm can be seen as attempting 
to pick steps which minimize a weighted l2-norm of the gra-
dient, represented by Vi , and a strong penalty is applied to 
steps which dramatically increase this value. Thus, the algo-
rithm tends to move towards the regions where the gradients 
are zero with fewer iterations. This conveniently turns out to 
be the desired behaviour as the solutions to the maximization 
problem have a gradient of zero.

Appendix B.  Detailed base simulation settings

The JETTO  +  QLK settings used as the definition of the base 
settings in this paper are detailed in tables B1–B3.
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