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In toroidal magnetic confinement devices, such as tokamaks and stellarators,
neoclassical transport is usually an order of magnitude larger than its classical
counterpart. However, when a high-collisionality species is present in a stellarator
optimized for low Pfirsch–Schlüter current, its classical transport can be comparable
to the neoclassical transport. In this letter, we compare neoclassical and classical
fluxes and transport coefficients calculated for Wendelstein 7-X (W7-X) and Large
Helical Device (LHD) cases. In W7-X, we find that the classical transport of a
collisional impurity is comparable to the neoclassical transport for all radii, while it
is negligible in the LHD cases, except in the vicinity of radii where the neoclassical
transport changes sign. In the LHD case, electrostatic potential variations on the flux
surface significantly enhance the neoclassical impurity transport, while the classical
transport is largely insensitive to this effect in the cases studied.

Key words: fusion plasma

1. Introduction

The most developed concepts for achieving controlled thermonuclear fusion are the
tokamak and stellarator. Both the tokamak and the stellarator utilize a strong toroidal
magnetic field to confine a hot plasma in which fusion reactions take place.

When such a plasma is in a steady state, loss of particles and energy mainly occurs
as a result of micro-turbulence, collisions or direct losses of particles on unconfined
orbits. The two latter processes – and the resulting transport of particles and heat – are
referred to as collisional transport, and can be modelled within the framework of drift
kinetics. Historically this is the dominant transport channel in the core of stellarators
because of the large transport due to particles on unconfined orbits (Beidler et al.
2012).

Collisional transport can be further separated into two additive components: classical
transport, which is due to the gyro-motion of particles around the magnetic field lines,
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and neoclassical transport, which is due to the complex orbits carried out by the
centre of gyration as it moves in the magnetic field. The latter typically leads to
much larger transport than the former (Pfirsch & Schlüter 1962), and also accounts for
the unconfined orbits in stellarators, with a very strong unfavourable scaling towards
reactor-relevant high temperatures. Thus, much effort has been devoted to reducing
the neoclassical transport in stellarators – resulting in optimized stellarators such as
Wendelstein 7-X (W7-X) (Nührenberg & Zille 1986) – while classical transport is
often neglected.

However, it has not been widely appreciated that, as a result of optimizing for
low neoclassical transport and Pfirsch–Schlüter current, the neoclassical transport of
impurities in W7-X can now be comparable to the often neglected classical transport.
The main purpose of the present note is to raise attention to this circumstance.

To understand why the classical transport is relevant in an optimized stellarator, we
employ recent analytical results on neoclassical transport for a collisional impurity
(Braun & Helander 2010; Helander et al. 2017; Newton et al. 2017) to show that the
ratio of classical to neoclassical fluxes is proportional to a geometrical factor (2.1),
which turns out to be larger than one in W7-X.

Motivated by these results, we present a general expression for the classical
transport, using the linearized Fokker–Planck operator and allowing for an arbitrary
number of species. The employed collision operator is frequently used in modern
neoclassical solvers, and the results can thus be directly compared with the output
from such codes. In the final sections, we look at a few example magnetic
configurations, where we compare the magnitude of the classical transport to that of
the neoclassical transport calculated with the SFINCS1 drift-kinetic solver (Landreman
et al. 2014), and investigate the collisionality dependence of the ratio of classical to
neoclassical transport.

2. Motivation
Before performing a detailed analysis, it is useful to consider a simple (but

experimentally relevant) limit, where the importance of classical transport in a
stellarator is apparent. For this purpose, we summarize results from earlier work
(Braun & Helander 2010; Helander et al. 2017; Buller et al. 2018).

At fusion-relevant temperatures, the bulk hydrogen species of the confined plasma
will be in a low-collisionality regime. However, as the collisionality increases with
charge, high-Z impurities (with Z being the charge number) can still have high
collisionality. Such impurities can occur, for example, in experiments using tungsten
plasma-facing components, which is the favoured material for the divertor of future
fusion reactors (Bolt et al. 2002). These plasmas will thus be in a mixed-collisionality
regime, with low-collisionality bulk and high-collisionality impurity ions.

In this regime, the ratio of classical to neoclassical impurity particle fluxes
calculated from the mass-ratio expanded collision operator is given by a purely
geometrical factor (Buller et al. 2018)

〈Γz · ∇ψ〉
C

〈Γz · ∇ψ〉NC
=

〈 j2
⊥
〉〈B2
〉

〈 j2
‖〉〈B2〉 − 〈 j‖B〉2

. (2.1)

Here, ψ is a radial coordinate (a flux-surface label), 〈·〉 is the flux-surface average,
Γz is the flux of impurity ions, 〈Γz · ∇ψ〉

(N)C is the radial (neo)classical impurity flux

1Available at: https://github.com/landreman/sfincs (verified 2019-07-10).
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averaged over the flux surface, B is the magnetic field, B= |B|, and j is the current
density, here defined by j × B = ∇p(ψ), ∇ · j = 0; with j‖ and j⊥ being the current
components parallel and perpendicular to B, and p the total pressure.

Equation (2.1) also enters into the ratio of classical and neoclassical transport
at yet higher collisionalities: in the Pfirsch–Schlüter regime, where both bulk and
impurity ions are collisional. This can be shown using the expression for neoclassical
transport derived by Braun & Helander (2010) together with the expression for
classical transport in, for example, Buller et al. (2018). For stellarators optimized for
low j‖/j⊥ (such as W7-X), the (2.1) ratio will be large and classical transport will
thus dominate at high collisionality. This will be verified by numerical simulations
in § 4.

3. Linearized Fokker–Planck operator
In this section, we write down the classical particle and heat transport due to a

linearized Fokker–Planck operator. The flux-surface averaged radial classical transport
of particles and energy is given by

Γ C
a ≡ 〈Γa · ∇ψ〉

C
≡

〈
b×∇ψ

ZaeB
·Ra

〉
, (3.1)

QC
a ≡ 〈Qa · ∇ψ〉

C
≡

〈
b×∇ψ

ZaeB
·Ga

〉
, (3.2)

where we have introduced the friction force and energy-weighted friction force

Ra ≡

∫
mavC[ fa] d3v, (3.3)

Ga ≡

∫
mav

2

2
mavC[ fa] d3v. (3.4)

Here, C[ fa]=
∑

b Cab[ fa, fb] is the Fokker–Planck collision operator, accounting for the
collisions of all species ‘b’ with species ‘a’; fa the distribution function of species ‘a’,
with mass ma and charge Zae, with e the elementary charge; the integral is over all
velocities v. In a confined plasma, the distribution functions are close to a Maxwell–
Boltzmann distribution fa0, such that fa = fa0 + fa1, and fa1 satisfies fa1/fa0 � 1. For
later reference, we also define the classical conductive heat flux qC

a =QC
a − (5/2)TaΓ

C
a ,

where Ta is the temperature of species ‘a’.
For a magnetized plasma, it is useful to separate out the dependence of the

distribution function on the gyro-phase. Only the gyro-phase-dependent part of f ,
which we denote by f̃ , contributes to R and G perpendicular to the magnetic field,
and thus to the classical fluxes (3.1)–(3.2). For a magnetized plasma with an isotropic
Maxwellian, it is well known that (Hazeltine 1973)

f̃a1 =−ρa · ∇fa0, (3.5)

where ρa =B× vma/(ZaeB2) is the gyro-radius vector.
With (3.5), we can readily evaluate the classical transport given by (3.1)–(3.4).

Lately in stellarator research, the importance of flux-surface variation of the
electrostatic potential has been recognized (García-Regaña et al. 2017); such effects
can be incorporated into the classical transport by including the flux-surface varying
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part of the potential in the Maxwell–Boltzmann distribution f0 (Hinton & Wong
1985)

f0 = η(ψ)
( m

2πT

)3/2
exp

(
−

mv2

2T
−

ZeΦ̃
T

)
, (3.6)

where Φ is the electrostatic potential, Φ̃ = Φ − 〈Φ〉 and we have introduced the
pseudo-density

η(ψ)≡ neZeΦ̃/T, (3.7)

with n the density. In terms of gradients of η, T and Φ, the gradient in (3.5) thus
becomes,

∇f0 =∇ψ
∂f0

∂ψ
=∇ψ f0

[
d ln η
dψ
+

Zae
Ta

∂Φ̃

∂ψ
+

ZaeΦ̃
Ta

d ln Ta

dψ
+

(
mav

2

2Ta
−

3
2

)
d ln Ta

dψ

]
.

(3.8)

With this ∇f0, the resulting classical fluxes can be calculated using Braginskii
matrices (as in, for example, Newton & Helander (2006)), resulting in

Γ C
a =

ma

Zae2

∑
b

1
τabnb

{〈
nanb
|∇ψ |2

B2

〉
M00

ab

(
Ta

Za

d ln ηa

dψ
−

Tb

Zb

d ln ηb

dψ

)
+

〈
nanb
|∇ψ |2

B2
eΦ̃
〉

M00
ab

(
d ln Ta

dψ
−

d ln Tb

dψ

)
+

〈
nanb
|∇ψ |2

B2

〉 [
(M00

ab −M01
ab)

Ta

Za

d ln Ta

dψ
−

(
M00

ab −
maTb

mbTa
M01

ab

)
Tb

Zb

d ln Tb

dψ

]}
,

(3.9)

qC
a = −

Tama

Zae2

∑
b

1
τabnb

{〈
nanb
|∇ψ |2

B2

〉
M01

ab

(
Ta

Za

d ln ηa

dψ
−

Tb

Zb

d ln ηb

dψ

)
+

〈
nanb
|∇ψ |2

B2
eΦ̃
〉

M01
ab

(
d ln Ta

dψ
−

d ln Tb

dψ

)
+

〈
nanb
|∇ψ |2

B2

〉 [
(M01

ab −M11
ab)

Ta

Za

d ln Ta

dψ
− (M01

ab +N11
ab)

Tb

Zb

d ln Tb

dψ

]}
, (3.10)

where Mjk
ab are the Braginskii matrix elements (Braginskii 1958), defined in appendix A,

using the same notation as Helander & Sigmar (2005); the collision time τab is defined
as

1
τabnb

≡

√
2Z2

aZ2
be4 lnΛ

12π3/2ε2
0m1/2

a T3/2
a
, (3.11)

where lnΛ is the Coulomb logarithm, and ε0 the vacuum permittivity. These
expressions are valid for all collisionalities. In (3.9) and (3.10), the effect of Φ̃
is to induce a weighting over the flux surface due to the flux-surface variation of na
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and its radial gradient. Note that the radial electric field (from 〈Φ〉 and Φ̃) does not
contribute in the above expression, even when d ln η/dψ is expressed in terms of
(3.7).

In (3.9)–(3.10), the |∇ψ |2 factors correspond to the j⊥ factor in (2.1), while the
j‖ factor in (2.1) arises due to the neoclassical transport (Braun & Helander 2010;
Helander et al. 2017). In the following section, we will evaluate the above expression
for example magnetic configurations.

4. Comparison to neoclassical calculations
In this section, we will compare the classical transport from (3.9) to the neoclassical

transport calculated with the drift-kinetic solver SFINCS. Unlike analytical calculations
of the neoclassical transport (Buller et al. 2018; Calvo et al. 2018), this procedure is
not limited to a specific collisionality regime, which will let us assess the importance
of classical transport for any collisionality.

For this study, we will look at two stellarator configurations, where the neoclassical
transport coefficients have been calculated across a wide range of collisionalities.
Specifically, we will look at a simulated W7-X standard configuration case at the
radial location rN = 0.88, with T = 1 keV and impurity parameters Z = 6, Zeff = 2.0,
studied by Mollén et al. (2015). The normalized radius is defined as rN =

√
ψt/ψt,LCFS,

with ψt the toroidal flux and ψt,LCFS its value at the last-closed flux surface. Since
W7-X has been optimized for a low parallel current, and the standard configuration
has low neoclassical transport compared to other configurations, we here expect the
classical transport to dominate at high collisionality, as indicated at the end of § 2.
In addition, we will look at a scenario based on an impurity hole plasma (#113208,
t = 4.64 s, rN = 0.6, T = 3.2 keV) of the Large Helical Device (LHD), where we
replaced the mixture of helium and carbon impurities with purely carbon (Zeff= 3.44)
for the sake of comparison. This magnetic configuration has been investigated in
several studies, using both neoclassical (Velasco et al. 2017; Mollén et al. 2018) and
turbulence codes (Nunami et al. 2016).

Effects of Φ̃ and the radial electric field are not included in this demonstration (they
are zero in the simulations), as this would make the drift-kinetic equation nonlinear,
and add the complexity of finding the ambipolar electric field at each step. These
effects are not expected to strongly affect the classical transport, which is independent
of the radial electric field, and typically not as sensitive to Φ̃ as the neoclassical
transport (Buller et al. 2018). The neoclassical transport can be both enhanced or
reduced by these effects, which thus would affect the relative importance of classical
transport. These effects will be touched upon in § 5. As Φ̃ = 0 in this section, the
density is a flux function, and ηa = na.

We scan the collisionality by artificially scaling the collision frequency. For
each point in the collisionality scan, we calculate the neoclassical and classical
transport coefficients of the hydrogen bulk ion and the carbon impurity. The transport
coefficients for the (neo)classical fluxes are defined such that

Γ (N)C
a =−na

(
D(N)C

a,ni
d ln ni

dψ
+D(N)C

a,nz
d ln nz

dψ
+D(N)C

a,T
d ln T

dψ

)
, (4.1)

where a = i, z for ions and impurities. We have neglected the effects of electron
collisions on the ion fluxes due to the small electron-to-ion mass ratio, and assumed
that the bulk and impurity ions have the same temperature T ≡ Ti = Tz.
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(a) (b)

FIGURE 1. The neoclassical (——) and classical (- - -) transport coefficients as defined
in (4.1), plotted against the impurity–impurity collisionality. (a) W7-X standard case. (b)
LHD impurity–hole case. The classical coefficients were calculated using (3.9), while the
neoclassical coefficients were calculated using SFINCS. Note the symmetric logarithmic
scale of the y-axis; the shaded region has a linear y-axis scale.

The results of the collisionality scan are shown in figure 1, with the collisionality
defined as

ν̂ab =
G+ ιI

B00
√

2Ta/ma

1
τab
, (4.2)

where B00, G and I are related to the Boozer representation of the magnetic field
(see, for example, Mollén et al. (2018)) and ι is the rotational transform. As seen in
the left panels of figure 1, the impurity transport coefficients in the W7-X geometry
are dominantly classical already for ν̂CC & 1. The cross-species contributions are
dominantly classical at even lower collisionality, ν̂CC & 0.1, for both the bulk and the
impurity ions. On the other hand, in LHD – which has not been optimized for low
|j‖|/|j⊥| – the classical transport for both species at most collisionalities is at least an
order of magnitude smaller than the neoclassical transport. An exception to this is the
Da,T coefficient, where the classical transport becomes comparable to or greater than
the neoclassical transport at very high collisionalities (ν̂CC & 100). Another exception
occurs in the collisionality range νCC ∼ [0.1, 1], where the cross-species neoclassical
Dz,ni and Di,nz coefficients transition between different signs.
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(a)

(b)

FIGURE 2. Neoclassical (——) and classical (- - -) fluxes normalized to pseudo-densities
for different species in W7-X (a) and LHD (b) as functions of the normalized radius rN .
Filled (open) symbols show the flux with (without) the effect of Φ̃ included. The lowest
panels show the ratio of the classical and neoclassical transport; note that this quantity
diverges at radii where the neoclassical flux crosses zero.

5. Discussion
We have seen that the neoclassical and classical transport coefficients can be

comparable in a W7-X standard configuration, even at modest impurity collisionality
(ν̂CC & 0.1–1), although the previously discussed simulations do not include effects
of electrostatic potential variation within and across flux surfaces and collisions
with electrons. To demonstrate the relative importance of neoclassical and classical
transport in realistic scenarios with these effects included, we consider two cases in
which the full neoclassical behaviour has previously been analysed by Mollén et al.
(2018): a simulated neutral-beam heated high-mirror W7-X scenario with inward
electric field and neon impurities, and the impurity hole LHD case of the previous
section with an additional helium impurity.

The classical and neoclassical fluxes are shown in figure 2 (left panels, W7X; right
panels, LHD). We note that in the W7-X case, the classical to neoclassical neon flux
ratio is around 0.5 in magnitude at most radii, and its sensitivity to a finite Φ̃ is weak.
This is consistent with neon being the only collisional impurity in this discharge (with
ν̂NeNe ∼ [0.5, 2.5]).
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In the LHD case, the classical flux is generally small, although the classical to
neoclassical flux ratio for carbon and helium diverges at discrete points, where
the neoclassical flux crosses zero. Additionally, for Φ̃ = 0, there is a radial range
(0.6 . rN . 0.8), with small outward neoclassical carbon flux, where the neoclassical
flux is only 5 times as large as the classical. When the effect of Φ̃ is included, there
is a large increase in the neoclassical carbon flux for rN & 0.4, with the result that
the classical-to-neoclassical flux ratio remains small for these radii.

As all species in the LHD case are in a low-collisionality regime, it is unlikely
that the low neoclassical transport for Φ̃ = 0 is due to small neoclassical transport
coefficients, when compared to the classical coefficients. Rather, it may be that
the contributions from the different neoclassical transport coefficients cancel out
approximately. Including potential variations both changes the individual transport
coefficient and somewhat reduces the ambipolar radial electric field in this case, both
of which could affect this cancellation.

The classical fluxes are comparable to the neoclassical fluxes in W7-X, and
should not generally be neglected in an analysis of the collisional transport.
Based on this conclusion, we have implemented the classical fluxes (3.9)–(3.10)
as a post-processing step to the neoclassical codes SFINCS and DKES; see the
supplementary material, available at https://doi.org/10.1017/S002237781900045X, for
an example implementation in python.

As a final remark, we note that since the neoclassical transport in W7-X is
sufficiently low to be comparable to the classical, the transport due to micro-turbulence
can become relatively more important. It may thus be necessary to consider the effect
of turbulence on stellarator impurity transport in the future, which is often excluded
due to the computational expense of simulating turbulence in stellarator geometry
(Nunami, Watanabe & Sugama 2013). Recent experimental studies by Langenberg
et al. (2018) and Geiger et al. (2019) already point strongly in that direction.
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Appendix A. Braginskii matrix elements
The Braginskii matrix elements are defined by

Mjk
ab =

τab

na

∫
v2L(3/2)j (x2

a)Cab

[
mav2

Ta
L(3/2)k (x2

a)fa0, fb0

]
d3v, (A 1)
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N jk
ab =

τab

na

∫
v2L(3/2)j (x2

a)Cab

[
fa0,

mbv2

Tb
L(3/2)k (x2

b)fb0

]
d3v, (A 2)

where v2 is any Cartesian velocity component, fa0 is a Maxwellian, xa = v/
√

2Ta/ma,
L(3/2)k are Sonine polynomials, where the polynomials relevant to classical particle and
heat transport are

L(3/2)0 (x2
a)= 1, (A 3)

L(3/2)1 (x2
a)=

5
2 − x2

a. (A 4)

The corresponding relevant matrix elements are

M00
ab =−

(
1+

ma

mb

)(
1+

maTb

mbTa

)
(

1+
maTb

mbTa

)5/2 , (A 5)

M01
ab =−

3
2

1+
ma

mb(
1+

maTb

mbTa

)5/2 , (A 6)

M11
ab =−

13
4
+ 4

maTb

mbTa
+

15
2

(
maTb

mbTa

)2

(
1+

maTb

mbTa

)5/2 , (A 7)

N11
ab =

27
4

ma

mb(
1+

maTb

mbTa

)5/2 . (A 8)
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