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Abstract
We present modifications of the fusion reactor systems code Process that allow for a
description of a general class of stellarator power plants, based on a stellarator coil-set and the
respective MHD plasma equilibrium. For this, we modify Process such that each stellarator
configuration enters the systems code via a set of effective parameters which can be calculated
in advance before using them in new scaling models in Process. Further, we show two
applications of the new Process version: firstly, we apply the code to three reactor-size
stellarator devices with different aspect ratios, and secondly, to three coil-sets optimized for
the same equilibrium with varying coil numbers.

Keywords: stellarators, systems codes, HELIAS, stellarator reactors, stellarator optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Stellarators are attractive candidates for a fusion power plant:
they operate in steady-state and can be optimized for mini-
mal plasma current thus avoiding current driven instabilities.
Further, they do not necessarily rely on large poloidal field
coils or a central solenoid. Stellarators also benefit from large
connection lengths in island divertor configurations, easing
power exhaust. Finally, the highly dimensional design space
can be utilised to optimise the configuration according to rel-
evant physics and engineering requirements at the cost of
geometrical complexity.

The recent start of operation of the prototype advanced stel-
larator Wendelstein 7-X (W7-X) has shown that such config-
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urations can be realized with sufficient engineering accuracy
[1, 2], providing further incentive to study fusion power plant
designs based on stellarators.

As of now, attractive stellarator configurations are
developed through the process of stellarator optimisation
[3–7], where a computational framework optimises a three-
dimensional MHD equilibrium and a corresponding coil set to
fulfill a set of mostly physics-related figures of merit. To our
knowledge, there exists so far no systematic framework that
checks a configuration achieved by stellarator optimisation for
a broader range of engineering constraints specific to fusion
reactor design such as superconductor or neutronic limita-
tions. Also, there is currently no framework available that is
capable of quickly exploring a larger design space around
a reference design point, while simultaneously judging the
technological and economical feasibility. Systems codes can
fill this gap between the conceptional magnetic configuration
and the reactor technology, as visualized in figure 1.

Systems codes are coherent, holistic computational frame-
works that aspire to model the crucial features of an engineered

1741-4326/21/126021+21$33.00 1 © EURATOM 2021 Printed in the UK

https://doi.org/10.1088/1741-4326/ac2dbf
https://orcid.org/0000-0002-6249-2368
https://orcid.org/0000-0001-9585-5201
https://orcid.org/0000-0002-4395-239X
https://orcid.org/0000-0001-5940-3523
https://orcid.org/0000-0002-2606-5289
mailto:jorrit.lion@ipp.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ac2dbf&domain=pdf&date_stamp=2021-10-28
https://creativecommons.org/licenses/by/4.0/


Nucl. Fusion 61 (2021) 126021 J. Lion et al

Figure 1. A systems code provides insights in feasibility of a
magnetic stellarator configuration with respect to technology and
can be used to constrain the optimisation space.

system. They typically consist of a set of simplified models that
depict the governing design parameters and constraints. In the
context of fusion power plants, the use of systems codes has
several advantages:

(a) They can check the feasibility of a given fusion reactor
design point in a holistic way by taking physics, techno-
logical and economical constraints within one framework
into account.

(b) They can be used to find technologically or economi-
cally more suited design and operation points of a fusion
reactor.

(c) They can easily adapt technological advances due to
their modular structure and thus allow a fast re-iteration
of fusion reactor design points, when new technology
becomes available.

Existing systems codes for tokamak fusion power plants
are e.g. Process [8, 9], Sycomore [10], MIRA [11] or
BLUEPRINT [12]. Among these codes, Process is predomi-
nantly used for 0D studies of the European tokamak demon-
stration power plant (DEMO) [13–15]. The wide use of
Process, the prospect of comparing stellarator and tokamak
reactors in a comparable framework and PROCESS’ simpli-
fied, modular 0D models, make Process a well suited platform
for the development of stellarator-specific systems code mod-
els. In fact, such attempts have already been made in a previous
work [16–18], where Process was modified to model five-
periodic helical-axis advanced stellarators (HELIAS) based
upon specific engineering studies of Helias-5B [19], a linear
extrapolation along the Wendelstein line. In these earlier works
it was found that Process required stellarator-specific develop-
ments in mainly four models to reasonably reflect the features
of a stellarator power plant, namely in the plasma geometry
model, the modular coil model, the island divertor, and the
plasma transport model.

The aim of this paper is to extend the functionality of
the stellarator-specific systems code models to describe any
general modular stellarator—using only a stellarator reference
MHD equilibrium and the associated coil filaments as input.
This shall be achieved in two separate steps, both of which are
reported in this article. First, a ‘pre-processing’ step is intro-
duced, which may involve more time-consuming calculations

and which serves as an interface between stellarator optimi-
sation and Process, using the MHD equilibrium and coil fila-
ments to prepare a set of effective parameters for the systems
code models. Secondly, Process itself is modified in a way to
include this set of parameters in newly implemented or modi-
fied models, allowing to perform calculations involving differ-
ent stellarator configurations. The two steps are explained in
more detail in the next section.

The outline of this paper is as follows: in section 2 we
describe the structural changes in Process that were necessary
to include more general stellarators. In section 3 we describe
the newly developed models and their implementation. Finally,
in section 4 we employ the Process framework with the imple-
mented stellarator-specific changes for three example studies:
first, the new magnet system model is benchmarked against
a tokamak reference case. Secondly, we model three differ-
ent stellarator configurations with distinct aspect ratios, using
a 3, 4 and 5 periodic Helias configuration from [20]. Thirdly,
we vary the number of coils for a specific W7-X equilibrium,
scale the machine to reactor size with Process and study the
impact of different coil numbers on the coil properties.

2. New workflow for stellarator—PROCESS

Stellarators, by their 3D geometry, impose non-trivial physics
and engineering constraints on a fusion power plant design.
For example, in contrast to tokamaks, the magnetic field
strength on the inboard side of the coils can be different for
every coil, the divertor area depends on the location of the
magnetic islands, or the neutron wall load has large varia-
tions not only in poloidal, but also in toroidal direction. Fur-
ther, stellarators can have vastly different coil and plasma
boundary shapes. Thus, an accurate representation of systems
codes relevant features at low computational cost is quite chal-
lenging for general stellarators. To mitigate this issue, we
introduce an additional, automatized, calculation step between
the output stemming from stellarator optimisation and the
inputs that go into the systems code, as schematically shown
in figure 2. In practice, the work-flow then is as follows.
‘Stellarator optimisation’ provides a 3D MHD equilibrium and
a set of corresponding, as fixed considered, coil filaments at a
reference point in major radius and aspect ratio. This refer-
ence point (equilibrium and coils) we denote with the sym-
bol C from here on, which serves as input for the detailed
calculations. The newly introduced intermediate calculation
step (essentially the first part of the systems code models),
involves accurate, but comparatively slow computations at this
reference point. The result of these computations are a set
of configuration-dependent effective parameters ai(C), which
serve as input for newly implemented exact, fitted, or empirical
scaling equations in the systems code.

The general idea behind this approach is to separate compu-
tationally heavy operations from the systems code. This means
that every stellarator-specific systems code model consists of
essentially two parts. The first part entails the detailed mod-
elling of a sub-system outside the systems code. The second
part, in turn, involves an associated (fast) scaling equation
within the systems code that makes use of the results from the
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Figure 2. The workflow of the pre-calculation step: a configuration
C (coil filaments and flux surfaces) is assumed as input from
stellarator optimization. A set of Process relevant parameters ai is
calculated based on a reference point C, which Process uses to
calculate and optimize an iteration vector x for a reactor
design point, according to an objective function f and according to
the applied constraints. The found design point can be used again as
feedback for stellarator optimization.

detailed calculations. An example here would be the compu-
tation of the maximal coil force density f max(C) as effective
parameter from 3D calculations for a reference coil set. In this
example the scaling of f max within the systems code then is
a linear scaling law in Bmax and the current density j, both
parameters that the systems code optimizes for.

We implement the systems code models in a way that
they reflect extrapolations of the reference point C in the
following macroscopic design parameters: the major over-
all size of the machine (coil and plasma size), the minor
plasma radius a at constant coil radius, and the total magnetic
field strength on axis Bt. For the plasma design, the imple-
mented scaling parameters are the plasma density, tempera-
ture, and the ISS04 ‘renormalization’ factor (a measure for the
configuration-dependent quality of energy confinement [21]).
The stellarator-Process version is capable of optimizing for
devices by scaling these parameters as a part of the optimiza-
tion vector now. In addition to the above listed set of iteration
parameters, Process also optimizes in the engineering param-
eter design space, with the ‘usual’ parameters such as winding
pack size, coil quench times, critical current density safety
margins in the superconductor, copper fractions in the winding
pack, net electricity output, etc, also see [8, 9].

Note that by this prescription the coil number and the coil
shapes are considered fixed by stellarator-Process and only the
overall size of the coils is scaled. A broader device scan in
different stellarator configurations or different coil-sets can be
done by sampling different configurations C using stellarator
optimization codes.

3. Models

Below, we introduce the newly developed stellarator-specific
systems code models that aim to describe a general class of
stellarators with a modular coil set, irrespective of their shape.
The stellarator modifications to Process are comprehensive in

the sense that they allow an equivalent modeling stellarators
compared to the tokamak treatment [8, 9].

For each model we describe both the external procedure
of calculating the effective parameters as well as the systems
code internal scaling equations. The effective parameters that
are calculated in the external step are distinguished into two
categories. The first type are configuration-specific quantities,
that are used directly in follow up calculations and these are
denoted by ai(C). The second type of parameters are those that
are calculated as a reference point for the scaling equations and
these are denoted as hatted values, âi(C), where C represents
the configuration stemming from stellarator optimisation (3D
MHD equilibrium and associated coil filaments).

3.1. Plasma volume and surface

The plasma volume V and the plasma surface area S are basic
properties in Process. For example, subsequent calculations of
the fusion power, fuelling rates, or material loads depend on
the plasma volume. Similarly, the surface area is an important
quantity to approximate the first wall area and to scale the heat
flux densities.

The spatial location of stellarator-symmetric flux surfaces
can be parameterized by a set of Fourier coefficients Rc

m,n and
Zs

m,n, where m and n are the poloidal and toroidal mode num-
bers respectively. The cylindrical coordinates for each flux
surface can be obtained by

R(s, u, v) =
mmax∑
m=0

nmax∑
n=−nmax

Rc
m,n(s) cos(mu − Nfnv),

(1)

Z(s, u, v) =
mmax∑
m=0

nmax∑
n=−nmax

Zs
m,n(s) sin(mu − Nfnv). (2)

Here, u describes a poloidal coordinate, v the polar
toroidal coordinate, and s is a flux surface coordinate [22].
Equations (1) and (2) hold for stellarator symmetric config-
urations with a field period symmetry of Nf .

The volume enclosed by the last closed flux surface can be
calculated for a reference size (R̂, â) according to

V̂(C) =
∫ √

gds du dv

=
1
3

∫ 2π

0

∫ 2π

0
R (z∂uR − R∂uz) du dv.

(3)

The surface area of a flux surface can be calculated by

Ŝ(C) =
∫

|∇s|√gdu dv

=

∫ 2π

0

∫ 2π

0

[
R2(∂uz)2 + R2(∂uR)2

+ (∂vR∂zu − ∂vz∂uR)2
] 1

2 du dv.

(4)
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√
g is the Jacobian determinant and |.| is the Euclidean norm.

The values V̂(C) and Ŝ(C) are calculated in the pre-processing
step for a reference point in major radius R̂ and minor radius
â. Within Process, the plasma volume and surface area is then
simply obtained by the following scaling equations,

V = V̂(C)
R

R̂

a2

â2
, S = Ŝ(C)

R

R̂

a
â
. (5)

3.2. 0D-transport

The 0D-transport model in Process imposes a power balance
as an equality constraint,

PLoss
!
= Pheat . (6)

The left-hand side includes contributions from confinement
loss Pconf

Loss, from bremsstrahlung Pbr, line radiation Pline and
synchrotron radiation Psync. The right-hand side includes heat-
ing from fusion alphas Pα, a term of charged non-alpha parti-
cle heating P¬α (e.g. in D–D fusion) and a term for auxiliary
heating Paux. Writing these expressions explicitly, equation (6)
becomes

Pconf
Loss + Pbr + Pline + Psync

!
= f αPα + f ¬αP¬α + Paux. (7)

Here, f α is the fraction of the alpha particle energy that is
deposited in the plasma, which is an input parameter in Pro-
cess and depends on the configuration. Similarly f ¬α accounts
for the particle confinement fraction of non-alpha particles.
PROCESS’ model for radiation losses (Pbr, Pline, Psync) is
described in [23, 24]. For Pconf

Loss, Process uses the effective
energy confinement time τE to determine the effective power
transfer

Pconf
Loss � Pscaling

Loss ≡ W
τE

, (8)

where W is the total plasma energy. The energy confinement
time τE is obtained via empirical scaling laws. The used scal-
ing law for stellarators in Process is the so-called ISS04 scaling
[21],

τ ISS04
E = 0.134 f rena2.28R0.64

0 n0.52
e B0.84

t ι0.41
2/3 P−0.61, (9)

where a is the minor radius, R0 is the major radius, n is the
line averaged electron density, Bt the toroidal magnetic field,
ι2/3 ≡ ι2/3(C) is the rotational transform (at s = 2/3), P is the
combined effective plasma heating, and f ren is a proportion-
ality factor that measures the magnetic configuration depen-
dent deviation from the ISS04 scaling law. In principle, f ren is
determined by C directly, although a reliable a priori method
of calculating this factor is not available up to date. Instead,
Process can iterate f ren within user set boundaries and return
a needed configuration factor for the optimized power plant
design point.

The stored energy W in equation (8) is obtained from the
imposed profiles for particle species averaged density n and
temperature T:

W = V
3
2

∫ 1

0
dρ

√
g(ρ)n(ρ)T(ρ) (10)

In stellarators, ρ is usually chosen as the effective radius,
which fulfills √

g(ρ) ∼ ρ. (11)

The temperature and density profile shapes for the electrons
are input parameters in Process and can be specified using the
parametric form

Te(ρ) = T0(1 − ρ2)αT (12)

ne(ρ) = n0(1 − ρ2)αn . (13)

Process implements the ion profiles as (user defined) mul-
tiples of the electron profiles. These profiles are taken to com-
pute the radiation terms in the left-hand side of equation (7),
see [23].

It should be noted that the imposed profile shapes are not
per se consistent with the implied heating schemes or trans-
port properties. However, in practice, the profile shapes can be
determined by transport simulations independent of the sys-
tems code. Results from such simulations can then be used as
input for Process, e.g. in profile shapes or heating source.

Equation (7) serves as equality constraint in Process.

3.3. 0.5D neoclassical transport model for stellarators

As Process lets the user choose T0, n0, αn and αT in
equation (13) freely, we introduce a ‘sanity check’ of the
confinement time here against a neoclassical model.

The energy balance equation in steady state is

−∇ · q = p. (14)

Here, q is the flux surface averaged energy flux and p stands
for the flux surface energy density sources and sinks. If one
assumes constant energy flux on a flux surface, integrating
equation (14) over a volume up to a radius ρx yields

q(r = ρx) =
Pheat(ρx) − Prad(ρx)

S(ρx)
, (15)

where S(ρx) is the surface area at a radius ρx. Prad is the radi-
ation power and Pheat is the heating power as specified in
equation (7), both integrated values in the of S(ρx) enclosed
volume. In Process, we choose ρx = ρcore, where ρcore is an
input parameter in Process, which determines the radius of a
binary ‘core’ treatment [8]. ρcore is usually chosen in the order
of ∼ 0.6 (ρ = 1 matches with the last closed flux surface).
The new model in Process now calculates a maximal
allowable qmax with the calculated heating and radiation power
as

qmax =
(
〈pheat〉V − 〈prad〉V

) V(ρcore)
S(ρcore)

. (16)

Here, 〈pα,rad〉V denotes the power density averaged over
V(ρcore).

The volume over surface ratio at ρcore can be obtained
approximately by scaling of equation (5).

Equation (16) can be compared against heat fluxes qneo
from neoclassical theory, e.g. [25, 26]. In Process we compare
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equation (16) against a neoclassical electron flux [26]

qe,neo =
∑
i=1,2

neTeDi,e

[(
∂rne

ne
+

(
Di+1,e

Di,e
− 3

2

)
∂rTe

Te

)]
,

(17)
with

Di,e ≡ Di,e(n, T) =
2√
π

∫ ∞

0
D1/νKi− 1

2 e−K dK, (18)

D1/ν =
4

9π
(2εeff)

3
2

K2T2

e2R2
0B2

0

1
ν(n, T)

, (19)

where we take the profile shapes as given by Process and fur-
ther assume the electrons to be in the 1/ν collisional regime
and neglect the effect of the radial electrical field. The col-
lisionality ν(n, T) can be calculated from classical statisti-
cal theory [26]. εeff ≡ εeff(C) is the averaged effective helical
ripple and is an input parameter, which is calculated for every
configuration C.

qe,neo serves as an order of magnitude check for qmax, as
a design point with 2qe,neo ∼ qmax indicates that profile gradi-
ents at the found design point cause similar purely neoclassical
transport fluxes to qmax and would not allow for an unknown
turbulent heat flux qturb.

Using this model we try to circumvent the consistency
issues and restrict profile gradients in the 0D transport model
of Process for stellarators.

3.4. Density limit

The density in stellarators devices is, at least empirically,
bound by the Sudo limit [27], which accounts for excessive
impurity radiation at high edge densities. This limit is proposed
in the parametric form as

nsudo
c

[
1020 m−3

]
= 0.25 P0.5 B0.5 a−1 R−0.5. (20)

Stellarator-Process can enforce this limit or multiples thereof.
However, equation (20) was exceeded in W7-X and LHD
experiments [28, 29] and is likely dependent on edge impurity
concentrations which are not governed by equation (20).

There is however another density constraint, which is
imposed by operational boundaries of an electron cyclotron
resonance heating (ECRH) scheme in ECRH heated stellara-
tor devices [30]. For reactor scenarios, ECRH heating using the
O1 mode appears to be most suitable as it heats the lowest res-
onance of the electron gyro-frequency and thus requires lower
gyrotron frequencies than higher resonant heating schemes.
O1 heating implies the operational constraint

ω2
pe < ω2

gyro < ω2
max, (21)

where ωpe is the plasma frequency, ωgyro the gyrofrequency
and ωmax the maximum available gyrotron frequency. ωmax

depends on the available gyrotron technology and can be set by
the user as an input. The critical density is reached when the
plasma frequency matches the electron cyclotron frequency.
Thus, the central electron density ne is limited to:

ne < nECRH
e,crit =

meε0

e2
ω2

gyro, subject to: ωgyro < ωmax. (22)

Figure 3. Central density limits due to different ECRH heating
schemes: the blue region indicates where O1 heating can be applied,
the green region where X2 is feasible. Each shape area indicates a
minimum required gyrotron frequency. For context, dashed lines
indicate ignition according to Lawson criterion with different
volume V and volume averaged ion temperature T̄ i (assuming
npeak/n̄ = 3 and ISS04 scaling from W7X parameters).

Figure 3 visualizes the heatable densities with O1-heating, and
in comparison an X2-heating scheme, with different maxi-
mal available gyrotron frequencies at varying magnetic field
strengths. Equation (22) is implemented as a constraint in
Process and ensures that the found design point is ECRH
heatable in O1 mode.

Note that there are heating schemes, such as electron Bern-
stein waves [31] or an X1 heating scheme, which could
be used to heat a plasma beyond equation (22), but their
relevance as a heating scheme in a stellarator reactor are still
up for discussion and are not taken into account by Process yet.

3.5. Island divertor

There are three studied divertor concepts available for stellara-
tor reactors: an ergodic divertor concept, also called helical
divertor, for high shear configurations [32], a resilient non-
resonant divertor concept [33] and a resonant, island divertor
concept [34–37]. For now, we include only a description for
an island divertor concept in Process, closely following the
(previously implemented) model as proposed in [16].

In a stellarator with an island divertor concept, the magnetic
field is designed such that the rotational transform ιres at the
edge coincides with a low order rational number Npk/n,

ιres =
kNp

m
≡ n

m
, (23)

where m is the number of poloidal resonances (islands), k is the
resonance order and Np is the field period of the machine. k is
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determined by radial B-field harmonics on or shortly behind
the last closed flux surface, and, if the respective resonant har-
monics are not actively suppressed, is typically equal to 1.
The underlying concept of the island divertor is to use the
magnetic islands for diverting the heat load coming from the
plasma core and then intersect the islands with discontinu-
ous divertor target plates. While the full physics description
of the stellarator scrape-off-layer (SOL) is still a challenging
and contemporary topic, fundamental geometrical considera-
tions can be used to estimate the heat load on the divertor target
plates. It is the goal of the proposed model here to provide
an estimation of the peak heat load, as this is the constraining
engineering limit, due to material limitations.

The heat load on the divertor target plates qdiv is the ratio
of the power arriving at the divertor Pdiv and the area over
which this power is effectively spread, Aeff . One of the major
strategies to reduce the heat load arriving at the divertor is to
introduce low-Z impurities that are effective at radiating sub-
stantial power in the SOL. Consequently, the power arriving
at the divertor is the power coming from the plasma core Pcore

less the radiation from the impurities: Pdiv = Pcore (1 − f rad),
where f rad is the radiation fraction, which needs to be given as
an external input parameter.

The wetted area Aeff on the divertor plates usually has the
form of a strike-line with a total length Ltot across all divertors
and a width λint. The heat load is then

qdiv =
Pdiv

Aeff
=

Pcore (1 − f rad)
Ltot · λint

, (24)

where Pcore is provided by the Process’ plasma core model.
Assuming that the heat load is distributed in equal shares

across all divertor plates, then the total length Ltot is simply
the sum over all divertor targets Li,

Ltot =
∑

i

Li = 2n Lstrike. (25)

Here n = kNp, as defined previously. The strike-line length
Lstrike on a single divertor plate can be estimated from the field
line geometry. To this end, one needs to introduce the pitch-
angle Θ = dr/dl, which describes the radial displacement of
a field line in the SOL along its arc-length and depends on
the specific magnetic configuration C, but it is typically in the
range of 10−3–10−4 for stellarators. The strike-line is limited
by the field line that just passes the divertor plate at the front
and then after one toroidal turn (Δl ≈ 2πR) hits the target
plate on the far side. Using the definition of the pitch-angle, the
radial projection of the strike-line is Δr = 2πRΘ. The length
of the strike-line on the divertor plate itself is then determined
by the angle αlim = Δr/Lstrike under which the field line hits
the target plate. The strike-line length on the divertor is then
simply

Lstrike = 2πR
Θ

αlim
Fx, (26)

where Fx is an additional broadening of the flux channel
caused by diffusive cross-field transport. A model for this fac-
tor is given below in equation (30). A small intersection angle
αlim helps to increase the strike-line length and reduce the heat

load density. However,αlim is limited by the engineering accu-
racy under which target elements can be arranged, typically
around ∼ 2◦.

Generally, stellarators with an island divertor feature much
longer connection lengths than tokamaks [38]. Consequently,
the energy and particles have a longer dwell time in the SOL
leading to a substantial cross-field broadening of the trans-
port channel compared with tokamaks. We assume here that
the cross-field transport is mostly of diffusive nature, allowing
us to describe the strike-line width (also referred to as power
decay width) by [39],

λint =
√
χ⊥ · τ‖. (27)

Here, χ⊥ is the perpendicular diffusion coefficient, which
is an user-defined input, but usually taken in the order of
∼ 1 m2 s−1 [40]. τ ‖ is the characteristic dwell time of the
particles in the SOL before reaching the target. As the parti-
cles follow the field lines, the dwell time τ ‖ depends on the
connection length Lc of the field line and the average speed
of the particle, namely the ion sound speed cs =

√
2T/m (m

here being the ion mass), and thus τ ‖ = Lc/cs. The ion tem-
perature (in the SOL) T is again a user-defined input, however
since mostly detached scenarios are considered for a reactor
design point for divertor protection, T must be on the order of
5–10 eV [40].

The connection length Lc can be geometrically estimated
by using again the definition of the pitch-angle Θ. If we define
Δ as the radial distance from the LCFS to the target plate, then
the connection length is simply

Lc =
Δ

Θ
= f · wi

Θ
. (28)

The typical radial scale length Δ of the system is for the island
divertor the radial extent of the magnetic islands wi. However,
as the island is intersected by the divertor plates, only a fraction
f of the island width is effectively used Δ = f · wi. Usually,
the divertor plates are placed at the half radius of the islands,
thus f is normally in the order of f ∼ 0.5. The full width of
the island can be estimated from analytic theory [41],

wi ≈ 4 ·
√

R ·Θ
m · ι′ , (29)

where ι′ = dι/dr is the magnetic shear at the edge, which is
given by the magnetic configuration. Generally, stellarators
with an island divertor need a comparably low magnetic shear
in order to form sufficiently large magnetic islands.

Finally, the previously mentioned flux channel broadening
Fx can be derived following the same diffusive ansatz, but for
only one toroidal turn, which then becomes

Fx = 1 +
1
Θ

√
χ⊥

cs2πR
. (30)

In conclusion, we have provided equations for all intro-
duced parameters. Consequently, all the here derived relations
can be consolidated in order to arrive at a heuristic scaling for
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the divertor heat load. By replacing the poloidal mode number
m in terms of ι, k and Np, using equation (23) one obtains

qdiv =
Pcore (1 − f rad)

8πRkNp

αlim

Θ

√
cs

f · χ⊥

4

√
kNpι′Θ

ιR

×
(

1 +
1
Θ

√
χ⊥

cs2πR

)−1

. (31)

Here, ι (C), ι′ (C), Np (C), k (C) and Θ (C) are specific to the
considered magnetic configuration and are easily obtained in
the pre-processing step. χ⊥, αlim, f and T depend on the
specific physics regime or the engineering design and must be
provided by the user, but usually take values as indicated in the
text above.

It is planned to validate this model against experimental
results from W7-X in the future. Due to the analytic nature
of the model, it will be possible to quickly adapt and test new
findings and advances.

It should also be noted, since the heat load is usu-
ally limited by material constraints, the divertor model is
also useful in reversing the parameters. For example, for a
fixed design point and heat load limit, one can estimate the
required radiation fraction that would be needed to make the
design point feasible.

3.6. Breeding blanket

To model the lithium blanket in a fusion reactor, PROCESS
contains an helium-cooled pebble bed (HCPB) model devel-
oped at Culham Centre for Fusion Energy (CCFE) [9] and an
HCPB model developed by Karlsruhe Institute of Technology
(KIT) [42]. For the CCFE HCPB model, the energy deposited
in the armour and first wall, blanket and shield are calculated
using parametric fits to an MCNP neutron and photon trans-
port model for a sector of a tokamak. The blanket contains
lithium orthosilicate (Li2SiO4), titanium beryllide (TiBe12),
helium and Eurofer steel. The energy multiplication by nuclear
reactions in the blanket is given as 1.269.

The KIT HCPB model allows for the energy multiplica-
tion factor, shielding requirements and TBR to be calculated
self-consistently with the blanket and shielding materials and
sub-assembly thicknesses. It also allows constraints to be set to
meet engineering requirements. The blanket is split into sub-
assemblies: the breeding zone, box manifold and back plate.
Three breeder materials can be selected from: lithium orthosil-
icate (Li4SiO4), lithium metatitanate (Li2TiO3) and lithium
zirconate (Li2ZrO3). Together, the three sub-assemblies make
up the total blanket thickness. Constrains can be set on the
TBR, maximum allowed toroidal field (TF) coil fluence, max-
imum allowed heating of the TF coils and/or the maximum
allowed helium concentration in the vacuum vessel. Through
these constraint, the code can determine the thicknesses of the
sub-assemblies and the overall blanket thickness.

For now, we assume these models to hold to first approx-
imation also for stellarator devices. However, in contrast to
tokamaks, stellarators can have significant variation of the neu-
tron wall load in toroidal direction. This can be accounted
for when adding a neutron peaking factor fpeak to the models,

which measures the inhomogeneity of the neutron load along
the blanket area. For a given configuration, this factor can be
calculated by

f peak(C) ≡ qmax

qavg

∣∣∣∣
ref

. (32)

Here, qmax is the maximum and qavg the average neutron load
in the blanket. When one constructs an intermediate, first
wall like, hyper-surface between plasma and coils, one can
approximately calculate q on this surface via

q(θ,φ) =
En

4π

∫
VS

dxS
n̂(θ,φ) · (xS − xW(θ,φ))

‖xS − xW(θ,φ)‖3
f S(xS). (33)

Here, θ and φ are poloidal and toroidal coordinates on the sur-
face, xS and xW are the position vectors of the source and the
wall respectively, VS stands for the volume of the source and
n̂ is the normal vector of the wall. En is the energy carried by
a neutron in a D + T reaction (14.1 MeV). f S is the neutron
fluence at the source point xS, which can be obtained using the
Bosch–Hale fit [43] for a reference density and temperature
profile,

f s ≡ nDnT〈σv〉 = C1nDnTθ(T)

√
ξ(T)

mrc2T3
e−3ξ(T). (34)

θ and ξ are fit functions and C1 is a fit parameter, see [43]
for their explicit form. An example calculation of the neutron
wall load using equation (33) for a wall in a Helias 5 device is
shown in figure 4.

Equation (33) simplifies the geometry vessel by neglecting
‘shadowed’ regions in the vacuum vessel and it further does not
account for neutron scattering, but it is a method to compute
the peaking factor f peak computationally fast. More sophis-
ticated values for f peak can be obtained [44] by dedicated
3D Monte-Carlo codes such as MCNP [45], which can include
neutron scattering and further are able to resolve in detail ves-
sel and blanket geometries at the cost of computational time.
Equation (33) can be substituted with results from an MCNP
run in Process, if more accuracy is needed.

The effect of the neutron inhomogeneity was implemented
in the HCPB models in PROCESS now, using a calculation of
f peak in the pre-processing step.

Future improvements of this model should replace the used
tokamak-specific blanket models by stellarator specific models
based on stellarator reference calculations, as conducted e.g. in
[46].

3.7. Stellarator coils

For a given, averaged, toroidal magnetic field strength Bt along
the magnetic axis, Process should calculate the required coil
current in the pre-defined coil filaments. This is achieved by
using a simple linear scaling from a pre-calculated value for
the averaged norm of the TF along the magnetic axis, 〈Bt〉axis,
which can be obtained by integrating along the magnetic axis,

〈Bt〉axis ≡
1
�

∮
axis

Bt ds, (35)

where � is the length of the magnetic axis, Bt the magnetic
field on the axis and s is a coordinate parameterizing the axis
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Figure 4. An example calculation of the neutron flux for a Helias 5 configuration on a conceptional intermediate hyper surface between
plasma and coils using equation (33) at 3 GW fusion power. Left: the flat projection of q(θ,φ) on the hypersurface in one module. Right: the
neutron wall load on the imposed hypersurface and the coils for geometrical context. The last closed flux surface is shown in cyan.

(not to be confused with the flux surface coordinate). Once
determined for a reference point, the scaling of the coil current
with respect to Bt and R is of course linear,

I = I0(C)
〈Bt〉
〈B̂t〉

R

R̂
. (36)

The needed coil current I0(C) for the respective Bt at the ref-
erence design point can be calculated using the Biot–Savart
equation, which is done numerically in the pre-processing
step. The (vacuum) axis can be obtained by a field line tracer,
e.g. [47], or as output by the equilibrium code VMEC [48].

Another important parameter for the coil design in a sys-
tems code is the maximum magnetic field on the coil surface
Bmax, which is crucial for the superconductor material con-
straints. Bmax depends on the coil cross-section area and for
its calculation at the reference design point with R̂, B̂, and the
winding pack thickness ÂWP we proceed as follows.

For stellarators in Process, and for the calculation of Bmax

only, we approximate the winding pack to be of rectangu-
lar shape and to be homogeneously filled with a current
carrying material. With these assumptions, Biot–Savarts vol-
ume integral can be in good approximation reduced to a
Riemann sum of analytically solvable integrals of the mag-
netic field due to homogeneously filled straight cuboid beams
[49, 50]. For reasonable accuracies, each coil is discretised into
O(100) straight beams, each producing a magnetic field BBeam

i

at position x. The total contribution of a coil to the magnetic
field at a position x can then be approximated by

Bcoil(x) �
∑

i

BBeam
i (x). (37)

The derivation and an explicit formula for BBeam
i is given in

appendix A. Bmax then becomes

Bmax = max
x

∑
coils

Bcoil(x). (38)

This descriptions allows, for our purposes, an accurate calcu-
lation of the magnetic field at the surface of the coils and in the
current carrying material. The latter will be important for the
force calculations that will be described further below.

Bmax depends on the winding pack cross-section. To reflect
this scaling in the systems code, we calculate equation (38)
for varying winding pack sizes in the pre-processing step and
parameterized Bmax in Process via a fit function, which we
choose here in the form of

Bmax(Awp) =
μ0IN

R − acoil

(
a0(C) +

R√
Awp

a1(C)

)
. (39)

The first summand approximates the ideal part (due to an ideal
toroid), the second summand includes the fitted scaling with
changing winding pack size. acoil is the average minor coil
radius, N the number of coils, and Awp the cross-sectional
area of the winding pack. a0 and a1 are fit parameters that are
obtained in the pre-processing step by varying Awp.

The electromagnetic forces that act on the coils are impor-
tant output and constraint parameters, as the integrity of the
structural material is limited by the stress, which again scales
with the force magnitude. This fact is especially limiting
for compact devices at higher magnetic field, as those typi-
cally imply high operating current densities resulting in high
force-magnitudes. The force density, as other effective param-
eters before, is calculated for a reference coil size and then
scaled within Process. For this purpose, the magnetic field B is
calculated inside the winding pack, using the finite winding
pack Biot–Savart approximation introduced in equation (37).
The Lorentz force density at a point x in the winding pack is
then simply

f(x) = B(x) × j(x) = j (B(x) × t(x)) , (40)

if the magnitude of j, the current density, is assumed to be con-
stant and homogenous across the coil cross section and points
along the tangential direction t of the coil. Figure 5 shows
an example calculation of the force density distribution in a
stellarator coil: in every poloidal cross section of the coil we
discretize the winding pack cross-section into N × N volume
elements dV for which we calculate a force density f using
equation (40). f can be integrated over Awp to obtain a force
density f̄ in N m−1, or over the whole coil volume Vcoil to
obtain a force F in N. The maximal value of f needs to be sup-
ported by the structural material in the winding pack, f̄ result
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Figure 5. Cross section through a quadratic winding pack of
dimensions 60 cm in a high field region of a stellarator coil. The
cross section homogeneously carries a current of 14 MA (produces
5.6 T in a Helias 5 configuration). Colour coded is the absolute
magnetic field strength. Axes are set in local coordinates. Black
arrows indicate directions and magnitude of local forces in the
winding pack.

in coil jacket and coil insulation stresses and F is relevant for
the outer coil support structure.

We calculate the effective parameter as the maximum of
each of these forces according to f max(C) ≡ maxθ,i|f| (θ a
poloidal coil coordinate, i indicates the coil number) for every
configuration and scale it in Process according to

f max = f max(C)
j

ĵ

Bmax

B̂max
, (41)

f̄ max = f̄ max(C)
I

Î

Bmax

B̂max
, (42)

Fmax = Fmax(C)
I

Î

Bmax

B̂max

�coil

�̂coil
. (43)

Here, j is the current density, I the coil current, � the length
of the respective coil (in Process). Hatted values again denote
the values at the reference point where f max(C), f̄ max(C) and
Fmax(C) are calculated.

It should be noted that one needs to make an assumption
about the orientation of the winding pack in order to calculate
the force density. To this end, we choose the normal vectors
of the winding pack to point into the cylindrical toroidal and
radial direction respectively. In a realistic winding pack, which
is optimized with respect to torsion and stresses, this normal
vector might deviate from this assumption, however, f max will
most likely not be affected significantly by this choice.

As stellarators can have significant lateral forces, Process
also returns lateral and radial projections of equation (40)
which are scaled analogously to equation (42). Figure 6 shows
the order of magnitude of lateral projection of f̄ in a Helias 5
coil set.

To estimate the stress on the ground insulation of a coil
set we use a simple model and only consider normal uniax-
ial stresses which depend on the poloidal coil coordinate θ,

Figure 6. The magnitude of the radial and lateral force density on
the non-planar coils in one half-module of a Helias 5-B coil set [51]
with 5.6 T on axis and 22 m outer radius. θ is a periodic poloidal
coil coordinate. Maximum absolute values for radial and lateral
projections are taken as effective parameters.

namely

σinsulation(θ) =
‖F(θ)‖

A
. (44)

We assume that the forces F(θ) point orthogonal towards the
outer boundary of the coil and thus create a pressure on the
radially outward area of the coil A, which depends on the wind-
ing pack size. Assuming a fixed outer coil boundary condition,
the maximal stress on this area, induced by the winding pack
forces, then is

σmax � f max dWP, (45)

where dWP is the radial thickness of the winding pack as
calculated by Process from equation (48).

This stress is subject to the elastic limit of the material under
pressure. If a coil design as in [51] is assumed, this stress exerts
on the ground insulation and its upper limit will be in the order
of ∼ 100 MPa. In our implementation, the maximum allow-
able stress is a user defined parameter and if set, Process will
optimize the design to fulfill this constraint.

It should be noted that we ignore stresses in the coil struc-
tural material for now, as accurate values for the peak stresses
would require a detailed design of the coil support structure.
Possibly, some simplifications of the support structure could
be made, like a thin massive inter-coil shell, which could pro-
vide an idea about stresses in the coil support structure with
the help of finite element calculations, but this is beyond the
scope of this paper.

Another stellarator-specific output parameter of the coil
module is the maximal curvature in the coils. This parame-
ter is especially relevant for stellarators as the non-planar coils
can have small bending radii that might not be in line with
limitations imposed by the superconductor material. Again, in
Process, the maximal curvature is implemented by a scaling
equation, using a reference value κmax has been obtained in
the pre-processing step,

κmax �
R

R̂

1

1 − dWP
2aCoil

κmax(C). (46)
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Figure 7. The used winding pack architecture of one turn. The
whole winding pack consists of N such turns. The shown fractions
are not for scale.

Here, dWP is the radial thickness of the winding pack. The
term 1

1− dWP
2aCoil

estimates the curvature increasing effect of a radi-

ally extended winding pack. The reference value for the max-
imal curvature κmax(C) is calculated in the pre-processing step
according to

κmax = max
θ,i

‖γ ′
i(θ) × γ ′′

i (θ)‖
‖γ ′

i(θ)‖3 , (47)

where γi : I ⊂ R→ R
3 parameterizes the ith coil in the set and

θ is a local coil coordinate. κmax can be used to model the
bending strain in the superconductor, which has direct impli-
cation on the critical current density of the superconductor. A
bending strain model based on equation (47) is not yet imple-
mented in Process for stellarators, but can easily be added,
once respective models are available.

3.8. Winding pack design

For tokamaks, Process is capable of optimizing the winding
pack constituents (copper and superconductor fractions) with
respect to the figure of merit. In [17] this degree of freedom
was not implemented for stellarators, which we now enable
using the following prescription.

For the stellarator version of Process, we model the wind-
ing pack with N squared turns, surrounded by a coil jacket
and some user defined ground insulation thickness on this
coil jacket. Each of the N turns has a composition as shown in
figure 7. The inner part of the conduit contains an approximate
squared conductor area. The structure and helium fraction as
well as the insulation thickness in the conduit cross section
are user defined parameters, whose values are subject to exter-
nal specifications. Especially the fraction for the structural
material needs to match the inner winding pack stress con-
straints, which are non-trivial in 3D coils and require a sophis-
ticated treatment. The copper- and superconductor fractions,
in contrast, are subject to quench protection and can be
calculated by Process, as will be addressed later in this section.
The overall dimension of the turn area is a user defined
parameter.

For stellarator coils, Process now optimizes the copper
and the superconductor fractions according to the consistency
equation

I
Awp f scu

!
= f j jcrit

(
Bmax(Awp), T, ε

)
. (48)

Figure 8. Ansys calculation of the force densities in the W7-X
vacuum vessel without ports induced by eddy currents during a coil
quench. Peak value is 2.54 × 106N m−3. By courtesy of Jiawu Zhu.

Here, f j � 1, is an iteration parameter and is bounded by user
defined values. jcrit is a parametric form for the critical cur-
rent density of the superconductor which depends on T , the
temperature in the superconductor, Bmax(Awp) as given from
equation (39) and ε the maximal strain in the superconductor.
Currently, the implemented superconductor material param-
eterizations in Process cover Nb3Sn, NbTi, Bi-2212 and a
REBCO-material [9].

The superconductor fraction f scu in the winding pack is
a resulting parameter from the winding pack material area
fractions,

f scu = (1 − f case)︸ ︷︷ ︸
conduit fraction

(1 − f He)︸ ︷︷ ︸
conductor fraction

(1 − f Cu − f oth)︸ ︷︷ ︸
SC fraction

, (49)

where f case is the case and insulation fraction of the whole turn
area, f He is the helium fraction in the conduit area and f Cu and
f oth are copper and other material fractions in the conductor
area. Process finds the appropriate winding pack dimensions
then by solving equation (48) for Awp, which is a simple root
finding problem and is solved by Newton’s method within Pro-
cess. In equation (49), f Cu is an iteration parameter in Process
and is bounded by quench protection arguments, which we will
address below.

In the case of a coil quench, the internal TF coil current
needs to be dumped into external resistors. The exponential
decay time of the coil current during the quench is parame-
terized in Process by τQ. This value is an iteration parameter,
subject to the constraints:

(a) Maximum voltage in the TF coils (lower boundary).
(b) Temperature rise in the TF coils (upper boundary).
(c) Stress on the vacuum vessel by eddy currents (lower

boundary).

The first constraint restricts τQ by the maximal allowable
voltage across a coil and during a quench which is, for large
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resistances, approximately given by [9]

U = 2
EstoTF

τQI
=

LI
τQNTF

. (50)

EstoTF is the approximative average stored energy per coil, L
the inductance of the coil set, NTF the number of coils, and
I is the average coil current. The inductance of a stellarator
coil set is calculated in the pre-processing step (e.g. by assum-
ing a filamentary 3D curve approximation of the coils [52, 53])
for a reference point and can be scaled in Process according to

L = L(C)
a2

coil

â2
coil

R̂
R
. (51)

This equation is based on an ideal toroid, where acoil is the
minor average coil radius. The restriction for τQ is then

τQ >
LI

UmaxNTF
. (52)

The second constraint for τQ due to the temperature rise
during a quench can be quantified using an energy conserva-
tion argument leading to

JWP < (1 − f case)√
2

τdumpη

(
f 2

Cu f 2
condqcu + f Cu f cond(1 − f cond)qHe + f Cu f 2

cond(1 − f Cu)qscu
)
.

(53)

In appendix B we provide a short derivation of this
equation.

Finally, the third constraint considers the fact that the
changing current in the coils during a quench induces a stress
in the vacuum vessel. The maximum allowable force den-
sity in the vacuum vessel during a quench f VV puts another
lower bound on τQ. We use a scaling equation to calculate the
maximum force density based on a reference value according
to

f VV = f (ref)
VV

(
dVV τQ RVV

BIa2

)
ref

BIa2

dVVτQRVV
, (54)

where dVV is the vacuum vessel thickness, RVV the (approx-
imate) major radius of the vacuum vessel and B the average
toroidal magnetic field on axis.

For now, we choose a sophisticated Ansys simulation from
W7-X as a reference value as illustrated in figure 8, where
2.54 MN m−3 is the maximum value of the force density.
Note that this step is not done in every pre-processing step,
but instead is only provided once for the W7-X vacuum ves-
sel. Due to lack of available models for generic 3D vacuum
vessel, we assume for now that, in first approximation, this
value also reflects the general inhomogeneity for any type
of stellarator vacuum vessel. However, the reference value
can be easily adapted for designs where more detailed sim-
ulation results exist. With values from W7-X, equation (54)
becomes

f VV �
(
3.8 · 103 s m−2

)
· B I a2

dVV τQ RVV
. (55)

Also note that this constraint could in principle be overcome
by a poloidal electric break, e.g. [54]. In Process, f VV is then
bound to a user defined parameter and serves as an inequality
constraint.

3.9. Structure mass

As shown in the previous section, large lateral forces can act
on the non-planar stellarator coils. However, the details of the
force distribution depend very much on the coil shapes and
winding pack. This puts not only great demands on the support
structure, but also makes it difficult to design an appropriate
structure. Consequently, such designs for large stellarators are
scarce. There exist only a few design concepts for a stellara-
tor reactor, such as a bolted or welded plates [19] or support
elements with ‘stiffeners’ [55].

Instead of implementing a specific design in Process, we
choose to model only the total structure mass, while not being
sensitive to the details of support structure. The total mass
is a good proxy, both for the cost and the support structure
complexity. As introduced already in [16], we stick here to
an empirical scaling law from existing machines, as described
in [56] to calculate the structure mass in Process based on
magnetic energy Wmag in the coil-set,

Mstruct = 1.348 W0.78
mag . (56)

Although equation (56) sees good empirical agreement, it does
not show whether the design point has local unsupportable
forces. In reality, the optimisation of the support structure
is a difficult task to ensure the integrity of the device while
avoiding local overloads.

3.10. Build consistency and port sizes

Scaling in R and the winding pack requires that Process checks
the inner coil–coil distances in toroidal direction to prevent
that coils come too close in azimuthal direction. We incor-
porate this constraint via an effective parameter of the mini-
mal distance between two central coil filaments dmin(C), which
is calculated in the pre-processing step. This distance scales
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linearly with the major radius and is subject to the constraint

dmin(C)
R

R̂
> wWP + wcase, (57)

where wWP denotes the toroidal width of the winding pack as
calculated by the routine described in section 3.8 and wcase is
the implied coil casing width in toroidal direction.

Furthermore, the radial distance between the plasma and the
coils is also subject to build constraints. For stellarators, the
most critical location is the point where the coils come clos-
est to the plasma. One value for this distance at a reference
device size is calculated in the pre-processing step and defines
an effective value as dpc(C). In Process we then implement the
scaling

dpc =
R

R̂

(
f geo(C) â

(
Â
A
− 1

)
+ dpc(C)

)
. (58)

Here, f geo =
∂dpc
∂a accounts for how much the plasma wall dis-

tance changes when decreasing the minor radius in the same
configuration. A is the (scaled) aspect ratio and Â the aspect
ratio at the reference point.

In Process, dpc is then subject to the constraint

dpc >
dcoil

2
+ dVV + dshield + dblanket + dfw + dSOL + gap,

(59)
where dcoil is the radial thickness of the coil (winding pack
plus coil jacket and insulation), dVV is the thickness of the
vacuum vessel, dshield of the thermal shield, dblanket the thick-
ness of the blanket, dfw the thickness of the first wall and dSOL

describes the width of the scrape-off layer. gap accounts for the
left available space.

Note that by this prescription, PROCESS only ensures
radial build consistency along one radial line in the stellara-
tor geometry and in general the gap gap is a function of a
poloidal and toroidal angle, gap = gap(φ, θ). Equation (59) is
implemented via a stellarator specific inequality constraint in
Process.

Finally, we calculate a maximal rectangular vertical port
size area Amax

Port(C) in the pre-processing step for a reference
point. Each dimension is then scaled linearly with the major
radius within Process. The maximum port size limits the
maximum size of blanket segments and is thus an important
information to judge the feasibility of remote maintenance.

3.11. Concluding remarks

We listed the implemented changes in which Process’ prescrip-
tions of a stellarator power plants now differs from the tokamak
prescription. For this, we identified important reactor relevant
stellarator-specific features and implemented them to suffi-
cient accuracy in Process using an additional pre-calculation
step. However, there are more stellarator specific constraints
in a power plant which are not included yet. For example,
alpha particle damage on the wall and inhomogeneous radi-
ation loads are approximated by the (axi-symmetric) descrip-
tion of Process. Proper stress and strain calculations for stel-
larator devices are ignored for now in Process. Capturing these

Figure 9. The used tokamak DEMO TF-coil set for the comparison
(output of tokamak-Process). The winding pack cross section shape
is simplified as rectangular in stellarator-Process.

Table 1. Output comparison of the independently implemented coil
modules of tokamak and stellarator-Process using a
tokamak-DEMO design.a

Description PROCESS sPROCESS

Toroidal magnetic field strength (T) 5.72 5.72∗

Aspect ratio [1] 3.10 3.10∗

Maximal field on the coils (T) 13.2 12.7
Stored magnetic energy (GJ) 182 175
Total coil current (MA) 256 255
WP current density (MA m−2) 1.49 ×107 1.64 ×107

jop/ jcrit [1] 0.600 0.600
Superconductor mass (t) 2.14 ×104 2.52 ×104

Copper mass (t) 1.54 ×105 1.44 ×105

WP steel mass (t) 1.68 ×105 1.72 ×105

Max. force density (MN m−2) 98.2 101
WP toroidal thickness (m) 1.18 1.13
WP radial thickness (m) 0.904 0.863
Quench dumping time (t) 76.5 76.5∗

Max. quench voltage (kV) 3.73 3.77
WP copper fraction [1] 0.851 0.853

aStarred values are input parameters for stellarator-Process (sPROCESS).
‘WP’ in the descriptions abbreviates the ‘coil winding pack’.

modifications require more detailed calculations and stellara-
tor design studies and need to be added in future publications.

4. Application

In this section we apply the modified Process code to three dif-
ferent scenarios: first, we carry out a benchmark of the newly
developed stellarator coil module against the (established)
tokamak coil module.

Secondly, we apply Process for the first time exemplarily
to three distinct stellarator configurations with different aspect
ratios. This is possible only due to the newly developed mod-
els. The scenario demonstrates a possible use-case of Process
to stellarator plasma optimization, as it allows to find feasi-
ble reactor design points (in terms of outer radius, aspect ratio,
density or temperature). Further, Process can help to identify
limiting constraints for a given stellarator reactor design point,
which we demonstrate in this study too.
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Figure 10. The coil-sets and plasma boundaries of the three used Helias configurations as described in the text.

Figure 11. ∼3000 Process runs, scanning the major radius against the toroidal magnetic field strength for a 1 GW net electricity Helias 5
configuration when neglecting the ECRH constraint (equation (22)) to visualize three of the newly implemented constraints. Green points
indicate a valid solution. Blue points were allowed when the coil quench constraint was relaxed, yellow points were accessible if the blanket
could be build more compact or larger coil–plasma distances were possible, red points are accessible by improving the confinement.

Thirdly, we use Process to compare three different stel-
larator coil-sets for the same magnetic configuration to
demonstrate the capability of Process to provide input for stel-
larator coil optimization, as it is possible to provide necessary
coil–coil and coil–plasma distances, both parameters which
depend on technology and are used as inputs in stellarator coil
optimization.

The example studies shown below aim to demonstrate the
new capabilities of the approach, highlighting in particular the
impact of engineering constraints on the design space. A fully
detailed reactor design study is subject to a future work.

4.1. Benchmark against tokamak PROCESS TF coil module

The stellarator models were designed to accommodate any
type of stellarator. This flexibility allows to model also a
tokamak-coilset within the stellarator-Process version.

In this section, we briefly benchmark the results of the new
stellarator coil module in Process against the output of the
independent tokamak-Process TF coil module. For comparing
the models developed in section 3 to the tokamak models, the
reader shall be referred to [9].

For the benchmark, we start from 16 D-shaped TF coils,
as shown in figure 9. The coil shapes are produced by

tokamak-Process and are then taken as input for the stellarator
run. We now obtain effective parameters ai(C) for the coil-
set in the pre-processing step as described in the previous
section and then run stellarator-Process in optimization mode,
optimizing for capital costs, which is equivalent to minimizing
material masses. We fix the magnetic field strength on axis to
5.72 T and the aspect ratio to 3.1 and let Process find a consis-
tent design point while optimizing for engineering parameters,
such as the copper fraction in the conductor area, the winding
pack dimensions, and the exponential coil quench dump time.

The result of the benchmark is displayed in table 1.
Stellarator-Process converges to a similar design point as the
tokamak-Process version. The winding pack dimensions and
the copper fraction are optimized to similar values. The max-
imal magnetic field on the coils deviates by 5%, which is
within the model accuracy. Generally, we find very good agree-
ment of our stellarator coil model with the tokamak case, pro-
viding confidence in the implementation of the developed coil
model.

4.2. PROCESS for stellarators with different aspect ratios

Historically, stellarator reactor design studies were performed
by individual calculations for single magnetic configurations.
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Figure 12. The three used scaled W7-X coil sets and their respective Poincaré plots in the bean-shaped plane as obtained with FOCUS [61].
Left: W7-X with 30 coils (one module), middle: W7-X with 50 coils (one module), right: W7-X with 60 coils (one module). The black
boundary is the target boundary. Coil thicknesses are scaled according to similar magnetic field on the coils (∼ 14 T). The colour in the
Poincaré plots indicates a flux surface coordinate.

Such an approach is tedious for the large magnetic configura-
tion space of stellarators. Our models allow for the first time
to model different types of stellarator configurations within the
same code framework within seconds of computational time.
To demonstrate this capability, we showcase below exemplary
studies for three different stellarator configurations, Helias 3,
Helias 4 and Helias 5 as introduced in [19, 20, 57], with a field
periodicity of 3, 4, and 5 respectively, as shown in figure 10.

For each coil-set we calculate a vacuum VMEC free bound-
ary equilibrium and determine the effective parameters as
described in the previous section. We then run Process in opti-
mization mode where we optimize for minimal major radius
at constant aspect ratio and a required net electricity output
of 1 GW, which corresponds to approximately 3 GW fusion
power. For this, we optimize the following parameters: the
overall temperature and the overall density for fixed profile
shapes, αT = 1.2, αn = 0.35, as defined in equation (13), fol-
lowing neoclassical transport simulations conducted in [16].
Further, we optimize the major plasma radius and the over-
all magnetic field strength. In addition, Process optimizes for
coil current densities, winding pack dimensions and material
fractions.

These optimization parameters are bound by several
imposed constraints: for the radial build constraint, a fixed
radial component thickness of 1.15 m is assumed, includ-
ing vacuum vessel, breeding zone, blanket structure mass
and neutron shielding, consistent with neutronics calculations
conducted in [46]. The SOL width is taken as 15 cm. For every
configuration we assume that 80% of the born fusion alpha
particles heat the plasma. This value is expected to increase
in future stellarator devices, as improved alpha particle con-
finement in stellarators is only recently addressed in stellara-
tor optimization, but with promising results already [58, 59].
We further impose an ECRH heated ignition point, using the
prescription in subsection 3.4, and assume maximal available
gyrotron frequencies of 200 GHz. For comparison, ITER oper-
ates with 170 GHz gyrotrons [60]. Requiring ECRH inhabit-
ability constrains both, the density and the magnetic field from
above.

The ISS04 transport model as in section 3.2 is assumed
and the 0D power balance equation including Bremsstrahlung
and line-radiation terms is enforced as a constraint equation.
The superconductor material is taken as Nb3Sn at 4.75 K
operation temperature and the current density we limit to
80% of the critical superconducting density. Superconductor
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Table 2. A selection of Process’ output parameters for the converged design point for each of the
three Helias configurations. The design points were optimized with respect to minimal major
radius and for a net electricity output of 1 GW, which approximately corresponds to
3 GW fusion power.

Description Helias 3 Helias 4 Helias 5

Number of tor. field coilsb [1] 30 40 50
Tor. B-fielda (T) 5.42 5.77 7.07
Major plasma radiusa (m) 13.7 18.3 20.7
Minor plasma radius (m) 2.16 2.08 1.68
Aspect ratiob [1] 6.36 8.81 12.3
Plasma volume (m3) 1260 1560 1160
Peak el. densitya (m−3) 2.8781 ×1020 2.7074 ×1020 3.1865 ×1020

Peak el. temperaturea (keV) 15.7 15.4 15.5
Plasma beta (volume averaged) (%) 4.48 3.71 2.92
Fusion power (MW) 2900c 3060c 3170c

Max. field on the coils (T) 14.6 14.4 14.5
Stored magnetic energy (GJ) 106 122 150
jop/ jcrit [1] 0.800c 0.800c 0.800c

Total coil currenta (MA) 409 564 765
WP current density (MA m−2) 3.01 ×107 3.12 ×107 3.17 ×107

Superconductor mass (kg) 2.19 ×104 1.89 ×104 1.79 ×104

Total coil mass (kg) 5.91 ×106 6.84 ×106 7.61 ×106

Structure mass (kg) 1.15 ×107 1.29 ×107 1.51 ×107

Max. force density (coils) (MN m−1) 85.9 86.1 96
WP toroidal thicknessa (m) 0.614 0.613 0.634
WP radial thickness (m) 0.737 0.736 0.761
Quench dumping timea (s) 10.7 10.0 9.25
VV peak force density (approx.) (MN m−3) 3.53c 3.53c 3.53c

Max. quench voltage (kV) 4.74 4.22 4.44
WP copper fractiona [1] 0.620 0.622 0.604
Peak divertor load (MW m−2) 3.56 2.79 2.52
First wall full-power lifetime (y) 2.46 2.89 2.36
Av. neutron wall load (MW m−2) 1.33 1.09 1.36
Max. neutron wall load (MW m−2) 2.03 1.73 2.12

aIteration parameter.
bFixed input parameter.
cParameter at a directly imposed limit/target.

strain is neglected for the critical current density. All devices
assume an island divertor, which is described by the model
in section 3.5. In this model, a radiation fraction of 85%
in the SOL is assumed and radiating plasma impurities are
neglected. The maximum allowable divertor heat load is set to
10 MW m−2 and a volume averaged upper beta limit of 5% is
imposed. Coil current densities, winding pack dimensions and
material fractions are subject to quench restrictions and ground
insulation stress as described in subsection 3.8.

To visualize the restriction of the parameter-space by the
newly implemented constraints, we conducted an R-B-scan of
the Helias 5 device in figure 11: from this, one can identify
the coil quench constraint, which forbids points at high B-
field and smaller major radius. Further, the new radial build
consistency model through imposed blanket and shielding
requirements dominantly rules out design points at smaller
major radius and an increase in confinement properties (an
enhanced ISS04 proportionality factor) would allow to access
the region at lower B-field. Note that for this scan we neglected
the ECRH constraint, which is very sensitive on the techno-
logical assumptions (gyrotron frequency and heating scheme).

The exact positions of the constraints also depend on other fac-
tors like imposed steel fraction in the conductor or insulation
thicknesses. An eventual hoop or inner-winding pack stress
limit would further limit the design space, but this was not
developed yet for stellarators.

Using the above listed set of optimization parameters and
constraints, important output parameters of the optimized reac-
tor design points with respect to minimal major radius are
shown in table 2. The study in [20] assumed NbTi super-
conductors, which we replaced by Nb3Sn superconductors
here. This allows for higher field strengths as the found 7 T
on axis for Helias 5. The possibility to switch superconduc-
tor material also demonstrates the advantage of technolog-
ical flexibility of the systems code framework. The found
densities in table 2 are in line with the ECRH heating con-
straint as described in subsection 3.4. Despite of the different
aspect ratio and the different coil numbers, the total masses
found by Process are comparable for all three devices
and only increase slightly for the machine with higher
aspect ratio. Comparing the coil masses of the Nb3Sn
Helias 4 design against the previous NbTi study [57], we
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find good agreement (6.8 kt compared to 7.5 kt) for a similar
design point.

The major radius of all three designs are limited by the
plasma-coil distance, which needs to include space for blan-
ket and shielding and the radial extension of the coils. This we
found by relaxing the radial build constraint, which resulted
in significantly smaller major radii for all three machines
(also compare figure 11). This fact also explains the signifi-
cantly larger plasma volume of 1560 m3 of Helias 4 compared
to the other two devices, as Helias 4 features a comparably
small plasma-coil distance, namely 1.7 m at reference size
compared to 1.9 m for Helias 5 at reference size [20]. We
further observe a relevant design restriction by the imposed
ECRH constraint, mainly given by the critical O1-mode den-
sity limitation. This provides further motivation to develop
high power, high frequency gyrotrons or an X1 heating scheme
for a stellarator reactor at high density.

While our models present substantial progress in the
engineering feasibility of stellarator designs, there are still
missing factors that are under development and not yet
included in this study, such as high fast particle wall loads,
superconductor strain or transport effects that are not covered
by the ISS04 assumption, or stress limits in coils and in the
structure mass. Modelling these effects for general stellarators
is beyond the scope of this work, and can be added in future
publications.

4.3. PROCESS for stellarators with different coil sets

Stellarator coil optimization is, at least traditionally, carried
out for a fixed magnetic configuration. For every configuration,
however, there exists an infinite number of coil-sets produc-
ing (approximately) the same magnetic field [62] and choos-
ing the right coil set is a trade-off between field accuracy
and engineering constraints, such as the minimal curvature,
port sizes required by remote maintenance, coil–coil distance,
coil–plasma distance, engineering tolerances [63], or costs. In
this section we demonstrate that stellarator-Process can help
judging the reactor relevance of the coil-set by providing fur-
ther details, as its material usage and forces, by including
coil quench constraints and by considering other plant con-
straints at the same time. For this purpose, we generate three
exemplary coil-sets targeting a W7-X like equilibrium, using
the coil optimization code FOCUS [61]. The chosen coil-sets
have 30, 50, and 60 coils respectively, and their correspond-
ing Poincaré plots are shown in figure 12. Albeit similar flux
surfaces and island positions compared to the W7-X equilib-
rium, further physics properties of the respective equilibriums
were not checked here, as our purpose here is just an exemplary
application of Process to different stellarator coil sets for the
same equilibrium. The coil-set with 30 coils was not able to
match the target iota at the boundary, which results in a lack
of the desired island structure there, but for the sake of having
a coil-set with significantly less coils, while still retaining a
significant coil–coil gap, we neglect this fact and include this
coil-set in the following study.

We use Process now to scale the overall size of the
machine to reactor size (22 m major radius). The plasma

size is then held fixed and the new Process implementation
for stellarators is used to optimize for capital costs, which is
equivalent to minimizing the coil masses in this case. Process
then finds the required coil sizes, the copper and supercon-
ducting material fractions, assuming Nb3Sn superconductors,
to match the build constraints in radial and toroidal direction,
the coil quench protection constraints and the superconducting
critical current density constraint. Relevant coil related Pro-
cess output parameters are shown in table 3. As expected, local
coil forces are significantly larger for a design with less coils.
The stored magnetic energy scales with the coil minor radius
which is, approximately 20% larger in the 30 coils device.
The design with less coils allows for larger vertical ports,
which could ease remote maintenance, however this seems to
come at a cost, as the design with 30 coils is found at signif-
icantly higher total coil masses compared to the design with
50 or 60 coils, likely induced by significantly higher max-
imal B-field values at the coils which then again requires
larger material masses to fulfill the critical superconductor
current density and the quench constraints. Finally, the left
over coil–coil gap vanishes for the device with 50 and 60
coils, which indicates that these two designs would benefit
from larger coil–coil distances. This information can be used
to re-iterate the imposed coil–coil distance in the coil opti-
mization step to obtain coil-sets which feature larger coil–coil
(and coil–plasma distances) to allow for a smaller overall
machine size.

5. Summary and outlook

In this work we presented modifications of the fusion reactor
systems code Process to model a general class of stellarators.
For this, we modified Process in a way that it covers several
stellarator specific features of a fusion power plant. Some stel-
larator specifics, such as an accurate description of the alpha
particle wall load in stellarators, the inhomogeneous plasma
radiation load on wall materials or a 3D stress model are left
out for future publications.

As a result of the modifications, Process can now be
used to obtain stellarator reactor design points that are,
within the implemented model coverage, in line with cur-
rent technology, taking as input solely the common output of
stellarator optimization, namely a plasma boundary and the
respective coil set. This new code modification allows for the
first time to compare different stellarator configurations within
the same wholistic systems code and thus can contribute to
stellarator optimization, as it can help constraining the high
dimensional design space, that stellarator plasmas and coil-
sets allow for. Process further allows high level optimization
of design parameters with respect to economical figure of mer-
its, such as component masses, which can help guide future
stellarator reactor studies, as it allows a fast adjustment to
new technological advances. The new framework further
calculates coil thicknesses that are in line with superconduc-
tor and coil quench constraints, which again can be used to
re-design coils.

The implementation of the presented models was done
in two frameworks, in a pre-processing code and in Process
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Table 3. A selection of Process’ output parameters for the converged power plant
design point of an upscaled W7-X equilibrium with 30, 50 and 60 coils respectively.
The design points were optimized with respect to capital costs and the major radius
was chosen to match a net electricity output of 1 GW.

Description W7X-30 W7X-50 W7X-60

Number of tor. field coilsb [1] 30 50 60
Fusion power (MW) 2920c 3230c 3330c

Major plasma radiusb (m) 22.0 22.0 22.0
Minor plasma radiusb (m) 1.96 1.96 1.96
Plasma volumeb (m3) 1670 1670 1670
Tor. B-fielda (T) 4.95 5.07 5.11
Max. B-field on the coils (T) 11.5 13.7 13.0
Total coil currenta (MA) 573 588 593
WP current density (MA m−2) 2.03 ×107 3.89 ×107 3.95 ×107

jop/ jcrit [1] 0.800c 0.800c 0.800c

Tot. coil mass (kg) 8.58 ×106 4.65 ×106 4.75 ×106

Stored magnetic energy (GJ) 146 104 98.8
Max. force density (MN m−1) 77.7 74.1 59.4
WP toroidal thicknessa (m) 1.09 0.524 0.395
WP radial thickness (m) 0.869 0.577 0.633
Coil–coil gap (m) 0.0696 0c 0c

Left-over radial gap (m) 0.0219 0.111 0.0796
Max. vertical port size (m) 1.87 1.15 0.963

aIteration parameter.
bFixed input parameter.
cParameter at a directly imposed limit/target.

itself, which allows to achieve rapid reactor design points
with Process within seconds, once the effective parameters
are computed. This timescale makes Process, or some of its
implemented submodules, suitable to include in stellarator
optimization routines in the future.

We demonstrated applications of the new Process code for
general stellarators in three use-cases: first, we benchmarked
the results of the newly implemented coil model against the
(independent) tokamak description of Process. We not only
found a similar optimized design point but also sufficient
agreement in the relevant parameters themselves. Secondly,
we applied Process to three previously found configura-
tions [20], and obtained an example reactor point with more
detailed physics and engineering parameters which are in line
with the newly implemented constraints. In the third appli-
cation, we demonstrated that the technological constraints
implemented in Process can be used to provide insights in
important input parameters for stellarator coil optimization,
such as the coil–coil distances or the coil–plasma distance
in the coil-set, which are subject to non-trivial material
constraints, as superconductor properties or coil quench
considerations.

From our studies conducted here, we find that the major
radius for nearly all examined machines is limited by the
required blanket space and that coils situated further away
from the plasma would likely be beneficial for reactor designs
with smaller major radius for these configurations. In other
words, the major radius of the used devices, and thus the
major cost driver of a stellarator reactor device, was consis-
tently found to be constrained from below by the plasma-coil
distance, not by lack of confinement quality. To obtain valid

compact designs, a major focus for coil and plasma opti-
mization could lie on finding designs that allow for large
coil–plasma gaps, while still retaining a tolerable field error
and an acceptable coil–coil gap to allow for finite size coils.
Overall, by the studies in section 4 we demonstrated that
design window analyses of stellarator devices with different
plasma shapes, TF periods, number of coils and coil shapes
have become possible within Process.

The Process code is maintained at the CCFE in Cul-
ham, Oxfordshire, UK (A description of the code can
be found here: https://ccfe.ukaea.uk/resources/process/.) The
‘pre-processing’ step uses the in section 3 presented calcula-
tions and was automatized and implemented as a python tool,
which is maintained at the Max-Planck-Institute for Plasma-
physics in Greifswald, Germany.
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Figure 13. Nomenclature of the formulas in the text: a straight
cuboid, carrying a homogenous current (beam) is parameterized by
8 points. Those points are indexed by α in the text. The current
flows in t direction. The B field at the point p is derived in the text.

Appendix A. Biot–Savart with finite conductor size

Here we derive the magnetic field B at a point p due to
a current carrying rectangular cuboid (beam) as it is used
in equation (37). The cuboid and used conventions in the
following is shown in figure 13.

When a 3D stellarator coil is approximated by N such
beams, this procedure allows a fast evaluation of the magnetic
field near and, very useful for force calculations and supercon-
ductor constraints, within the conductor. This method was also
used in [49].

Let b be the vector in longitudinal (y-) direction of the
beam, while n points in normal (x-) direction. Define the
functions:

F1(p) =
∫ h

−h
dy
∫ b

−b
dx

yp − y
N(x − xp, y − yp, z)3

(A.1)

F2(p) =
∫ h

−h
dy
∫ b

−b
dx

xp − x
N(x − xp, y − yp, z)3

(A.2)

N(x, y, z) =
√

z2 + y2 + x2 (A.3)

where xp are projections according to: xp = p · ex . 2b is the
dimension of the beam in x and 2d in y direction.

If the current density j in the winding pack is approxi-
mated as a continuous constant function across a rectangu-
lar cross section, pointing w.l.o.g. in Cartesian z direction,
Biot–Savart’s volume integral can be written as:

BBeam(p) =
μ0|j0|

4π

∫
dz

[
F1(p)ex − F2(p)ey

]
. (A.4)

The integral over F1 and F2 have an analytical form then,
as it is shown below.

For convenience, define

F(x, A, B) ≡
∫

dx√
x2 + A2 + B2

= arctanh

(
x√

A2 + B2 + x2

)
, (A.5)

and (note the changed order of the arguments)

I(A, B, x) ≡
∫

dxF(A, B, x)

= x F(A, B, x) − x + AF(x, B, A)

− |B| arctan

(
B2 + A(A +

√
x2 + A2 + B2)

|B|x

)
.

(A.6)
Then

F1(p) =
∫ d

−d
dy
∫ b

−b
dx ∂y

[
1√

(x − xp)2 + (y − yp)2 + z2

]

=

∫ b

−b
dx

[
1

N(x − xp, d − yp, z)

− 1
N(x − xp,−d − yp, z)

]
= F(b − xp, d − yp, z) − F(−b − xp, d − yp, z)

− F(b − xp,−d − yp, z) + F(−b − xp,−d − yp, z).
(A.7)

And analogously for F2 it is

F2(p) = F(d − yp, b − xp, z) − F(−d − yp, b − xp, z)

− F(d − yp,−b − xp, z) + F(−d − yp,−b − xp, z).
(A.8)

This simplifies equation (A.4) to a one dimensional integral
along the z-direction, which can be solved numerically. How-
ever, using equation (A.6), the integral in z-direction can also
be solved analytically, and the magnetic field B can then be
written as

BBeam(p) =
μ0|j0|

4π

[
ex

[
I(b − xp, d − yp, h)

− I(−b − xp, d − yp, h)

− I(−b − xp,−d − yp, h) + I(−b − xp,−d − yp, h)

− I(b − xp, d − yp,−h) − I(−b − xp, d − yp,−h)

− I(−b − xp,−d − yp,−h)

+ I(−b − xp,−d − yp,−h)
]

− ey

[
I(d − yp, b − xp, h) − I(d − yp,−b − xp, h)

− I(−d − yp,−b − xp, h) + I(−d − yp,−b − xp, h)

− I(d − yp, b − xp,−h) − I(d − yp,−b − xp,−h)

− I(−d − yp,−b − xp,−h)

+ I(−d − yp,−b − xp,−h)
]]
.

(A.9)
The magnetic field at a point p due to a coil with finite

size can be obtained by a simple Riemann sum over the
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Figure 14. Left: the relative field error of equation (A.10) compared to the analytical correct μ0I/(2πR), plotted against different number of
discretization points in the centre of an ideal toroid. Right: comparison of magnetic field strength values from equation (A.10) in the bean
shaped plane of W7-X at z = 0 against values calculated by an independent filament Biot–Savart integration. The dashed line in both plots
show deviations by a significant coil thickness.

contribution of every beam BBeam
i ,

Bcoil(p) =
∫

coil
dB(p) �

∑
i

BBeam
i (p). (A.10)

The accuracy of equation (A.10) depends on the num-
ber of discretization points and lies in the order of
ΔB/B ∼ 10−4. The left panel in figure 14 shows a bench-
mark of equation (A.10) for an ideal toroid, which converges
to the analytical solution at negligable coil width sizes. The
right panel in figure 14 shows a benchmark of equation (A.10)
against the result of an independent filamentary Biot–Savart
implementation in the bean shaped plane of a Wendelstein-7X
configuration. For both, small (0.01 m) and realistic (0.18 m)
winding pack (WP) sizes, both implementation deviate by
ΔB/B ∼ 10−4 at the axis (x ∼ 5.6 m). Near the coils however
(x ∼ 5.2 m), the filamentary Biot–Savart method diverges and
equation (A.10) gives the more accurate result, which explains
the large deviation, ΔB/B ∼ 1.

Appendix B. Quench protection

We shortly provide the derivation of the critical current den-
sity as limited by a simple coil quench protection argument as
given in the final form in [9].

In thermal equilibrium and without losses the heat produced
by the copper resistivity during a quench is equal to the heat
needed to rise the temperature in the material by dT,

dQheat = dQtemp. (B.1)

Assuming the materials in the winding pack are thermally
equilibrated, equation (B.1) takes the form

P(t)dt =
∑

i

ciρiVi dT, (B.2)

where P is the power produced by the (resistive) current in
copper fraction in time t. The index i runs over all winding

pack materials and Vi stands for the volume of the ith material
in the winding pack. With P = J2ηV , where η is the electrical
resistivity, equation (B.2) becomes

J(t)2dt =
∑

i

ciρi

ηCu(T)
Vi

VCu
dT. (B.3)

Now, the quench restriction is to impose∫
J(t)2dt

!
<

∫ Tmax

Top

∑
i

ciρi

ηCu(T)
fi dT. (B.4)

The integral on the left-hand side runs over the whole quench
time while the integral on the right-hand side goes from the
operation temperature Top to a maximal Tmax. The difference
Tmax − Top is usually chosen in the order of 150 K.

If one assumes an exponential decay of J after a quench
detection time td as:

J(t) =

⎧⎨
⎩

J0, if t < td

J0 e
− t−td

τdump , otherwise
(B.5)

then,
∫

J(t)2dt = J2
0

(
1
2τdump + td

)
, where J0 is the initial cur-

rent density, one gets

1
2

J2
0τdump < qCu +

VHe

VCu
qHe +

Vscu

VCu
qscu, (B.6)

with

qCu ≡
∫ Tmax

T0

ρCucCu

ηCu(T)
dT, (B.7)

qHe ≡
∫ Tmax

T0

ρHe(T)cHe(T)
ηCu(T)

dT, (B.8)

qscu ≡
∫ Tmax

T0

ρscucscu

ηCu(T)
dT. (B.9)
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Using the definition of the relative winding pack material
fractions f as in equation (49) the volume fractions can be
rewritten in terms of the conduit volume Vconduit:

VCu = Vconduit (1 − f He) f Cu, (B.10)

VHe = Vconduit f He, (B.11)

Vscu = Vconduit (1 − f He) (1 − f Cu). (B.12)

With this, one ends up with (identifying J0 with the copper
current Jcu)

Jcu <

√
1(

1
2τdump + td

) (qcu +
f He

(1 − f He) f Cu
qHe +

1 − f Cu

f Cu
qscu

)
. (B.13)

In terms of the total winding pack current density,
equation (B.13) can be rewritten using 1 − f He = f cond and
JWP = JCu f Cu f cond(1 − f case):

JWP < (1 − f case)√
1(

1
2τdump + td

)
η

(
f 2

Cu f 2
condqcu + f Cu f cond(1 − f cond)qHe + f Cu f 2

cond(1 − f Cu)qscu
) (B.14)

Equation (B.14) constraints the winding pack current den-
sity by a temperature rise during a coil quench. This value
is dependent on the chosen copper alloy, which enters in η
and ci.
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