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ABSTRACT

A recently updated version of the MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000); L. Li et al., Phys. Plasmas 25, 082512 (2018);
and G. L. Xia et al., Nucl. Fusion 59, 126035 (2019)] is utilized to numerically investigate the plasma screening effect on the applied resonant
magnetic perturbation (RMP) field, assuming various equilibrium flow models, including the toroidal flow, the parallel flow and their combina-
tions, and poloidal and toroidal projections of the parallel flow. A parallel equilibrium flow with a uniform radial profile is found to have no
effect on plasma screening of the RMP field. A sheared parallel flow, however, does change plasma screening. The poloidal projection of the par-
allel flow weakens plasma screening in the resistive-inertial regime. The effect on the favorable average curvature regime is found, however, to
be non-monotonic. With the increasing flow speed, the poloidal projection first weakens Glasser-Green-Johnson (GGJ)-screening. Further
increase in the flow speed results in enhanced GGJ-screening again. This non-monotonic behavior is related to the perturbed parallel shielding
current, which appears also off the mode rational surface at fast flow due to additional resonances between the RMP perturbation and the sound
wave continuum. These results indicate that flow induced plasma screening to the RMP field can have complicated characteristics, which, in
turn, can have implications on the RMP field penetration into the plasma in experiments for controlling the edge localized modes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057338

I. INTRODUCTION

Screening of the external resonant magnetic perturbation (RMP)
fields, due to plasma response, plays an important role in 3D physics
processes in tokamak plasmas, including the resonant field amplifica-
tion (RFA),1–5 the mode locking,6,7 the error field correction8–10 as
well as control of magneto-hydrodynamic (MHD) instabilities, such as
the resistive wall mode11–14 and the edge localized modes (ELMs).15–21

In particular, it has been realized that the non-linear field penetration
can offer a critical understanding of the type-I ELM suppression by
RMP fields.22 Plasma screening is one of the two key physics compo-
nents involved in the resonant field penetration dynamics, with the
other being the plasma flow.

It is well known in theory that, in a resistive plasma, screening of
the external RMP field originates from the plasma conductivity and
plasma flow.23–25 Extensive computational modeling efforts have been
devoted to investigate the plasma response induced screening,26–35 in
the context of RMP and with particular emphasis on the role played

by the toroidal plasma flow. In the context of two-fluid formulation,
the role of the perpendicular electron flow has also been studied.36,37

The mostly studied plasma screening, within the single fluid for-
mulation, is that associated with the toroidal plasma rotation. Two
types of screening regimes with the toroidal flow have been previously
identified38,39 and are illustrated in Fig. 1 below as a typical example.
Plotted here is the ratio of the n¼ 1 (n is the toroidal harmonic num-
ber of the applied perturbation field) total resonant field amplitude
(including both the vacuum field and the plasma response) to the cor-
responding vacuum component, while scanning the toroidal plasma
rotation frequency X0. The dimensionless radial field is defined as

b1 ¼ q
R2
0B0

b � rw
B � r/

� �
;

where q is the safety factor, b and B are the perturbed and equilib-
rium magnetic fields, respectively, R0 is the major radius of the
torus, B0 is the vacuum toroidal field on the magnetic axis, / is the
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geometric toroidal angle, and w is the equilibrium poloidal mag-
netic flux.

A uniform toroidal rotation is assumed here along the plasma
minor radius. The blue curve in Fig. 1 shows both the so-called
Glasser-Green-Johnson (GGJ) screening regime38–40 at very slow toroi-
dal plasma rotation and the resistive-inertial (RI) regime23 at faster
flow. The GGJ-screening regime is associated with the favorable aver-
age curvature effect in a toroidal magnetic geometry,41 which occurs in
the presence of finite equilibrium pressure (more precisely finite pres-
sure gradient) at the mode resonant surface. In this regime, the plasma
response, in terms of the total resonant field amplitude, decreases with
the decreasing plasma flow speed. The GGI-screening effect disappears
when the plasma equilibrium pressure vanishes (red curve in Fig. 1). A
more conventional is the resistive-inertial screening regime, where the
plasma response is reduced at the increasing flow speed. This screening
effect occurs independent of the plasma pressure.

In this work, we shall consider a range of fundamental physics
aspects of plasma screening due to other types of equilibrium flow,
namely, the poloidal and parallel flows. In particular, we shall investi-
gate how these flows affect the aforementioned screening regimes
within the single fluid model. The study is partly motivated by the fol-
lowing observations.

(i) Fast poloidal flow has been measured in tokamak experi-
ments, especially in the plasma core region with the forma-
tion of the internal transport barrier42,43 as well as in the
plasma edge region in many experiments.44–46

(ii) Poloidal and parallel plasma flows have been found to affect
MHD instabilities, such as the resistive wall mode.47,48 An
interesting finding from Ref. 48 is that parallel plasma flow
merely introduces a rotational transform along the equilib-
rium magnetic field lines, without providing a direct stabili-
zation to the mode. On the other hand, parallel flow can
affect the mode stability via the poloidally or toroidally pro-
jected component. It is, therefore, interesting to understand
how the parallel (and poloidal) flow affects the plasma
screening.

(iii) In a recent study,49 it was found that the large RMP field
induced magnetic field line ergodization in an ITER plasma
produces an appreciable plasma flow along the magnetic
field lines.

We point out that the plasma density profile plays a special role
when the parallel equilibrium flow is introduced, since the equilibrium
mass conservation condition implies that the parallel flow is coupled
to the plasma density. In most of our study, we shall assume a uniform
density profile. However, a comparative study will also be made where
we assume a sheared density profile. We also mention that, in most
cases, we consider the additional screening effect, introduced by the
parallel or poloidal flow, on top of that produced by an existing toroi-
dal flow. Plasma screening due to a pure parallel/poloidal flow is
treated as the limiting case when the toroidal flow vanishes. A reason
for taking this approach will be elaborated later on.

We emphasize that this study aims at investigating the funda-
mental and often subtle physics associated with flow screening.
Practical aspects, e.g., how large a role the poloidal or parallel flow can
play in the in realistic experiments, are not the focus of the present
work. For this reason, we shall consider a simple (but toroidal) plasma
equilibrium. We shall also treat the parallel/poloidal flow speed as a
free parameter and scan the amplitude.

Section II briefly describes the equilibrium and the plasma flow
models that we adopt in this study. Section III reports the screening
effect by the poloidal flow (on top of a uniform toroidal flow).
Section IV reports a similar systematic study but assuming the par-
allel flow. The role of the (non-uniform) plasma density profile is
discussed in Sec. V. Section VI summarizes the work.

II. EQUILIBRIUM AND PLASAMA FLOW MODELS

In this work, the plasma response to the external RMP field is
computed by the upgraded MARS-F code, which implemented the
parallel equilibrium flow in perturbed single fluid MHD equations.48

The new implementation, combined with an earlier update of incorpo-
rating poloidally varying toroidal flow in MARS-F,40 enables separate
consideration of the screening effect of the poloidal equilibrium flow,
as will be explained in this section. The full computational model of
the upgraded MARS-F code is described in Appendix A.

As mentioned before, we assume a simple equilibrium with the
aspect ratio of 10 and a circular poloidal cross section. The radial pro-
files of the equilibrium safety factor q and pressure are shown in Fig. 2.
The equilibrium density profile, not shown here, is assumed uniform
if not indicated otherwise. Note that the safety factor is chosen such
that only one rational surface (q¼ 2) is present inside the plasma for
the n¼ 1 perturbation. We mention that the same equilibrium has
been adopted in previous work.38–40 The plasma response shown in
Fig. 1 is also based on this equilibrium.

FIG. 1. Illustration of the toroidal favorable curvature induced plasma screening
(blue curve) at slow toroidal plasma rotation and with finite equilibrium pressure
(bN ¼ 1:65), and the lack of it (red curve) with vanishing pressure (bN ¼ 0). The
screening changes to the resistive-inertial regime at fast toroidal rotation. Assumed
is an equilibrium with circular plasma cross section and with a single resonant
surface inside the plasma for the n¼ 1 perturbation. Plotted is the amplitude of the
m/n¼ 2/1 total resonant radial field perturbation amplitude normalized by the corre-
sponding vacuum field. The toroidal rotation frequency X0 is normalized by the
toroidal Alfv�en frequency, and b1 is the radial component of the perturbed magnetic
field b, where b1vac and b

1
tot are the one with the vacuum field and total field (includ-

ing the plasma response). The Lundquist number is chosen at S ¼ 109: bN here is
a normalized beta value of bN ¼ baB0=IP ; where b is the ratio of the volume aver-
aged plasma pressure to the magnetic pressure and a; B0; IP are the minor radius
of the plasma boundary, the vacuum toroidal field at the magnetic axis, and total
plasma current, respectively.
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In the following study, we shall consider various combinations of
the equilibrium flow components, based on a generic implementation
as described in Appendix A. More specifically, we shall compare the
screening effect due to five equilibrium flow models listed below. The
first (V1) is a pure toroidal flow

V1 sð Þ ¼ X sð Þe/; (1)

where X sð Þ is the angular frequency of the toroidal rotation and e/

¼ R2r/ is the contravariant basis vector along the geometric toroidal
angle /. The illustrative results shown in Fig. 1 are obtained with this
flow model, where X sð Þ ¼ X0 is uniform along the plasma minor
radius s.

The next flow model is a pure poloidal flow V2, which is the
poloidal projection of the mass-conserving parallel equilibrium flow

V2 sð Þ ¼ U sð Þw0=qJ
� �

ev; (2)

where ev ¼ Jr/�rs is the covariant basis vector along the poloi-
dal angle v. U sð Þ specifies the parallel flow velocity, which varies only
along the plasma minor radius. w0 ¼ @w=@s is the radial derivative of
the equilibrium poloidal flux function along the plasma minor radius
s, the plasma equilibrium density q, and the Jacobian, J ; associated
with the curve-linear toroidal coordinate system (s; v; /). A more
generic flow model V3 is obtained by combiningV1 andV2

V3 sð Þ ¼ U sð Þw0=qJ
� �

ev þ X sð Þe/: (3)

Next, a pure parallel equilibrium plasma flow (V4) that conserves the
plasma mass, i.e.,r � ðqV4Þ ¼ 0, can be written as

V4 sð Þ ¼ U sð Þ=q
� �

B ¼ U sð Þw0=qJ
� �

ev þ FU sð Þ=qR2 s; vð Þ
h i

e/;

(4)

where F is the equilibrium poloidal current flux function and R is
the major radius. Finally, the most generic equilibrium flow model
V5 is obtained by combining the parallel flow V4 with the pure toroi-
dal flowV1;

V5 sð Þ ¼ U sð Þ=q
� �

Bþ X sð Þe/: (5)

We point out that, by construction, all the above five flow models
satisfy the equilibrium mass conservation condition. For the poloidal
flow, in particular, this is achieved because we do not choose an arbi-
trary form but specifically the poloidal projection of the parallel flow.

On the other hand, keeping the pure poloidal flow V2 alone creates
certain degeneracy in the plasma response model, thus resulting in
numerical challenges with MARS-F computations. This peculiar
degeneracy is analyzed in Appendix B 1. We find that the best way of
numerically recovering plasma screening due to a pure poloidal flow is
to add a small amount of toroidal flow (i.e., V3), thus letting the latter
approaches zero. At small values of toroidal flow, careful tuning of the
radial mesh (which is highly packed near the mode rational surface) is
often required in order to obtain numerically converged results.

Finally, we mention that, in this work, the toroidal rotation fre-
quency X sð Þ is always normalized by the toroidal Alfv�en frequency.
The parallel velocity component U sð Þ has a unit of neither linear nor
angular velocity. U sð Þ is in fact normalized by a factor vAq0=B0 in this
work, where vA is the toroidal Alfv�en speed, q0 is the on-axis plasma
mass density, and B0 is the on-axis vacuum toroidal field.

III. SCREENING OF RMP FIELDS DUE TO THE POLOIDAL
PLASMA FLOW

In this section, we consider the plasma flow model V3 as defined
by Eq. (3). Both the toroidal and parallel velocity components are
assumed uniform, i.e., X sð Þ ¼ X0 and U sð Þ ¼ U0. As explained
before, the screening effect due to the pure poloidal flowV2 is obtained
as the limiting case of vanishingX0. The numerical results are summa-
rized in Fig. 3, where we scan X0 while fixing U0 at different values. At
U0 ¼ 0, we recover toroidal flow screening results with the flow model
of V1, as reported in Fig. 1.

Several interesting points can be made based on Fig. 3. First, the
presence of finite poloidal flow somewhat reduces GGJ-screening at
slow toroidal flow. As a result, the screening effect does not depend on
the toroidal rotation frequency speed X0 [Fig. 3(a)] nor the sign of X0

[Fig. 3(b)], as the latter approaches zero and the poloidal flow, mean-
while, remains finite. This is because the GGJ-term inversely scales
with the perturbation frequency, and either poloidal or toroidal flow
induces finite perturbation frequency, which weakens the GGJ-term.
The reduction is non-monotonic though, as will be more clearly dem-
onstrated later on. Second, the poloidal flow also affects plasma screen-
ing in the RI-regime, i.e., at faster toroidal flow. Finally, the presence of
poloidal flow generates an intermediate region in X0, where a sharp
reduction in the resonant field amplitude (i.e., strong screening) is
observed. We note that these sharp peaks are not numerical artifacts,
since they are robustly obtained by tuning numerical parameters, such
as the radial mesh packing. In what follows, we shall closely examine
each of these three screening regimes.

FIG. 2. The radial profiles of (a) the safety
factor and (b) the plasma pressure, for a
Wesson-like equilibrium with the parabolic
current density profile. Note that plotted in
(b) is the pressure profile normalized to
unit at the magnetic axis. The pressure
amplitude is tuned to obtain different bN

values. The vertical dashed lines indicate
the location of the q¼ 2 rational surface.
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A. Effect of poloidal flow on the GGJ-screening regime

Here, we scan the parallel flow velocity U0 while fixing X0 at
10�6. This choice of a small value for the toroidal rotation frequency
ensures that we are in the GGJ-screening regime. We emphasize that,
although the parallel flow velocity U0 is scanned, only the poloidal
projection of the latter is included here, since we are assuming the flow
model V3.

Figure 4 summarizes the computational results. It is interesting
to note that, in the GGJ-regime, the screening effect due to the poloidal
flow is not monotonic: The screening effect is first weakened by the

slow poloidal flow and then enhanced with further increasing U0

[Fig. 4(a)]. In other words, the phenomenology of resonant field
screening by the poloidal flow is similar to that by the toroidal flow.
This non-monotonic change in the screening behavior is closely
related to the perturbed parallel current generated inside the plasma,
near the q¼ 2 resonant surface as shown in Figs. 4(b)–4(d). In both
the small (2� 10�5) and large (2� 10�4) limits of U0, a large parallel
current at the q¼ 2 surface provides the screening effect. In the fast
poloidal flow case with U0 ¼ 2� 10�4 [Fig. 4(d)], two additional
peaks appear in the perturbed parallel current, located roughly

FIG. 3. Screening of the n¼ 1 resonant magnetic field due to the poloidal plasma flow. Assumed is the flow model V3. The effect of pure poloidal flow V2 is obtained at the
limit of vanishing toroidal rotation frequency X0. Plotted is the amplitude of the m/n¼ 2/1 total resonant radial field perturbation amplitude normalized by the corresponding vac-
uum field, assuming (a) positive toroidal flow with varying poloidal flow speed and (b) fixed poloidal flow of U0 ¼ 2� 10�4 but with either positive (blue solid line) or negative
(red dashed line) toroidal flow. The Lundquist number is chosen at S ¼ 109: The plasma equilibrium pressure is bN ¼ 1:65.

FIG. 4. Screening effect due to the poloi-
dal flow in the GGJ-regime. Assumed is
the plasma flow model V3 with a small
(and fixed) toroidal rotation frequency
X0 ¼ 10�6. Plotted in (a) is the amplitude
of the m/n¼ 2/1 total resonant radial field
perturbation amplitude normalized by the
corresponding vacuum field, while scan-
ning U0. Plotted in (b), (c), and (d) are the
real (solid) and imaginary (dashed) parts
of the m/n¼ 2/1 perturbed plasma parallel
current near the q¼ 2 rational surface, at
fixed U0 ¼ 2� 10�5, U0 ¼ 5� 10�5,
and U0 ¼ 2� 10�4. The Lundquist num-
ber is chosen at S ¼ 109: The plasma
equilibrium pressure is bN ¼ 1:65.
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symmetrically off the q¼ 2 rational surface. These two peaks are due
to the resonances between the perturbation field and the continuum
sound waves (Appendixes B 2 and B 3).

B. Effect of poloidal flow on the RI-screening regime

Next, we scan U0 at the fixed toroidal rotation frequency of
X0 ¼ 10�3, again assuming the plasma flow model V3. The results,
reported in Fig. 5, show that increasing poloidal flow speed monotoni-
cally weakens plasma screening in the RI-regime [Fig. 5(a)]. This can
again be understood by comparing the perturbed parallel current for
two cases with slow (U0 ¼ 2� 10�5) and fast (U0 ¼ 2� 10�4)

poloidal flow, shown in Figs. 5(b) and 5(c), respectively. In both cases,
the fundamental screening is provided by the perturbed current near
the q¼ 2 surface. However, additional current perturbations occur
off the q¼ 2 rational surface with faster poloidal flow [Fig. 5(c)], due
to continuum sound wave resonances. These additional parallel cur-
rent peaks tend to partially compensate the fundamental screening
provided by the current sheet near the q¼ 2 surface, leading to the
overall weakened screening of the resonant field perturbation.

We point out that those sharp perturbed current peaks from
Fig. 5(c) are numerically well resolved by MARS-F. This is illustrated
by the enlarged version reported in Fig. 6, where each current peak is
shown in a separate plot. Note the similarity of the fundamental

FIG. 5. Screening effect due to poloidal flow in the RI-regime. Assumed is the plasma flow model V3 with a fixed toroidal rotation frequency of X0 ¼ 10�3. Plotted in (a) is the
amplitude of the m/n¼ 2/1 total resonant radial field perturbation amplitude normalized by the corresponding vacuum field, while scanning U0. Plotted in (b) and (c) are the
real (solid) and imaginary (dashed) parts of the m/n¼ 2/1 perturbed plasma parallel current near the q¼ 2 rational surface, at fixed U0 ¼ 2� 10�5 and U0 ¼ 2� 10�4,
respectively. The Lundquist number is chosen at S ¼ 109: The plasma equilibrium pressure is bN ¼ 1:65.

FIG. 6. Detailed distribution of the real
(solid) and imaginary (dashed) parts of
the m/n¼ 2/1 perturbed parallel current at
four peaking location shown in Fig. 5(c),
where (a) near q¼ 1.92, (b) near q¼ 2,
(c) near q¼ 2.18, and (d) near q¼ 2.28.
Assumed is the plasma flow model V3
with X0 ¼ 10�3 and U0 ¼ 2� 10�4.
The Lundquist number is chosen at
S ¼ 109: The plasma equilibrium pres-
sure is bN ¼ 1:65.
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shielding current pattern near the q¼ 2 surface, between Figs. 6(b)
and 5(b). Note also the difference in symmetry, in terms of the
radial distribution of the perturbed current, between the funda-
mental shielding current [Fig. 6(b)] and those produced by sound
wave resonances [Figs. 6(a), 6(c), and 6(d)]. Such a difference has
been previously noticed in the context of toroidal flow induced
plasma screening.41

C. Effect of poloidal flow on the intermediate regime
between GGJ- and RI-screening

Figure 3 shows that poloidal flow plays a different role in the
intermediate region between the GGJ- and the RI-screening regimes.
In particular, sharp peaks appear, indicating strong screening with cer-
tain combinations of the poloidal and toroidal flows. In what follows,

we try to understand the physics nature of these peaks, by looking
closely into one example near X0 ¼ 10�4.

Figure 7(a) plots the computed resonant field screening factor
while scanning U0 (with the flow model V3). We note a strongly non-
monotonic behavior of the screening factor vs the poloidal flow speed
at the finite plasma pressure of bN ¼ 1:65 (curve in blue). For com-
parison, a smooth monotonic decay of the screening factor is com-
puted for the case of vanishing equilibrium pressure of bN ¼ 0 (curve
in red). The non-monotonic behavior of the finite-pressure case, in
particular, the sharp enhancement of the plasma screening at
U0 > 10�4, is again associated with the continuum wave resonances
due to the poloidal plasma flow. These continuum wave resonances
introduce multiple resonant surfaces off the q¼ 2 rational surface
(Appendixes B 2 and B3). An extreme example is shown in Fig. 7(b)
at the poloidal flow of U0 ¼ 9� 10�4. The multiple peaks in the

FIG. 7. Screening effect due to poloidal flow in the intermediate region between the GGJ- and the RI-regimes. Assumed is the plasma flow model V3 with a fixed toroidal rota-
tion frequency of X0 ¼ 10�4: (a) the amplitude of the m/n¼ 2/1 total resonant radial field perturbation amplitude normalized by the corresponding vacuum field, while scanning
U0, (b) the real part of the m/n¼ 2/1 perturbed plasma parallel current at U0 ¼ 9� 10�4, (c) the radial location (in terms of q-values) of multiple resonant surfaces with
increasing U0, [(d)–(h)] zoom-in version of the radial profile of the perturbed parallel current shown in (b) but near each resonant surface. The Lundquist number is chosen at
S ¼ 109: The plasma equilibrium pressure is bN ¼ 1:65 in [(b)–(h)] as well as for the blue curve in (a), and bN ¼ 0 for the red curve in (a).
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computed perturbed parallel current density, which are all numerically
well resolved as shown in Figs. 7(d)–7(h), are due to resonances
between the applied resonant perturbation and the shear Alfv�en and
sound waves in the plasma. In particular, the Alfv�en continuum reso-
nance creates a symmetric parallel current distribution around the
q¼ 2 surface [Fig. 7(e)], while the sound wave continuum resonances
create four peaked asymmetric current distribution further away from
the q¼ 2 surface [Figs. 7(d), 7(f), 7(g), and 7(h)].

The radial location of the aforementioned resonant surfaces
varies with the poloidal flow speed, measured here by U0. Indeed,
Fig. 7(c) shows a gradual splitting of these resonant surface (away
from the q¼ 2 surface) as we increase U0. Note that additional reso-
nant surfaces also appear at certain finite U0 (e.g., U0 � 6� 10�4).
This is due to the existence of multiple roots of the sound wave reso-
nant conditions as derived in Appendix B.

IV. SCREENING OF RMP FIELDS DUE TO PARALLEL
PLASMA FLOW

In what follows, we investigate the effect of parallel equilibrium
flow on the plasma screening of the resonant field component, by
applying the flow model V5. The pure parallel flow V4 is recovered as
a limiting case of V5 at vanishing X. The key results are summarized
in Fig. 8. Figure 8(a) shows that the parallel flow does not induce addi-
tional screening compared to that due to the toroidal flow V1. This is
further confirmed by Fig. 8(b), where we vary the ratio of U0=X0 at
different (fixed) values of the toroidal rotation frequency X0. The
plasma screening factor remains constant (within numerical accuracy)
while scanning the parallel flow speed. Examination of the perturbed
parallel current in the plasma further confirms that a uniform parallel
flow almost does not affect the plasma response in both screening

regimes, as shown in Figs. 8(c) and 8(d). Figures 8(c) and 8(d) show
the results for the real part of the perturbed current, and similar results
are obtained when comparing the imaginary part.

An insight into the above result is obtained from Ref. 48, where it
has been proposed that the parallel equilibrium flow essentially intro-
duces a transformation of the reference frame along the (equilibrium)
magnetic field lines, without modifying the fundamental underlining
physics. As a consequence, the parallel flow was found to have no
effect on the resistive wall mode stability in Ref. 48. In this work, we
also establish that a uniform parallel flow does not affect plasma
screening. We emphasize that this numerical finding has no rigorous
analytic explanation yet. The resonant condition (B16) from
Appendix B 3 is derived with too simplified assumptions to explain
this interesting screening regime. On the other hand, we have shown
in Sec. III that the poloidal projection of the parallel flow does affect
plasma screening (in particular, via introduction of multiple peaks in
the shielding current off the q¼ 2 surface, due to continuum wave res-
onances). This implies that the screening effect, introduced by the
poloidal and toroidal projections of the parallel flow, cancels each
other.

Note that, since we have so far assumed uniform radial profiles
for both the parallel flow component UðsÞ and the plasma density
qðsÞ, the aforementioned transformation of the reference frame along
the magnetic field lines, due to the parallel flow, is global. It remains a
question of whether the similar conclusion still holds, if the transfor-
mation is local, in other words, if the parallel flow component UðsÞ or
the plasma density qðsÞ has a finite shearing rate from one flux surface
to the other. Part of the purpose of Sec. V is to answer this question,
by assuming the sheared plasma density profile.

FIG. 8. Screening effect due to the paral-
lel plasma flow in both the GGJ- and the
RI-regimes. Assumed is the plasma flow
model V5 with (a) varying toroidal rotation
frequency X0 at different values of parallel
speed U0, and (b) varying the ratio
U0=X0 at different values of X0. Plotted is
the amplitude of the m/n¼ 2/1 total reso-
nant radial field perturbation amplitude
normalized by the corresponding vacuum
field. Plots [(c) and (d)] compare the real
part of the m/n¼ 2/1 perturbed parallel
current density near the q¼ 2 rational sur-
face between U0 ¼ 5� 10�5 and U0
¼ 5� 10�4, in either (c) the RI-regime
(X0 ¼ 10�4) or (d) the GGI-regime
(X0 ¼ 10�6). The Lundquist number is
chosen at S ¼ 109: The plasma equilib-
rium pressure is bN ¼ 1:65.
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V. SCREENING OF RMP FIELDS WITH THE SHEARED
PLASMA DENSITY PROFILE

Since the parallel flow model V4 always involves the combination
ofU sð Þ=qðsÞ [cf. Eq. (4)], we shall assume sheared plasma density pro-
files while keeping the parallel flow component constant, U sð Þ ¼ U0.
A family of density profiles is defined based on the safety factor q-pro-
file with different choices of the shaping factor a;

q sð Þ ¼ q sð Þ=q s ¼ 0ð Þ
� �a

: (6)

Note that the above density profile is normalized to unity at the
magnetic axis, as in the MARS-F formulation. There is no particular
physics reason for using the safety factor profile to define the den-
sity profile, beside the fact that, with a < 0; Eq. (6) yields monotoni-
cally decaying density along the plasma minor radius, which is
normally the case in tokamak plasmas. Figure 9 plots three density
profiles, with a ¼ �1;�2;�3, respectively, which we shall use in

the following study. We shall investigate the influence of the profile
shear with both flow models V3 and V5.

A. Plasma screening with the flow model V3 and
sheared density profile

In this sub-section, we focus on the density shear effect on the
GGJ- and RI-screening regimes, in the presence of poloidal projection
of the parallel flow. Figure 10 shows that the plasma screening gener-
ally depends on the density profile shear and equivalently on the shear
of the parallel flow velocity. In the GGJ-regime [Fig. 10(a)], increasing
the density profile shear shifts the peak (corresponding to the least
screening) of the plasma response field amplitude toward the smaller
value of U0. The plasma screening is, however, not much affected by
the density shear in the two limiting cases of small and largeU0.

On the other hand, the presence of (larger) density profile shear
monotonically reduces the plasma screening in the RI-regime, pro-
vided by the poloidal projection of the parallel flow [Fig. 10(b)].
Although not shown here, we observe similar resonances with plasma
continuum waves due to the poloidal flow to that reported in Sec. III
with the uniform density profile. Furthermore, the resonant splitting,
i.e., the location of multiple peaks of the perturbed parallel current
along the plasma minor radius, depends on the density profile shear as
expected.

B. Plasma screening with the flow model V5 and
sheared density profile

Figure 8 shows that a radially uniform parallel flow does not
affect the plasma screening due to a global transformation of the refer-
ence frame along magnetic field lines. The transformation becomes
local with a sheared parallel flow or equivalently with a sheared plasma
density profile. Figure 11 shows that the latter does affect the plasma
screening. Here, we fix U0 ¼ 5� 10�5 and scan the toroidal rotation
frequency, assuming the plasma flow model V5. The computed
screening factor with different density profiles (Fig. 9) is compared in
Fig. 11(a), showing significant modifications to the result with the uni-
form density profile (a ¼ 0) for both the GGJ- and RE-regimes. The
effect is somewhat stronger for the GGJ-regime. Furthermore,

FIG. 10. Influence of the plasma density profile shearing on the plasma screening due to poloidal flow, in (a) the GGJ- and (b) the RI-screening regimes, respectively. The den-
sity profile is controlled by the shaping parameter a and shown in Fig. 9, with a ¼ 0 corresponding to a uniform profile. Assumed is the plasma flow model V3 with (a)
X0 ¼ 10�6 and (b) X0 ¼ 10�3. Plotted is the amplitude of the m/n¼ 2/1 total resonant radial field perturbation amplitude normalized by the corresponding vacuum field. The
Lundquist number is chosen at S ¼ 109: The plasma equilibrium pressure is bN ¼ 1:65.

FIG. 9. Radial profiles of the plasma equilibrium density with varying shear, con-
trolled by the shaping parameter a as defined in Eq. (6). Here, the plasma density
has been normalized by the density at the magnetic axis.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082504 (2021); doi: 10.1063/5.0057338 28, 082504-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


increasing the density profile shear enhances GGJ-screening
(X0 ¼ 10�6) [Fig. 11(b)] but weakens RI-screening (X0 ¼ 10�3)
[Fig. 11(c)]. This holds for various choices of the parallel flow speed
and is not sensitive to the latter, indicating that the effect mainly comes
from the shear of U sð Þ=qðsÞ, not the amplitude.

VI. CONCLUSION AND DISCUSSION

Utilizing a recently updated MARS-F code, we investigate the
plasma screening effect on the applied resonant magnetic perturbation
field assuming various equilibrium flow models, including the toroidal
flow, the parallel flow and their combinations, and the poloidal and
toroidal projections of the parallel flow. The 2/1 tearing mode response
is used as an example to illustrate different screening regimes.

We find that a parallel equilibrium flow, with a uniform radial
profile for U sð Þ=qðsÞ, does not affect the plasma screening of the RMP
field. This is because such a uniform flow merely introduces a global
rotational transform along equilibrium magnetic field lines. On the
other hand, any factor that violates this global nature will lead to (par-
allel) flow modification of plasma screening. One possibility is to keep
a uniform U sð Þ ¼ const while introducing finite shear to the plasma
density profile qðsÞ. With a monotonically decreasing density profile,
which is a typical case in tokamak plasmas, we find that the parallel
equilibrium flow enhances the GGJ-screening but weakens the RI-
screening. The screening factor is found to be roughly linearly scaled
with the density profile shaping factor a.

The poloidal projection of the parallel flow also weakens the RI-
screening. The effect on the GGJ-screening, however, is non-
monotonic. With the increasing flow speed, the poloidal projection
first weakens the GGJ-screening. Further increase in the flow speed
results in enhanced GGJ-screening again. We explain this non-
monotonic behavior in terms of the radial structure of the perturbed
parallel current, which provides shielding to the resonant radial field
perturbation. At faster poloidal equilibrium flow, new shielding cur-
rents appear off the mode rational surface, due to additional resonan-
ces between the RMP perturbation and the sound wave continuum.

These results indicate that the flow induced plasma screening to
the RMP field can have complicated characteristics, which, in turn,
can have implications on the RMP field penetration into the plasma
during ELM control experiments. The eventual screening factor

depends on the plasma toroidal flow regimes (e.g., GGJ- vs RI-
regimes) and the combination of different flow components. On the
other hand, we emphasize that the results are obtained within the
single-fluid model. It is known that the flow regime changes with
the inclusion of the two-fluid effect. Investigation of the parallel flow,
and its poloidal or toroidal projection, on the plasma screening within
the two-fluid theory represents an important future work.

Associated with the GGJ-screening are also other physics effects
that we ignored in this study. For instance, additional thermal trans-
port50 or the presence of large magnetic islands51 was found to effec-
tively eliminate the GGJ-screening. It is, therefore, interesting to
understand how these additional physics effects can change the plasma
screening in the presence of parallel flow or its projections. A recent
work52 finds that the any physics effect that alters the parallel sound
wave dynamics will also affect the GGJ-regime. Since the parallel
flow also participates into the resonance with parallel sound waves, as
identified in this study, we expect certain synergistic effects between
parallel flow and many other physics (e.g., the parallel viscosity
induced wave damping) in determining the plasma screening in the
GGJ-regime.

The equilibrium that we assume in this work is for a simple large
aspect ratio plasma with L-mode like profiles. The physics mecha-
nisms exploited here, e.g., the GGJ-effect, the sound wave, and Alfv�en
wave continuum resonances due to the plasma response to a static
RMP field, however, also apply to more realistic equilibria (H-mode
plasma, conventional or low aspect ratio, strong plasma shaping, etc.)
from experiments. The MARS-F code is capable of capturing these
physics effects as demonstrated, e.g., in Refs. 53 and 54 Investigating
various flow options on the plasma screening to the RMP field for real-
istic experiments is, therefore, a useful work that we will pursue in
future.
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APPENDIX A: COMPUTATIONAL MODEL IN MARS-F
WITH THE PARALLEL EQUILIBRIUM FLOW

Below we show the full set of single fluid, linearized resistive
MHD equations for plasma response modeling in generic toroidal
geometry, including both equilibrium toroidal and parallel flows,
i.e., the flow model V5 described by Eq. (5),

q1 ¼ �r � qnð Þ; (A1)

ixRMP þ inXð Þn ¼ v þ n � rXð ÞR2r/� q�1Ur� n� Bð Þ
þ q�2Uq1Bþ n � rUð Þq�1B; (A2)

q ixRMP þ inXð Þv ¼ �rpþ j� Bþ J� b

þ q 2XẐ � v � v � rXð ÞR2r/
� �

�Ur v � Bð Þ þ Uv � Jþ UB

� r� vð Þ � B½qr q�1U
� �

� v�; (A3)

ixRMP þ inXð Þb ¼ r� v � Bð Þ þ b � rXð ÞR2r/

�r� gjð Þ � r� q�1Ub� B
� �

; (A4)

p ¼ �n � rP � CPr � n; (A5)

j ¼ r� b; (A6)

where the variables q1, n, v, b, j, and p denote the plasma perturbed
density, displacement, velocity, magnetic field, current, and pres-
sure, respectively. All the perturbed quantities depend on the toroi-
dal angle / in the analytic form of exp in/ð Þ, where n is the toroidal
mode number. The equilibrium plasma density, magnetic field, cur-
rent, and pressure are denoted by q, B, J; and P, respectively. X and
U denote the toroidal and parallel components of the equilibrium
flow. xRMP is the frequency of the applied external RMP field, with
xRMP ¼ 0 for a static RMP field produced by the dc coil current as
assumed in this work. The RMP coil current density jRMP is treated
as a source term and included in the model via Ampère’s law
jRMP ¼ r� b. The other quantities shown in above equations are
the ratio of specific heats C ¼ 5=3, with the unit vector of the verti-
cal direction Ẑ and the plasma resistivity g. As evident from the
above equations, the presence of a finite equilibrium parallel flow

introduces several additional terms to perturbed momentum bal-
ance equation (A3) and induction equation (A4).

APPENDIX B: SOME ANALYTIC CONSIDERATIONS
IN THE PRESENCE OF EQUILIBRIUM FLOW

In what follows, we examine a numerical problem associated
with purely parallel equilibrium flow, when computing the plasma
response to a dc external RMP field. The resonant phenomena with
continuum sound waves, as observed in MARS-F modeling, will
also be discussed.

In a generic toroidal geometry with the equilibrium magnetic
flux surface based coordinate system (s; v; /) as defined in MARS-
F, the plasma displacement and the perturbed fluid velocity can be
represented as n ¼ n1a1 þ n2a2 þ n3a3 and v ¼ v1a1 þ v2a2 þ v3a3,
respectively. The basis vectors are defined as a1 ¼ B

B � es
� �

� B
B,

a2 ¼ J B�rs
B2 , and a3 ¼ B. Here, B is the equilibrium magnetic

field, es ¼ Jrv�r/ is the covariant basis vector along the radial
coordinate s, and J ¼ rs � rv�r/ð Þ�1¼ a1 � a2 � a3 is the
Jacobian associated with the curvilinear coordinates. We consider
the parallel sound wave propagation physics associated with MHD
equations (A1)–(A6), projected along the aforementioned basis
vectors

ixRMP þ inXð Þn1 ¼ v1 � U
q

w0

J
@n1

@v
þ F
R2

@n1

@/

 !
; (B1)

q ixRMP þ inXð ÞJ B2v3 ¼ �w0
@p
@v
� J F

R2

@p
@/

� U w0
@ B2v3ð Þ
@v

þ J F
R2

@ B2v3ð Þ
@/

" #
; (B2)

ixRMP þ inXð ÞJ p ¼ �CP
@

@v
w0v3
� �

þ @

@/
J F
R2

v3
� �" #

� J q�1UB � rp: (B3)

Note that only terms responsible for the parallel sound wave propa-
gation are retained in above Eqs. (B2) and (B3). In a PEST-like
straight-field-line coordinate system (with the proper choice of the
poloidal angle v), we have the global safety factor calculated as
q ¼ JF=ðw0R2Þ. With Fourier representations along both the poloi-
dal and toroidal angles, we have @

@v! im and @
@/! �in. Taking

into account the above relations and ignoring the certain toroidal
coupling effect, Eqs. (B1)–(B3) can be written as

ixRMP þ inXð Þn1 ¼ v1 � U
qJ w0 m� nqð Þn1; (B4)

q ixRMP þ inXð ÞJ B2v3 ¼ �iw0 m� nqð Þ P þ UB2v3ð Þ; (B5)

ixRMP þ inXð ÞJ p ¼ �CPiw0 m� nqð Þv3 � J q�1UB � rp: (B6)

1. A singularity issue associated with the parallel flow
with vanishing toroidal flow

This corresponds to the equilibrium flow model V4 defined by
Eq. (4). With the vanishing toroidal equilibrium flow (X ¼ 0) and
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considering a dc RMP field (xRMP ¼ 0), Eq. (B4) relates the radial
plasma displacement to the perturbed radial velocity

J v1 ¼ �U
q

w0 m� nqð Þn1: (B7)

Evidently, Eq. (B7) introduces a new singularity into the MHD
equations, as compared to the case with the vanishing equilibrium
parallel flow. This singularity is resolved either by enforcing a van-
ishing perturbed radial velocity at mode rational surfaces or by
introducing a small but finite equilibrium toroidal flow X (or equiv-
alently by considering an ac RMP field). We emphasize that in the
special case of X ¼ U ¼ xRMP ¼ 0, Eq. (B4) has degeneracy. The
plasma radial displacement is un-determined in this case.

The fundamental reason for the appearance of the singularity
issue in Eq. (B7) is our simplified model assumption for the plasma
density q ¼ q sð Þ. In a proper equilibrium with the generic plasma
flow, the plasma density should be 2D function of s; vð Þ, which, in
turn, introduces toroidal coupling in Eq. (B7), which then resolves
the singularity issue at mode rational surfaces. In our study, we
choose to have a small but finite toroidal equilibrium flow (i.e., flow
models V3 and V5) to avoid this issue.

2. Continuum resonance with sound waves: Pure
toroidal flow

We now focus on the parallel sound wave resonances
described by Eqs. (B5) and (B6). We first consider the case with the
vanishing equilibrium parallel flow, U¼ 0. Equations (B5) and (B6)
are simplified to

q ixRMP þ inXð ÞJ B2v3 ¼ �iw0 m� nqð Þp; (B8)

ixRMP þ inXð ÞJ p ¼ �CPiw0 m� nqð Þv3: (B9)

By combining the above two equations, we have

ixRMP þ inXð Þ2v3 ¼ � Vs m� nqð Þ
w0

J B

� 	2
v3; (B10)

where Vs ¼
ffiffiffiffiffiffiffiffiffiffiffi
CP=q

p
. Again assuming a dc RMP, we have

n2X2 ¼ x2
S; (B11)

where xS ’ kkVs is the sound wave frequency and kk � m�nq
qR .

Equation (B11), thus, illustrates the well-known resonance condi-
tion between the perturbed field and the sound wave continuum,
which is typically satisfied near (but off) the mode rational surfaces.
Note that a resonance condition with shear Alfv�en waves can be
identified in an analogous manner, where the parallel sound wave
frequency from the right-hand side of Eq. (B11) is replaced by the
parallel shear Alfv�en frequency. Next, we derive a similar resonance
condition but in the presence of a parallel equilibrium flow.

3. Continuum resonance with sound waves:
Parallel flow

With the generic plasma flow model V5, Eqs. (B5) and (B6)
can be re-written as

q ixRMP þ inXð ÞBv3 ¼ �ikk P þ UB2v3ð Þ; (B12)

ixRMP þ inXð Þp ¼ �ikkB CPv3 þ q�1UP
� �

: (B13)

Assuming xRMP ¼ 0 and denoting q�1UB � Uk and Bv3 � v̂3, we
have

nXþ Ukkk
� �

v̂3 ¼ �kkq�1P; (B14)

nXþ kkUk
� �

p ¼ �kkCPv̂3: (B15)

Combining Eqs. (B14) and (B15) yields the continuum sound wave
resonance condition in the presence of parallel equilibrium flow

nXþ kkUk
� �2 ¼ x2

S: (B16)

This kind of resonance is responsible for the appearance of
multiple resonant surfaces as shown in Figs. 5 and 7.
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