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Abstract
JET-ILW type I ELMy H-modes at 2.5 MA/2.8 T with constant NBI heating (23 MW) and gas
fuelling rate were performed, utilising edge localised mode (ELM) pacing by vertical kicks and
plasma shaping (triangularity, δ) as tools to disentangle the effects of ELMs, inter-ELM
transport and edge stability on the pedestal particle balance. In agreement with previous studies,
the pedestal confinement improves with increasing δ, mostly due to a significant increase in
pedestal density while the ELM frequency (fELM) is decreased. Improved pedestal confinement
with increasing δ was observed even when the pedestal MHD stability was degraded artificially
by vertical kicks, implying that increased triangularity may favourably affect the inter-ELM
pedestal recovery. The workflow developed to quantify the pedestal particle balance uses high
time-resolution profile reflectometry to characterise the inter-ELM evolution of the plasma
particle content (dN/dt), the NEO drift-kinetic solver to evaluate the neoclassical fluxes and
interpretative EDGE2D-EIRENE simulations to estimate the edge particle source. The edge
particle source is then constrained by deuterium Balmer-α line intensity measurements in the
main chamber, which are, however, strongly affected by reflections from the metal walls. The
reflections are accounted for by the CHERAB code taking the divertor emission (the brightest
light source in the torus) distribution from imaging spectroscopy measurements as input. Our

9 See the author list of ‘Overview of JET results for optimising ITER operation’ by Mailloux et al 2022 Nucl. Fusion 62 042026.
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analysis shows that in the second half of the ELM cycle, the volume-integrated particle source is
larger than dN/dt, indicating that transport plays a key role in the inter-ELM pedestal recovery.

Keywords: JET-ILW, H-mode, pedestal, particle transport, EDGE2D-EIRENE, EIRENE,
fuelling

(Some figures may appear in colour only in the online journal)

1. Introduction

In an H-mode plasma [1] the confinement is improved due
to the formation of a narrow transport barrier at the edge.
Inside the transport barrier, the energy and particle transport
are reduced, and a steep pressure gradient is formed, which
gives rise to a pressure pedestal. The heightened edge pres-
sure also leads to improved global confinement due to core
profile stiffness [2–5]. However, the steep pressure gradient
can trigger edge localised modes (ELMs) [6], followed by a
transient loss of energy and particles which are deposited onto
the plasma facing components. Understanding pedestal phys-
ics is essential to predict and optimise plasma performance in
current and future tokamak experiments.

The H-mode pedestal is governed by at least three inter-
acting processes: pedestal stability, transport and sources. The
stability of the pedestal in a type I ELMy regime [6] is
generally described by MHD theory [7]. The high pressure
gradient and the edge current density at the edge drive Peeling-
Ballooning (P-B) modes unstable [8, 9], triggering an ELM. P-
B stability provides an ultimate limit on the pedestal pressure
at the onset of the ELM, but the inter-ELM turbulent [10–12]
and neoclassical [13, 14] transport, alongwith the sources, will
determine the relative contributions from the pedestal density
and temperature. The exact role of the edge particle source and
pedestal transport in setting the density pedestal is still an open
question [15]. Reduced pedestal models [16–20] have proven
successful in predicting the pedestal electron pressure for a
wide range of plasma scenarios, but they lack a first principle
based, predictive model for the edge density.

In this study, we investigate the balance of particle sources
and transport in the latter part of the ELM cycle where the ped-
estal recovery is typically slow compared to the transient crash
and fast recovery phase [21, 22]. The evolution of the pedes-
tal particle content is evaluated from detailed analysis of high
resolution profile reflectometry data. The edge particle source
is estimated by means of interpretative edge-scrape-off-layer
(edge-SOL) fluid transport simulations using the EDGE2D-
EIRENE code [23–25]. Comparison of these results allows
an assessment of the contributions of sources and transport to
edge particle balance. The role of MHD stability in the pedes-
tal formation is also investigated.

The paper is organised as follows. Section 2 describes the
analysed JET-ILWH-mode experiments and presents the com-
parison of pedestal density and temperature profiles. The ana-
lysis of the linear ideal MHD stability of the investigated ped-
estals is discussed in section 3. The interpretative EDGE2D-
EIRENE simulations to estimate the edge particle source is
presented in section 4. The results on the balance of the source

and transport during the inter-ELM pedestal evolution is dis-
cussed in section 5, followed by the conclusions in section 6.

2. Experiments

In this work, we investigate JET-ILW type I ELMy H-mode
experiments that utilised plasma shaping (triangularity) and
ELMpacing by vertical kicks as tools to disentangle the effects
of edge stability, ELMs, and inter-ELM particle transport on
the pedestal particle balance. It has been observed in several
tokamak experiments, that the pedestal confinement typically
improves with increasing triangularity [22, 26–35]. In JET and
ASDEX Upgrade, the increase of pedestal pressure with tri-
angularity, at otherwise fixed engineering parameters, is due
to higher pedestal density being obtained for similar pedestal
temperature [22, 26–29, 31, 32]. It has also been reported from
these two devices that the ELM frequency is reduced at higher
triangularities [22, 26, 30, 31]. One proposed explanation for
the beneficial effect of triangularity is the improved stabil-
ity of P-B modes before the ELM event (pre-ELM) [8, 36–
38]. Increased triangularity decouples peeling and ballooning
modes opening up second stability access leading to a higher
stability boundary.

The application of a fast and controlled vertical plasma
motion (known as vertical kicks in JET) for frequency control
of ELMs has been successfully demonstrated on several toka-
maks [39–42]. This method on JET relies on the vertical stabil-
ization control system to drive the fast vertical plasma motion.
Vertical kicks can trigger ELMs by introducing an intermittent,
local perturbation of the current density close to the separat-
rix. If the current perturbation is large enough to destabilise
the peeling component of the edge instability responsible for
the ELM onset, an ELM is triggered before the pedestal would
naturally reach the P-B stability limit [39].

Comparative type I ELMy H-modes were performed at
2.5 MA plasma current and 2.8 T toroidal magnetic field with
constant NBI (Neutral Beam Injection) power of 23 MW,
no Ion Cyclotron Resonance Heating (ICRH) in the main
heating phase11 and constant deuterium gas fuelling rate at
4.4× 1022 electron s−1. A lower triangularity (δ = δlower/2+
δupper/2= 0.2) and a higher triangularity (δ= 0.3) pulse with
natural ELM frequency and a higher triangularity (δ = 0.3)
pulse with 36 Hz vertical kicks for ELM pacing were selected

11 RF was not used in the main heating phase (which is the plasma analysed),
but was used in the tail of the discharge for safe landing, to prevent disruption
caused by core tungsten accumulation and thus radiative collapse during the
plasma current ramp-down.
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Figure 1. The main plasma parameters of the three representative discharges examined in this paper. The δ= 0.2 plasma is shown in orange,
the δ= 0.3 in green and the δ= 0.3 with kicks in magenta. The grey area indicates the analysed time interval. (a) The total plasma current,
Ip and the toroidal magnetic field, Bt. (b) The NBI and ICRH heating power. (c) The total radiated power. (d) The core and edge line
averaged density. (e) The normalised plasma β, βN . (f) The core electron temperature. (g) The external D2 fuelling gas rate. (h) The average
plasma triangularity, δ = δlower/2+ δupper/2.

for detailed comparative analysis. The main waveforms of
these three pulses are shown in figure 1. Strike point sweeping
with 4 Hz frequency was introduced in these pulses for oper-
ational reasons, to reduce the heat load on the tungsten coated
divertor tiles. This introduces oscillations in some of the meas-
ured plasma parameters.

The pedestal electron density (ne) and temperature (Te) pro-
files from Thomson scattering (TS) [43] and the ion temperat-
ure (Ti) profiles from the edge charge exchange spectroscopy
(CXRS) system [44, 45] measuring Ne and C impurities are
shown in figure 2. These figures show all of the TS and CXRS
profiles from the steady phase of the discharge, i.e. including
both ELMs and inter-ELMphases. Besides the raw data points,
figure 2 shows the modified tanh (mtanh) [46] fitted profiles as
well. Figure 2(c) also shows the raw ion temperature data on
the top of the mtanh fit of the electron temperature profiles

(same as in figure 2(b) for comparison of Te and Ti. The ion
and electron temperatures are similar at the pedestal top within
the measurement uncertainties of the edge CXRS system, but
Ti in the edge transport barrier and at the separatrix cannot be
resolved.

As shown in figure 2, the pedestal pressure signific-
antly improves with increasing triangularity mostly due to an
increase in pedestal density and the change in electron and
ion temperatures is small. Also, the natural ELM frequency
decreases from 39 Hz at δ= 0.2 to 25 Hz at δ= 0.3. When
fELM is increased by vertical kicks at δ= 0.3 to 37 Hz (close
to the natural fELM of the δ= 0.2 pulse), the pedestal dens-
ity and thus the pressure is somewhat decreased, but both still
significantly higher than in the δ= 0.2 case. This observa-
tion is discussed in view of the pedestal stability in the next
section.

3
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Figure 2. The pedestal kinetic profiles for the three representative
discharges examined in this paper. These figures show all of the TS
and CXRS profiles from the steady phase of the discharge,
i.e. including both ELMs and inter-ELM phases. The δ= 0.2 plasma
is shown in orange, the δ= 0.3 in green and the δ= 0.3 with kick in
magenta. (a) Electron density data from TS and corresponding
mtanh fits. (b) Electron temperature data from TS and
corresponding mtanh fits. (c) Ion temperature data from CXRS. The
underlying solid lines are the mtanh fits of the TS electron
temperature, same as in figure (b). This is to confirm that Te ≈ Ti at
the pedestal top. (d) Electron pressure data from TS and
corresponding mtanh fits. (The kinetic profiles are radially aligned
so that the separatrix temperature is 100 eV.).

3. Pedestal MHD stability

Vertical kicks can help to investigate whether physics mech-
anisms other than improved P-B stability play a role in the
observed increase in pedestal performance at higher trian-
gularity. With the introduction of vertical kicks, the ELMs
are triggered before the pedestal would naturally reach the
MHD stability limit. In the δ= 0.3 plasma with vertical kicks,
the pedestal pressure is degraded (by ≈25%) with respect to
the δ= 0.3 discharge with natural fELM. Despite this artifi-
cial degradation of the pedestal MHD stability, the pedestal
pressure is still significantly higher (by ≈30%) in the δ= 0.3

Figure 3. Linear MHD pedestal stability diagram for the three
discharges analysed. The δ= 0.2 plasma is shown in orange, the
δ= 0.3 in green and the δ= 0.3 with kick in magenta. The
operational points corresponding to the pre-ELM phase of the
discharges are indicated with the stars and the respective error bars
as a function of the normalised pressure gradient (αmax) and the
normalised current density (⟨jedge⟩max/j). The solid lines show the
P-B stability boundary.

kicked pulse compared to that of the δ= 0.2 counterpart.
This implies that increased plasma triangularity may also
affect inter-ELM transport, and thus lead to increased pedestal
confinement.

Ideal MHD stability of the pedestal was investigated with
the HELENA fixed boundary equilibrium [47] and the ELITE
ideal MHD stability codes [8, 9]. The j−α pedestal stabil-
ity diagram for the three representative discharges is shown in
figure 3, where α is the normalised pressure gradient12 and j is
the normalised current density. The HELENA equilibrium is
self-consistent with respect to the current profile that was eval-
uated using Redl’s bootstrap current formula [49] and assum-
ing a fully diffused Ohmic current with neoclassical resistivity.
The pre-ELM (80%–97%) 13 mtanh fitted TS data was used
as input kinetic profiles, assuming Te = Ti (consistent with
charge exchange measurements at the pedestal top) and line
averaged Zeff with Be as a single impurity. The kinetic pro-
files are radially aligned so that the separatrix temperature is
100 eV.

The P-B stability boundary (solid lines in figure 3) was
evaluated using γMHD > 0.5×ωdia as stability criterion, where
γMHD is the linear growth rate and ωdia is the diamagnetic fre-
quency. The stability boundary is very similar for all three

12 The normalised pressure gradient is defined as in [48]: α=

−2∂V/∂Ψ
(2π)2

(
V

2π2R0

)1/2

µ0
∂p
∂Ψ

, where V is the volume enclosed by the

flux surface, R0 is the geometric centre of the plasma and Ψ is the poloidal
flux.
13 All ELM cycles are normalised to a relative time scale, where 100% cor-
responds to the onset of the ELM crash and 0% corresponds to the ELM crash
of the preceding ELM cycle. The pre-ELM phase is defined as the 80%–97%
of the ELM cycle.
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discharges and no clear stabilisation effect from higher δ can
be seen. This is because the increase in triangularity from 0.2
to 0.3 is too small and other parameters of the experimental
equilibria (such as βN , βpol, volume, etc) affecting the stability
boundary more. In a separate study (not shown here), a small
stabilising effect of triangularity was recovered when all other
parameter differences between discharges were removed and
only the shaping effect was investigated by increasing δ from
0.2 to 0.3.

The stars in figure 3 show the operational point of the ped-
estal as obtained in the experiment with their associated error
bars derived from the uncertainty of the mtanh fit parameters.
The operational points for the pulses with natural ELM fre-
quency are close to the P-B boundary thus the ELM trigger
is consistent with the P-B paradigm. The operational point is
further from the stability boundary for the δ= 0.3 pulse where
vertical kickswere applied to increase fELM. This is expected as
the vertical kick introduces a current perturbation at the edge
which triggers the ELM in conditions when the pedestal would
otherwise still be stable to P-B modes. The P-B stability ana-
lysis used the equilibrium and kinetic profiles from this stable
period preceding the triggered ELMs.

It was found that the pressure pedestal is wider in both
δ= 0.3 pulses than in the δ= 0.2 case. This is shown in
figure 4, where the edge pressure gradients are compared for
the three pedestals. The wider pedestal at δ= 0.3 allows for
improved P-B stability and thus leads to higher pedestal pres-
sure. This suggests that the improved pedestal pressure at
higher δ is not necessarily a sole pre-ELM P-B stability effect,
but a change in inter-ELM transport could possibly play an
important role in setting the higher density and thus higher
pressure when the triangularity is increased.

4. Estimate of the edge particle source

The role of particle transport in the inter-ELM phase is studied
in section 5 in more detail where the pedestal particle balance
is discussed. In this section, we present the interpretative
EDGE2D-EIRENE [23–25] simulations which were per-
formed to estimate the edge particle source to examine the
balance of source and transport in the pedestal. EDGE2D is
a 2D fluid code with realistic geometry of the SOL and diver-
tor region, which is coupled to EIRENE, a Monte Carlo code
used to calculate the neutral particle distribution.

4.1. Simulation set-up and interpretative transport coefficients

We ran EDGE2D-EIRENE in interpretative mode, where
the perpendicular transport coefficient of electron particle
diffusion D⊥ (Γe,⊥ = D⊥∇⊥ne), electron and ion heat trans-
port χe,i,⊥ (qe,i,⊥ =−ne,iχe,i,⊥∇⊥Te,i) and the divertor pump
albedo were iterated until the solution fitted the measured
inter-ELM (40–80% fraction of the ELM cycle) upstream ne
and Te profiles (measured by TS and the fast Li-beam emis-
sion spectroscopy system [50]). The ion and electron heat
transport coefficient profiles (χe,⊥ and χi,⊥) were assumed

Figure 4. The mtanh fit of the pre-ELM (80%–97%) electron
pressure profile (a) and its gradient (b) for the three discharges
analysed. The δ= 0.2 plasma is shown in orange, the δ= 0.3 in
green and the δ= 0.3 with kick in magenta. The error bars are
derived from the uncertainty of the mtanh fit parameters. Note that
while the pressure gradient is similar for the δ= 0.2 and the δ= 0.3
with kicks cases, α as shown in figure 3 is different. This is because
the normalisation of the pressure gradient (α) also includes the
plasma volume that is smaller for the δ= 0.3 plasmas.

to be the same, due to lack of constraints to distinguish
between them.

The separate contribution of ELM and inter-ELM trans-
port was not studied with EDGE2D-EIRENE. The simula-
tions were run until convergence, thus time independent solu-
tions were obtained. The building up of the plasma stored
energy between ELMs (dW/dt), that is equivalent to the ELM
power loss (PELM), was not taken into account in the time-
independent simulations. Thus, the input power in EDGE2D-
EIRENE was set to the power crossing the separatrix inter-
ELM (Pinter−ELM = Psep −PELM).

Cross-field drifts and a particle pinch term were not intro-
duced in these simulations. The edge particle pinch may have
an important role in the particle transport [51–53], but in time
independent simulations the experimental ne profile could be
reproduced with different variations of the diffusion coeffi-
cient and the pinch velocity, due to the lack of constraints.
Thus, the particle diffusion coefficient here is regarded as an
effective parameter describing the transport needed to exhaust
the particle source from the plasma.

The grid for EDGE2D is generated such that it is aligned to
the plasma equilibrium reconstructed using kinetic EFIT [54].
The grid extends to ∼10–15 cm inside the separatrix towards
the core plasma. The gas fuelling rate and location was set in
accordance with the experiment. The recycling coefficient
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Figure 5. Inter-ELM TS profiles for ne and Te (in grey) and Li-BES data for ne in the SOL (in black) in the steady phase of the δ= 0.2
discharge. The upstream ne and Te profiles of the interpretative EDGE2D-EIRENE simulations with different set of D⊥ coefficients are
shown in colour. The simulations are labelled with the corresponding D⊥ value inside the edge transport barrier, D⊥,ETB.

was set to 1 on the walls and the divertor targets14. The
experimental NBI fuelling rate was estimated using the PEN-
CIL code [55], although this was found to be small compared
to the neutral flux crossing the separatrix. The divertor con-
figuration around the outer strike point cannot be modelled
precisely in EDGE2D-EIRENE. The wall structure had to
be slightly modified around the outer strike-point so that the
grid does not cross wall surfaces, as described in [56] in more
detail.

4.2. EDGE2D-EIRENE solutions

As described above, the perpendicular transport coefficients
were iterated until the experimental upstream kinetic profiles
could be matched. However, it has been found that multiple
sets of transport coefficients can reproduce the kinetic pro-
files within the experimental uncertainty without simultan-
eously constraining themain chamber recycling. This is shown
in figure 5, where the transport coefficients and the corres-
ponding upstream ne and Te profiles are shown for the δ= 0.2
discharge. For these four simulations, all the input paramet-
ers were kept the same except for the perpendicular transport
coefficients. It is shown in figure 5, that the particle diffusion
coefficient changes by an order of magnitude in the pedes-
tal and the SOL, while the heat transport coefficient changes
by a factor of 3 in the pedestal. Regardless of this significant
variation in the perpendicular transport, the upstream profiles

14 The projection algorithm used for main chamber recycling assumes that
all of the ion flux arriving at the edge of the plasma grid is being recycled
at the wall. The effect of this choice on the simulation results is discussed in
section 6.

remain almost unchanged. It is important to note that the
divertor target quantities did not vary significantly either in
this scan. The variation in jsat, ne and Te at the outer target was
between ±30%. For the inner target, the highest D⊥ case is
significantly colder than the other three cases. jsat, ne and Te
for the three lower D⊥ cases, however, are also within ±30%
variation.

The above behaviour can be understood by examining the
role of main chamber recycling in fuelling the plasma. The
recycling flux is determined by ion flux arriving to the edge
of the EDGE2D plasma grid. The recycling coefficient was
set to 1 in these simulations (except for the pumping sur-
faces in the divertor), thus all particles are recycled as neut-
rals. By increasing the particle diffusion coefficient, the ion
flux arriving at the edge of the plasma and at the wall sur-
faces is also increased, resulting in a higher recycling flux. The
increased recycling flux leads to a higher neutral density and
such increased particle source and it is this increased particle
source in the plasma that compensates the effect of increased
particle transport. In this way, multiple sets of particle diffu-
sion coefficients can reproduce very similar upstream kinetic
profiles.

It is therefore necessary to also constrain the main chamber
particle source, so as to extract the unique set of D⊥ and χ⊥
profiles that matches the investigated pedestal. Figure 6 shows
the ionisation source inside the separatrix as a function of
D⊥,ETB for the four simulations presented in figure 5. It can be
seen that for these cases, the pedestal source increase approx-
imately linearly with D⊥,ETB resulting in similar upstream
density and temperature profiles (as shown in figure 5) des-
pite different set of transport coefficients. This also means that
additional simulation constraints that carry information on the

6
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Figure 6. The particle source integrated over the plasma volume
inside the separatrix is shown as a function of D⊥,ETB inside the
edge transport barrier (ETB) for the four interpretative
EDGE2D-EIRENE simulations with different set of D⊥ coefficients
(#96448, δ= 0.2).

neutral density in the main chamber are needed to estimate the
pedestal particle source.

4.3. Main chamber Dα line radiation constraint in
EDGE2D-EIRENE

In order to constrain the pedestal particle source, we compared
the emitted deuterium Balmer-α (Dα) radiation by the main
chamber plasma in the EDGE2D-EIRENE simulation to that
of the experimental measurements. The line-of-sight (LOS) of
the corresponding spectrometer crosses the plasma in the main
chamber, but not in the divertor as shown in figure 7(c). In
this way, the measured line intensity carries direct information
about the ionisation source in the SOL and the pedestal, but it
does not integrate through the orders of magnitude brighter
divertor emission. However, the Dα emission from the diver-
tor is reflected by the JET-ILW metallic walls [57], hence it is
captured along the horizontal LOS making significant contri-
bution to the measured line intensity. Thus reflections need to
be taken into account in the analysis by forward modelling.

To estimate the effect of reflections on the measured sig-
nal, the experimental Dα brightness in the divertor was taken
from imaging spectroscopymeasurements [58]. Imaging spec-
troscopy provided a time-averaged (during the inter-ELM
phases over the steady phase of the discharge), 2D tomo-
graphic reconstruction of the Dα line intensity distribution
in the divertor. The contribution of the reflected light from
the divertor to the horizontal Dα line intensity measurement
was estimated using the CHERAB code [59, 60] as illustrated
in figure 7(c). CHERAB includes definitions of the full JET-
ILWmachine geometry and estimates of the metallic tile spec-
tral bidirectional reflectance distribution functions. It uses the
RAYSECT [61] raytracing engine to provide estimates for the
reflected light intensity. We used the experimental divertorDα

emission as input for CHERAB, assuming zero emission from
the main chamber. In this way, the background reflected emis-
sion of the measured Dα intensity on the horizontal LOS can
be approximated.

The measured Dα light intensity as function of time is
shown in grey in figure 7. The difference of the measured sig-
nal and the background reflected emission provides an estim-
ate for the line intensity emitted by the plasma in the main
chamber (the SOL and the pedestal). These estimated main
chamber Dα line intensities are shown in figures 7(a) and
(b) in black for the steady phase of the δ= 0.2 and δ= 0.3
natural fELM discharges after removing the spikes caused by
ELMs. The obtained signal is affected by large oscillations, in
part due to the applied strike point sweeping, which increases
the uncertainty on this method to constrain the neutral dens-
ity in the plasma. Nonetheless, this experimental comparison
provides a sanity check on the overall level of main cham-
ber Dα emission in EDGE2D-EIRENE simulations and thus
excludes some of the solutions obtained with unrealistic level
of particle source in the pedestal and SOL.

To compare with the estimated experimental main cham-
berDα line intensities, synthetic diagnostic data was produced
from the EDGE2D-EIRENE solutions by evaluating (using
ADAS atomic data [62]) and integrating the Dα emission
along the diagnostic LOS. This is shown in figures 7(a) and (b)
with the coloured lines. For the simulations using higher D⊥
values, the synthetic Dα emission is significantly larger than
the experimental estimate for both cases. Thus, the simula-
tions flagged as D⊥,ETB = 0.03 m2 s−1 and 0.06 m2 s−1 for
the δ= 0.2 case, and D⊥,ETB = 0.04 m2 s−1 and 0.06 m2 s−1

for the δ= 0.3 case are the ones deemed experimentally feas-
ible solutions.

Since the measured Dα emission along the horizontal
LOS is dominated by reflections from the divertor, unfor-
tunately it is not possible to select a unique solution from the
EDGE2D/EIRENE simulations and thus fully constrain the
evaluation of the edge particle source. Nevertheless, in the
next section, we discuss the balance of the source and trans-
port during the inter-ELM pedestal evolution in view of the
above, experimentally feasible EDGE2D-EIRENE solutions
with the consideration of the large uncertainty on the pedestal
particle source.

5. The balance of the source and transport during
the inter-ELM pedestal evolution

The main aim of this investigation is to characterise the bal-
ance of sources and transport that sets the density pedestal. In
current tokamak experiments, the dominant particle fuelling in
the pedestal comes from the ionisation of neutral atoms pen-
etrating into the confined region. The dominant channels of
particle transport are ELM losses, neoclassical and turbulent
transport. Other loss channels, for example ion orbit losses and
ripple losses, are assumed to be small. Our aim is to estimate
the contribution of these different channels. For this, the tran-
sient nature of ELMs needs to be considered as well.
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Figure 7. The measured Dα light intensity as function of time is shown in grey for the δ= 0.2 and δ= 0.3 natural fELM discharges. The
signals after the removal of ELMs and offsetting the reflected light are shown in black. The synthetic Dα line intensities for the
corresponding main chamber LOS are shown in colour from the EDGE2D-EIRENE solutions using different set of transport coefficients.

Figure 8. (a) Time evolution of the particle content during an ELM cycle (offset to 0 at the ELM onset) and (b) time evolution of the Dα

light intensity in the main chamber during an ELM cycle for the low δ= 0.2 and δ= 0.3 natural fELM pulses.

Figure 8(a) shows the time evolution of the particle con-
tent (offset to zero at the ELM onset) evaluated from profile
reflectometry during an ELM cycle for the low δ= 0.2 and
δ= 0.3 natural fELM pulses. At the ELM crash, significant
amount of particles is lost from the plasma. But most of the
lost particles are quickly recovered. The start of the ELM
crash is denoted by the solid black line, while the end of
the ‘fast’ recovery phase is indicated with the black vertical
dashed line in figure 8(a). Experimental evidence [63] sug-
gests that the fast recovery may be driven by an increased
recycling flux as a result of the increased particle flux arriv-
ing to the divertor targets and limiter as a result of the

ELM crash. A sign of this increase in particle source can
be seen in the spectroscopy data in figure 8(b), where the
Dα light intensity in the main chamber is shown. As dis-
cussed in section 4, the quantitative interpretation of this sig-
nal is challenging, but it shows that qualitatively the ionisa-
tion source in the main chamber is increased following the
ELM crash.

The ‘fast’ recovery phase is followed by a slower and longer
phase (to the right of the horizontal dashed line). In the slower
recovery phase, themain chamberDα light intensity is approx-
imately constant.We focus on the slow recovery phase to study
the pedestal particle balance assuming that the rate of change

8
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Figure 9. The analysis workflow describing the characterisation of the particle balance. The orange boxes refer to experimental data
analysis, while the green boxes indicate simulations. The turbulent transport (red box) is an output in the sense that it is calculated from the
other terms.

of the particle content (dN/dt) is a result of the difference
between the constant source (S) and transport (T) terms:

dN/dt= S−T . (1)

The question we seek to answer is to see whether the ped-
estal recovery is dominated by the source or the transport.
To answer this question, we are combining together the data
analysis procedures and simulation tools presented in previ-
ous sections. The workflow is summarised in a flowchart in
figure 9. dN/dt is evaluated from the experimentally measured
evolution of the particle content using high resolution profile
reflectometry as explained earlier in this section. The source
is taken from the experimentally relevant EDGE2D-EIRENE
simulations from section 4. This requires the introduction of
a simulation constrain for the main chamber Dα emission in
EDGE2D-EIRENE. The main chamber Dα intensity meas-
urement is largely affected by reflections from the divertor.
The reflections are accounted for by using the CHERAB code
which takes the experimental divertor Dα emission distribu-
tion as input. The magnitude of pedestal transport is then cal-
culated as a difference between the source and dN/dt. The
transport channel is then further divided into contributions
from neoclassical and turbulent transport15 by estimating the
neoclassical particle flux using the NEO drift-kinetic code

15 Strictly speaking the transport channel is divided into neoclassical and any
other transport. However, it is assumed that the latter is dominated by turbulent
transport and the contribution from ion orbit losses and ripple losses is small.

[64, 65]. The NEO code takes a plasma equilibrium and cor-
responding kinetic profiles as input and calculates the neoclas-
sical particle and heat flux profiles as a result. The peak of
the particle flux profiles in the pedestal is used in this ana-
lysis. Note that the turbulent particle flux is not modelled in
this work, it is simply deduced from equation (1), assuming
that the total transport (T) is the sum of the neoclassical and
turbulent fluxes.

The bar charts in figure 10 compare the magnitude of
the source with that of the transport for the two investigated
plasmas (δ= 0.2 in figure 10(a) and δ= 0.3 in figure 10(b)).
We show two results for both plasmas. These represent the
estimated particle source from the ‘experimentally relevant’
EDGE2D-EIRENE simulations as shown in figure 7. We
regard the two solutions (for each pulse) as a lower and upper
bound estimate for the particle source, and the corresponding
transport flux is calculated respectively using the experiment-
ally measured dN/dt.

For the δ= 0.3 pulse (figure 10(b)), it is clear that both the
source and transport terms are relevant and the difference of
these two large terms results in a small dN/dt. The contribu-
tion of neoclassical transport is small,DNC ≈ 0.004m2 s−1 for
the δ= 0.2 case and DNC ≈ 0.006 m2 s−1 for the δ= 0.3 case.
This suggests that the role of turbulent transport is import-
ant in the evolution of the pre-ELM pedestal and it cannot
be neglected. In the case of the δ= 0.2 discharge, the picture
is less clear. Due to the uncertainties on the main chamber
Dα radiation constraint, the relative difference in the upper
and lower bounds is greater than that of the δ= 0.3 pulse.

9
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Figure 10. Comparison of the source and transport in the pedestal for the ‘experimentally relevant’ EDGE2D-EIRENE solutions for the
two investigated plasmas. (a) δ= 0.2 in orange, (b) δ= 0.3 in green.

In the D⊥,ETB = 0.03 m2 s−1 case the source seems to be
dominant over transport, but in theD⊥,ETB = 0.06m2 s−1 case
the source and transport terms are comparable. In summary,
we conclude that the role of turbulent particle transport, in
the pulses analysed, cannot be neglected from the pedestal
particle balance. But, further improvements required both in
spectroscopic measurements and edge transport simulations to
be able to quantitatively compare the pedestal particle balance
between different pedestals.

6. Discussion and conclusions

In the present paper, the pedestal particle balance and the
role of pedestal MHD stability have been investigated in JET-
ILW type I ELMy H-mode plasmas at different triangular-
ities and ELM frequency. We have observed that the ped-
estal pressure is higher at higher δ even when the pedestal
stability is artificially degraded by introducing vertical kicks,
suggesting that improved P-B stability is not solely respons-
ible for improved pedestal performance. This is likely due to
the increased width of the pedestal at higher δ that allows
for higher pedestal pressure at similar pressure gradient. The
physical mechanism responsible for the wider pedestal has not
been investigated in this work, but a change in inter-ELM ped-
estal transport as a result of enhanced shaping offers a can-
didate explanation. Unfortunately the workflow presented in
this work cannot provide quantitative comparative evidence of
transport between the pedestals with different triangularities as
the estimate on the pedestal particle source is too uncertain.

The literature contains several gyrokinetic studies
pertaining to the impact of plasma shaping on core turbu-
lence [66–68], but we have not found any systematic study

investigating the effect of triangularity on pedestal turbu-
lent transport. In reference [66], Belli mentions that nonlinear
gyrokinetic simulations of core turbulence capture some of the
shaping effects found experimentally, but they do not com-
pletely explain the degree of this dependence on triangularity.
It may be that much of the experimentally observed strong
triangularity dependence comes from the edge turbulence,
which sets the boundary conditions for core transport.

In current tokamaks, the characterisation of the neutral
source is essential to understand the formation of the dens-
ity pedestal structure, as also suggested by several studies [15,
69–71]. However, due to the lack of direct measurement of
the neutral density, unravelling the role of the edge particle
source and transport in setting the density pedestal structure
is highly challenging. In this work, we used edge-SOL trans-
port simulations (EDGE2D-EIRENE), together with various
plasma measurements for the estimation of the edge particle
source. Comparing the estimated pedestal particle source with
the experimentally inferred evolution of the pedestal particle
content inter-ELM, we found that the role of turbulent particle
transport, in general, cannot be neglected from the pedestal
particle balance. Cases exist where a large source term is bal-
anced by a large transport term resulting in a relatively slow
recovery of the pedestal. This implies that for detailed pedes-
tal prediction, the properties of both the particle source and
transport need to be characterised.

The workflow presented in this study offers a way to con-
strain the overall magnitude of the pedestal particle source.
However, the separate contribution of divertor and main
chamber recycling, and external gas injection to pedestal
fuelling has not been investigated in detail and requires fur-
ther analysis. In EDGE2D-EIRENE, the grid on which the
fluid equations are solved (EDGE2D grid) does not extend

10
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to the limiters. Thus, the simulation of main chamber recyc-
ling requires assumptions on the incidence ion flux. We used
a projection algorithm that results in all the ion flux arriving at
the edge of the plasma grid being recycled in the main cham-
ber. In the simulations presented in this work, the source of
neutrals crossing the separatrix was very much dominated by
main chamber recycling. Neutrals recycled in the divertor were
found to contribute much less to the pedestal fuelling even in
the simulations with low particle transport coefficients. The
choice of the projection algorithm possibly contributes to this
behaviour. In reality, some of the ion flux arriving to the edge
of the EDGE2D grid may arrive at the divertor target before
it would hit the main chamber limiters. A different projec-
tion algorithm that redirects some fraction of the ion flux to
recycle at the divertor target (for e.g. exponential fall off with
an exponentially decreasing fraction going to the target) would
be expected to affect the contribution from the divertor recyc-
ling to pedestal fuelling. But due to the lack of experimental
constraints, the choice of the projection algorithm is some-
what arbitrary. Further analysis focusing on the ratio of main
chamber and divertor recycling would require the edge trans-
port simulation codes that allow for extended plasma grids,
covering the whole vessel and thus is outside the scope of this
paper. In our simulations, the total amount of pedestal fuelling
is experimentally constrained, but the balance between diver-
tor andmain chamber recycling is not studied. It is also import-
ant to note that the inner divertor in the simulations would be
colder and more opaque if cross-field drifts were turned on,
thus contributing significantly more to the fuelling of the ped-
estal [72].

Recently, exceptional progress has been made in pedestal
gyrokinetic studies [12, 73–79]. These analyses have identi-
fied various micro-instabilities to be potentially responsible
for plasma transport in the H-mode pedestal. However, the
focus was mostly on the understanding of the pedestal heat
transport. Our work has shown that in general, inter-ELM
turbulent particle transport plays an important role in setting
the density pedestal. Thus, the study of micro-instabilities
responsible for particle transport at the edge is a worthwhile
line of future work towards a fully predictive pedestal model.
Interpretative edge-SOL modelling, such as those presented
in this paper, or more direct information about the particle
source in the form of neutral density measurements where
possible [80–83] could provide information for gyrokin-
etic simulations to include a realistic particle source term
and such advance the understanding of the density pedestal
formation.
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