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ABSTRACT
The laser flash method is highly regarded due to its applicability to a wide temperature range, from cryogenic temperatures to the melting
point of refractory metals, and to extreme environments involving radioactive or hazardous materials. Although instruments implement-
ing this method are mostly produced on a commercial basis by major manufacturers, there is always room for improvement both in
terms of experimental methods and data treatment procedures. The measurement noise, either due to the detector performance or elec-
tromagnetic interferences, presents a significant problem when accurate determination of thermal properties is desired. Noise resilience
of the laser flash method is rarely mentioned in the published literature; there are currently no data treatment procedures that could
guarantee adequate performance under any operating conditions. In this paper, a computational framework combining finite-difference
solutions of the heat conduction problem with nonlinear optimization techniques based on the use of quasi-Newton direction search and
stochastic linear search with the Wolfe conditions is presented. The application of this framework to data with varying level of noise is
considered. Finally, cross-verification and validation using an external standard, a commercial, and an in-house built laser flash instru-
ment are presented. The open-source software implementing the described computational method is benchmarked against its industrial
counterpart.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5132786., s

I. INTRODUCTION

Nearly 60 years have passed since Parker et al.1 first proposed
the flash method for determination of thermal properties. Unlike
other methods, e.g., the transient hot-strip method,2 the transient
hot wire method,3 and the recently revisited guarded hot plate
method,4–6 which suffer from an inherent thermal contact resis-
tance between the heater and the sample, the flash method imple-
ments a scheme for contactless heating by a pulsed laser source.
The latter induces a time-dependent temperature response mea-
sured typically at the rear-surface of a cylindrical sample (although
other detection concepts have been considered by Pavlov et al.7

and previously by Ronchi et al.8) either by using an infrared detec-
tor or by using a thermocouple (currently, the use of immersive
thermocouples is discouraged due to the extra contact resistance
introduced in the weld region9) and used to infer the thermal prop-
erties from a mathematical model of the experiment. Due to its

many advantages, such as requiring only small samples, reducing
measurement time, and being extendable to very high temperatures
(above 3000 K8,10,11), the flash method soon became a standard in its
field. It is truly indispensable for studies of radioactive or hazardous
materials (e.g., low-active proton-irradiated tungsten samples12 and
mildly radioactive neutron-irradiated beryllides13), especially for a
highly radioactive material that requires remote access (Walker
et al.14 on the thermal conductivity of a 100 MWd/kgHM spent
oxide fuel from a commercial PWR nuclear reactor), due to the ver-
satility of sample mounting required for a pre-programmed robotic
arm, for the use of a manipulator or, more commonly, for a glovebox
environment.

The ASTM standard E1461–139 sets out the applicability of
the laser flash method to “essentially fully dense (preferably, but low
porosity would be acceptable), homogeneous, and isotropic solid mate-
rials that are opaque to the applied energy pulse.” The measurement
procedure corresponding to these conditions is henceforth referred
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to as the “classical laser flash analysis” to distinguish it from more
sophisticated cases, such as when analyzing liquids and melts15 and
semi-transparent and diathermic samples. Assuming ideal opera-
tion of the instrument and correct handling of the samples, a simple
heat transfer model accounting for the true shape of the laser pulse
and the radiative losses at the sample boundaries should perfectly
describe raw data. In some cases, the experimental uncertainties add
up to the systematic and random errors in input time–temperature
profiles to such an extent that the conventional algorithms produce
systematically biased or randomly scattered output values. These
uncertainties include (but are not limited to) those of the “detec-
tor performance and of the data acquisition system,” which should
deliver a “linear electrical output proportional to the temperature
rise.”

Assuming perfect delivery of the laser pulse to the sample’s
front surface, the performance of a laser flash instrument is influ-
enced by the following factors:

(i) The theoretical detector performance is given by its spe-
cific detectivity, a parameter equal to the output current (or
voltage) per watt of incident thermal power per unit area
of the active surface. The detectivity may vary over several
orders of magnitude depending on the detector material and
the spectral characteristics of the incident thermal radiation.
For instance, when comparing near-infrared Peltier-cooled
detectors, photovoltaic MCT (mercury cadmium telluride)
detectors are generally much better in terms of detectivity
than the photoconductive PbSe detectors; however, Peltier-
cooled detectors perform worse, in general, than the liquid-
nitrogen cooled InSb detectors. When doing measurements
at cryogenic or very high temperatures, even the best near-
infrared detectors yield inherently noisy data, and detectors
suitable for a different spectral range are desired.

(ii) The analog signal generated by the detector is processed with
a (cooled) pre-amplifier unit mounted within the detector
assembly. The preamplified signal is then transmitted to the
main amplifier in the processing unit and later converted to
a digital output with the digital-to-analog convertor. Addi-
tional electromagnetic noise may arise from the technolog-
ical process involved in making the electrical connections
(commonly soldering).

(iii) As pointed out by Baba and Ono,16 the synchronization of
the laser pulse with the start of data acquisition by the detec-
tor may be challenging. This is generally accomplished with
the use of a pulse monitor, and if faulty, the latter may yield
an erroneous systematic shift in the time sequence.

(iv) A poorly transmitting optical window, e.g., separating the
detector assembly from the furnace interior, may lead to a
drop in the signal quality. This sometimes happens due to
the re-deposition of the material released from the sample,
e.g., due to a decomposition process at high temperatures.

Considering the systematic nature of most occurrences above,
it would be impossible to correct them using repeat measure-
ments. Some other uncertainties are intermittent: Sheindlin et al.17

mentioned the baseline drift as one possibility; Šrámková and
Log18 considered oscillations in the mains current (“hum”) and
a shift in the baseline when performing a Levenberg–Marquardt

minimization procedure. Synthetic high-noise time–temperature
profiles were considered by Carr19 and Carr and Wood20 to show
that the standard half-rise time procedure is not always applicable
under otherwise ideal experimental conditions.

To the best of authors’ knowledge, the listed experimental
uncertainties have not been studied with regard to their effect on
the output of the classical laser flash analysis. Likewise, neither does
the ASTM standard set any acceptance criteria for the quality of
the instrumental time–temperature profiles, which prevents effec-
tive quality control for commercially built instruments. Depending
on the design solutions chosen by the manufacturer, the output sig-
nal may be of lower quality than required for reliable operation of
the conventional data treatment procedures. The goal of this paper
is to present a universal and easily verifiable method of data analysis
that would (a) not use cumbersome analytic expressions, (b) be inde-
pendent of general-purpose commercially distributed mathematical
packages and software, and (c) be highly resilient to the experimen-
tal uncertainties of the classical laser flash analysis. This method
would then be used to process data from a laser flash experiment in
a commercial instrument using an external standard. Ultimately, the
results would be benchmarked with the industrial software to asses
its capabilities. The algorithm and procedures outlined in this work
are part of the PULsE (Processing Unit for Laser Flash Experiments)
software, which is an open-source, cross-platform Java code freely
distributed under the Apache 2.0 license.21

II. GENERAL REMARKS ON EXPERIMENTAL
DATA TREATMENT

The computational framework described in this paper imple-
ments finite-difference schemes for solving a heat transfer problem,
rather than relying on the existing semi-analytical solutions by pre-
vious authors. Some of the remarks below may be specific to the way
this solution is obtained.

A. Calculation of the objective function
In the reverse heat conduction problem, two enumerated col-

lections are compared against each other: the experimental data
sequence ΔT( t̃i), i = 0, 1, . . ., nexp, where nexp ≃ 1000–5000 is
the number of experimental data points, and the calculated dataset
(containing only unique elements) representing the heating curve
ΔT̂(tj), j = 0, 1, . . ., ns, where an arbitrary ns ≃ 100 is chosen. Here,
we assume fixed time sampling for the latter so that ∃ Δts ∈ R, ∀ j
= 0, . . . , ns − 1 : tj+1 − ji = Δts. Note that generally t̃i ≠ tj, i.e., the
time values for the experimental and calculated data points may not
overlap.

To define a computational algorithm for the objective func-
tion, it is thus necessary to implement an interpolation procedure.
Instead of interpolating over the experimental dataset ΔT( t̃i), which
is guaranteed to produce interpolation errors (especially in the case
of noisy detector data), the idea is to interpolate over the solution
values ΔT̂(tj) (Fig. 1). With linear interpolation using nearest adja-
cent points, the value of the solution at time t̃i, i = 1, . . ., ns − 1, can
be calculated as

ΔT̂( t̃i) =
tk+1 − t̃i

Δts
× ΔT̂(tk) +

t̃i − tk

Δts
× ΔT̂(tk+1), k = ⌊ t̃i

Δts
⌋, (1)
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FIG. 1. An illustration of calculating the sum of squared residuals (SSR) using
the data from two enumerated collections of different size: the experimental data
points ΔT( t̃i) (i = 0, 1, . . ., nexp) and the model solution ΔT̂(tj) ( j = 0, 1, . . ., ns).
Equation (1) is used to calculate the interpolated value ΔT̂( t̃i) at tk < t̃ < tk+1

using the nearest points of the model solution ΔT̂(tk) and ΔT̂(tk+1) and the
experimental time t̃i.

where square brackets denote the floor function, i.e., the greatest
integer less than or equal to the argument, and k ∈ [0, ns] ∩ Z is the
index of the greatest element tk in the calculated dataset such that
tk ≤ t̃i.

The objective function f can then be calculated as the sum of
squared residuals (SSR) as follows:

f =
b

∑
i=a
(ΔT( t̃i) − ΔT̂( t̃i))

2
, (2)

where a, b ∈ [0, nexp] ∩ Z are the lower and higher sum limits,
respectively, defining the time domain for calculation.

B. Conversion of the detector voltage
to relative heating

The voltage U(t) transmitted from the infrared detector to the
data acquisition module determines the spectral radiance (W × sr−1

× m−3), which is used to estimate the temperature rise of the sam-
ple’s rear surface. Alternatively, the voltage U(t) from a thermo-
couple generated due to the Seebeck effect is converted to temper-
ature via a characteristic function of the thermocouple. Whatever
the tool used to measure the temperature, hereinafter, it is referred
to as the detector, and the voltage it measures is referred to as
the signal.

A linear relation between the signal U(t) and the heating
ΔT(t) = T(t) − T0, where T0 is the baseline test temperature
measured by a separate detector, is assumed: ΔT(t)/C2 = U(t)
− C1, where the constant C1 can be determined as the baseline
level Umin and C2 can be determined as the maximum relative
heating ΔTmax ∝ ΔUmax (Fig. 2). To calculate the absolute tem-
perature in degrees, a further conversion is necessary, e.g., for
infrared detectors using Planck’s equation and the emissivity ε(T)
of the sample. When a nonlinear dependence of temperature on
the spectral radiance may be neglected, e.g., at high temperatures
for infrared detectors (Ref. 16) or when using a thermocouple,
thermal diffusivity may be calculated without introducing addi-
tional error, utilizing just the heating values measured in arbitrary
units.

It is important though to correctly estimate the baseline signal
Ub(t) and the maximum change in voltage ΔUmax, assumed to be
proportional to the maximum heating ΔTmax. This becomes chal-
lenging for some experimental assemblies with a noisy (see Fig. 2)
and/or drifting signal (e.g., due to unstable detector current or
imperfect temperature regulation). A linear baseline ΔTb(t) = ΔT lin
+ klin ⋅ t is usually enough to accommodate the drift, with ΔT lin and
klin determined using a simple linear regression for the detector

FIG. 2. An example pre-processing of
the experimental data (PbSe detector),
showing the baseline calculated by least-
squares fitting to experimental data at t
< 0, a running average curve generated
by coarsening of experimental data using
a default reduction factor of 32 and thus
ensuring relative robustness to outliers,
and the maximum Umax of the running
average, which roughly corresponds to
the Up peak in the probability density
function.
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signal acquired at t̃i < t̃i0 ∶= 0, i.e., before the laser pulse,

ΔTlin = ⟨T⟩ − klin ⋅ ⟨t⟩, (3a)

klin =
i0−1

∑
i=0

( t̃i − ⟨t⟩) ⋅ (Tb( t̃i) − ⟨T⟩)
( t̃i − ⟨t⟩)

2 , (3b)

⟨T⟩ = 1
i0

i0−1

∑
i=0

Tb( t̃i), ⟨t⟩ =
1
i0

i0−1

∑
i=0

t̃i. (3c)

As shown in Fig. 2, a constant-baseline approach (klin = 0) is
sometimes preferred when fitting to a limited data sample with no
obvious drift as the random spread of data may be too large for an
accurate estimation of the slope.

The outliers in Fig. 2 present measurement artifacts and pre-
vent a simple estimation of the maximum heating ΔTmax based on
the absolute maximum value of the measured signal. An outlier-
robust procedure based on data binning and coarsening (i.e., calcu-
lation of a running average of large chunks of data) has been imple-
mented. Figure 2 shows how effective this procedure is in terms of
finding the peak in the probability density of the signal distribu-
tion with negligible drift of the measured signal compared to simply
finding the absolute maximum of the signal.

III. HEAT TRANSFER MODEL FOR THE LASER
FLASH EXPERIMENT

The idealized heat transfer model introduced by Parker et al.1

refers to the adiabatic heating of the sample material by an infinites-
imal laser pulse. The two latter conditions are rarely observed, in
practice, and hence, more sophisticated heat conduction models had
been proposed by Cowan,22 Cape and Lehman,23 Clark and Taylor,24

and Thermitus and Laurent25 who focused on heat losses (linearized
with respect to the temperature rise due to it being small), while
Larson and Koyama,26 Azumi and Takahashi,27 and Lechner and
Hahne28 primarily considered the effect of finite pulse widths. In
this section, a dimensionless heat conduction model is formulated
and justified based on the previous analysis.

When the laser spot uniformly covers the sample’s front sur-
face and the sample diameter is much larger than its thickness
(l≪ d, but typically l/d ≈ 0.1–0.2), the heat transfer is effectively one-
dimensional. Assuming that heating is small so that the thermal con-
ductivity does not change across the sample’s x coordinate [λ ≠ λ(x)]
and ΔT/T0 ≪ 1, the boundary problem may be linearized. Finally,
it becomes possible to convert the heat equation and the bound-
ary conditions to a dimensionless form by introducing the Biot (Bi)
number, which determines the heat transfer resistance at the sam-
ple’s surface, and the Fourier (Fo) number, which characterizes tran-
sient heat conduction, as dimensionless quantities, thus allowing to
simplify the solution by reducing the number of variables.

A. Boundary problem
A one-dimensional heat conduction problem for the laser flash

experiment must include

(i) a heat source term QP(t)/(πd2/4), where Q is the heat current,
P(t) ∼ 1/tlas is the normalized time distribution of the laser
pulse, and d is the sample diameter, and

(ii) the heat sink terms at both the front x = 0 and the rear x = l
surfaces due to the radiant heat flux q12 = S1ε1(T)σ0T4(x, t)−
S2ε2(T)σ0T4

0 from the sample’s non-concave surface S1 to the
surrounding surface S2 of the furnace interior (assuming the
latter is kept at a stable temperature T0), where ε1 and ε2 are
the emissivities of the sample and the surrounding “shell” of
an arbitrary shape, respectively.

In addition, heat flow is assumed to be axial, meaning that
radial heat fluxes of any kind are neglected. Under certain assump-
tions,29 the heat flux q12 ≈ εσ0(T4(x, t) − T4

0)H12, where H12 is the

mutual radiant surface and ε = {ε−1
1 + (S1/S2)(ε−1

2 − 1)}−1
is the

reduced emissivity. Considering that S2 ≫ S1, the latter expression
reduces to simply ε ≃ε1 so that the boundary problem is written as

Cpρ
∂T
∂t
= ∂

∂x
[λ∂T

∂x
], 0 < x < l, t > 0, (4a)

λ
∂T
∂x
∣
x=0
= − 4Q

πd2 P(t) + ε1(T0)σ0[T4(0, t) − T4
0], (4b)

λ
∂T

∂(−x) ∣x=l
= ε1(T0)σ0[T4(l, t) − T4

0], (4c)

T(0, x) = T0, (4d)

where Cp is the specific heat at constant pressure and ρ is the material
density.

The dimensionless quantities are then introduced as follows:

Fo ∶= at/l2, (5a)

Bi ∶= 4σ0ε1T3
0 l/λ, (5b)

θ ∶= (T − T0)/δTm, (5c)

δTm ∶= 4Q/(Cρπd2l), (5d)

y ∶= x/l. (5e)

Assuming that λ ≠ λ(x) and (T − T0)/T0 ≪ 1, linearization of
Eq. (4) results in an alternative boundary problem,

∂θ
∂Fo

= ∂2θ
∂y2 , 0 < y < 1, Fo > 0, (6a)

∂θ
∂y
∣
y=0
= Bi ⋅ θ −Φ(Fo), (6b)

∂θ
∂(−y) ∣y=1

= Bi ⋅ θ, (6c)

θ(0, y) = 0. (6d)
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B. Laser pulse function
The laser pulse functions can be changed programmatically

during the experiment and can take various forms, including the fol-
lowing as example (a rectangular, a triangular, and a Gaussian pulse
functions—previously considered by Baranov et al.30):

P1(t) = {
t−1
las , t ≤ tlas

0, t > tlas,
(7a)

P2(t) =
2

tlas
⋅ {

2t/tlas, t ≤ tlas/2
2(t − tlas)/tlas, tlas/2 < t < tlas,

(7b)

P3(t) =
5√
πtlas

⋅ exp(−25[t/tlas − 0.5]2). (7c)

After changing the variables to dimensionless numbers and
introducing a computationally efficient sign function sgn(x), a quan-
tity Φ(Fo) ∶= P(Fo) ⋅ l2/a may be defined, and Eq. (7) can then be
re-written as

Φ1(Fo) = 0.5/Fo × [1 + sgn(Folas − Fo)], (8a)

Φ2(Fo) = 1
Folas

×[1 + sgn(Folas − Fo)]

×[1 − ∣Folas − 2Fo∣/Folas], (8b)

Φ3(Fo) = 5/(
√
πFolas) × (−25[Fo/Folas − 0.5]2). (8c)

C. Spatial and temporal domains
The spatial domain of Eq. (6) is simply y = [0, 1]; the tempo-

ral domain depends on the actual data acquisition time tmax, which
is chosen by an algorithm implemented in the instrument software
or—when the latter fails—by the operator manually. A bad choice
of tmax can not only result in additional computational costs but
may also lead to a biased estimate of the thermal properties if the
accumulated experimental data points are too few or if the statis-
tics for the temperature rise region of the experimental T( t̃) profile
are under-represented. In addition, the signal registered at the sam-
ple’s rear surface often shows a brief excursion during the pulse 0
≤ t ≤ tlas—an event which cannot be described by a simple model
such as that introduced in Sec. III A. These two aspects can be par-
tially addressed by implementing a data truncation procedure, which
would help in establishing a temporal domain suitable for solving
the reverse heat conduction problem. The θ(y = 1, Fo) solution of
Eq. (6) and the subsequent conversion of that function to a T̂(tj)
dataset (see Sec. II A) need to be defined at a temporal domain
0 ≤ t ≤ t̂max, where t̂max ensures adequately represented statistics.
The t̂max value may be chosen based on the characteristic thermal
transfer time t̂max ≃ l2/a [this corresponds to Fo = 1 in Eq. (5a)],
which, in turn, can be defined in terms of the half-rise time t1/2
= 1.370l2/(π2a) (Ref. 31) first introduced by Parker et al.1 This yields
t̂max ≃ π2/1.370t1/2 ≈ 7.2t1/2. Note that the radial heat fluxes have
a different characteristic time d2/a defined by the sample diame-
ter d. Since typically d/l ≈ 0.1–0.2, the radiative heat transfer may
occur at the same timescale as the radial temperature equilibration.

Therefore, estimating the heat losses from a comparison between
the experimental and the calculated heating curve at times longer
than t̂max presents an ill-posed problem without explicitly account-
ing for the radial heat fluxes. Even though the laser beam might
not cover the sample completely, these difficulties can be avoided,
and the effect of potential signal drift minimized, if the measure-
ment time is kept as short as practically possible—which is pre-
cisely what the above-described truncation procedure does auto-
matically. Thus, the rectangular domain of Eq. (4) is defined as
D = (0 ≤ x ≤ l, 0 ≤ t ≤ t̂max), and the domain of Eq. (6) is defined as
D = (0 ≤ y ≤ 1, 0 ≤ Fo ≤ 1).

IV. FINITE-DIFFERENCE SCHEMES FOR THE HEAT
CONDUCTION PROBLEM

The (semi)analytical solutions considered in Refs. 22–28 with
corrections by Josell, Warren, and Cezairliyan32 and Blumm and
Opfermann33 are the ones referenced in the commercial software for
the laser flash instruments. Some new corrections have only recently
been proposed by Philipp et al.34 Instead of pursuing the classi-
cal approach, it seems more sensible to propose a purely numeri-
cal solution. Some steps in this direction have already been taken
previously by Baranov et al.30 (with the use of MATLAB) and
Pavlov et al.7 (FlexPDE). This section describes how to implement
finite-difference schemes for the solution of the boundary prob-
lem described in Sec. III A without having to use external software
packages.

The domain D (Sec. III C) is divided into a uniform grid by
introducing the coordinate step size h = 1/(N − 1), where N is the
number of individual coordinate points on the grid, and the dis-
crete time step τ = τFh2, τF ∈ R. The grid is used to discretize θ(y,
Fo), which becomes θ(ξj, F̂om) = θm

j , j = 0, . . ., N − 1, m = 0, . . .,
m0, called the grid function. This section shows different ways to
calculate θm

j , which can later be converted to T̂(tj) (see Sec. II B).

A. Application to the boundary problem [Eq. (6)]
If σ ∈ [0, 1] ∩R, the finite-difference representation of Eq. (6a)

on a six-point pattern may be written as35

θm+1
j − θm

j

τ
= Λ(σθm+1

j + (1 − σ)θm
j ),

1 ≤ j < N − 1, 0 ≤ m ≤ m0. (9)

Three special cases of Eq. (9) will be considered: (a) the fully
implicit scheme (σ = 1), (b) the forward-time central-space (FTCS)
scheme (σ = 0), and (c) the Crank–Nicolson scheme (σ = 0.5). When
σ = 0, Eq. (9) can be explicitly solved against θm+1

j . The solution is
straightforward and will be skipped here. If σ≠0, a sweep algorithm35

may be used to solve the tridiagonal set of linear equation (9),

ajθm+1
j−1 − bjθm+1

j + cjθm+1
j+1 = Fj, (10)

where aj = cj = 1/h2. For the fully implicit scheme, bj = 1/τ + 2/h2,
Fj = −θm

j /τ. For the Crank–Nicolson scheme, bj = 2/τ + 2/h2,
Fj = −2θm

j /τ −Λθm
j .

Rev. Sci. Instrum. 91, 064902 (2020); doi: 10.1063/1.5132786 91, 064902-5

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

In the sweep algorithm, the following recurrent expression is
introduced:

θj = αj+1θj+1 + βj+1. (11)

Let Lϕ(ξα) = (ϕα+1 − ϕα−1)/2h. The order of approximation for
Eq. (9) is O(τ + h2) for either σ = 0 or σ = 1 and O(τ2 + h2) for σ = 0.5.
On the other hand, the following finite-difference representation of
the boundary conditions [see Eqs. (6b) and (6c)] has an order of
approximation O(h):

Lθ0 = Bi ⋅ θ0 − Ξ, (12a)

LθN−1 = −Bi ⋅ θN−1, (12b)

where Ξ = Ξm+1 is the discretized pulse function defined by sub-
stituting Folas, e.g., in Eq. (8), with the discrete pulse width F̂olas

= ⌊ Folas/{l2a−1}
τ ⌋ ⋅ τ (square brackets denote the floor function). Note

that this effectively changes the magnitude of the heat source term in
Eq. (12a) by ∼O(τ), which only slightly affects the maximum heating
[see Eq. (5d)]; this is compensated automatically when re-scaling the
solution to match the experimental heating ΔTmax value (see Sec. II
B). Additionally, the numerical solution described here is valid for
any type of the Ξ(F̂om+1) function, which can be given either in ana-
lytic [e.g., Eq. (8)] or tabular form (i.e., directly measured using a
laser power sensor)—without having to select a fitting function for
the pulse shape (e.g., as done by Blumm and Opfermann33).

To obtain the same order of approximation for the boundary
conditions as for Eq. (9), a Taylor expansion in the h-vicinity of ξ
= ξ0 and ξ = ξN−1 may be used to define virtual nodes ξ = ξ−1 and
ξ = ξN ,

θ−1 ≃ θ0 − Lθ0 ⋅ h + Λθ0 ⋅ h2/2, (13a)

θN ≃ θN−1 + LθN−1 ⋅ h + ΛθN−1 ⋅ h2/2. (13b)

Noticing that Λθm+1
j = (θm+1

j − θm
j )/τ ⋅ σ − Λθm

j (1 − σ)/σ and
combining Eqs. (12) and (13) yield the α1 and β1 values for Eq. (11)
as well as the grid function value at ξN−1.

(i) Fully implicit scheme (σ = 1):

α1 =
2τ

h2 + 2τ(1 + hBi) , (14a)

β1 =
h2θm

0 + 2hτΞm+1

h2 + 2τ(1 + hBi) , (14b)

θm+1
N−1 =

h2θm
N−1 + 2τβN−1

h2 + 2 hτBi + 2τ(1 − αN−1)
. (14c)

(ii) Crank–Nicolson scheme (σ = 0.5):

α1 =
τ

h2 + τ(1 + hBi) , (15a)

β1 =
(Ξm+1 + Ξm) − (θm

0 − θm
1 )/h + (h/τ − Bi)θm

0

h/τ + 1/h + Bi
, (15b)

θm+1
N−1 = −

hθm
N−1(τBi − h) − τβN−1 + τ(θm

N−1 − θm
N−2)

h2 + hτBi + τ(1 − αN−1)
. (15c)

Equations (14c) and (15c) are used to initiate the calculation of
θj, j = N − 2, . . ., 0, with the recurrent expression given by Eq. (11),
where αj and βj are calculated using standard expressions35—in
addition to the α1 and β1 values given by Eqs. (14a), (14b), (15a),
and (15b). When the grid function θm+1

j has been fully calculated for
j = 0, . . ., N − 1, the above-described process repeats at the next time
step m + 2, m + 3, etc.—until just above the time limit mmax = Fomax/τ

FIG. 3. Comparison of the finite-difference solution of the boundary problem in
Eq. (6) using various different schemes (FTCS, fully implicit and Crank–Nicolson)
with the analytic solution by Parker et al.,1 which describes the laser heating of a
thermally insulated wide, thin sample by an infinitely short laser pulse (Bi = 0.0).
For the numeric solution, the pulse shape has been chosen as rectangular with
the pulse duration Folas ≈ 1.41 × 10−5. The deviation from the analytical solution
is shown using probability density histograms of the residuals, plotted for different
grid parameters.
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(so that the calculated solution is always defined on a slightly wider
temporal domain than the experimental data—this helps the correct
operation of the interpolation procedure, as described in Sec. II A).
Furthermore, the number of computed θm data points is reduced
to a pre-set value ns with equal spacing between points; hence,
only every ⌊Fomax/(nsτ)⌋ point forms up the calculated heating
curve stored in memory (square brackets denote the floor function).
Finally, the calculated curve is scaled by a factor of Tmax/max(θm

N)
(see Sec. II B).

FIG. 4. The effect of (a) heat losses (l/d = 0.1) and (b) finite pulse width of a rect-
angular wave (σ = 1.0, N = 30). Comparison of the finite-difference solution of
the boundary problem in Eq. (6) using various difference schemes (FTCS, fully
implicit and Crank–Nicolson) with the model by Cape and Lehman23 corrected by
Josell, Warren, and Cezairliyan.32 The latter model describes the two-dimensional
laser heating of a wide, thin disc by an infinitely short laser pulse uniformly cov-
ering its front surface; the heating arising from the pulse is followed by cooling
through thermal radiation from the front and rear surfaces only characterized by
an efficiency factor Y = 0.5 (note that Y = Bi in current notations). For the numeric
solution, the pulse shape has been chosen as rectangular with the pulse duration
Folas ≈ 4 × 10−4.

B. Cross-verification
To verify whether the finite-difference scheme (Sec. IV A) and

the boundary problem (Sec. III A) have been composed correctly,
the numerical solution θ(y = 1, Fo) calculated using the described
procedure is compared to the previously published analytical solu-
tions by Parker et al.,1 Cape and Lehman,23 and Josell, Warren, and
Cezairliyan32 for two extreme cases. In both cases, the heating of a
thin, wide cylinder by an infinitesimal laser pulse is considered. The
sample is either (a) thermally insulated (Bi = 0) or (b) cooled down
by the radiative heat transfer with an efficiency Bi = 0.5. The results
of this comparison are shown in Figs. 3 and 4.

In each case, cross-verification of the different schemes (σ = 0.0,
σ = 0.5, and σ = 1.0) was performed. The probability density of resid-
uals ΔT̂−ΔT̂Parker in Fig. 3 has been plotted for different grid param-
eters N and τF. The highest accuracy for a very short laser pulse
is achieved with the fully implicit scheme (σ = 1.0) on a dense (N
= 80, τF = 0.05) grid, where the maximum deviation from the analyt-
ical solution (Fig. 3) is less than 0.01%, and with the Crank–Nicolson
scheme (σ = 0.5) on a loose grid (N = 30, τF = 6.25 × 10−3). Overall,
both σ = 0.0 and σ = 1.0 schemes with an increased order of approx-
imation O(τ + h2) show good numeric stability and high accuracy
down to N = 15 and even lower—compared to a conditionally stable
FTCS scheme with an O(h) approximation of the boundary condi-
tions. For the second comparison (Bi = 0.5), a very close agreement
to the corrected two-dimensional Cape–Lehman model (Ref. 32) is
shown in Fig. 4(a). Figure 4(b) shows the solutions for different pulse
widths Folas.

V. REVERSE-ENGINEERING OF THE
TIME-TEMPERATURE PROFILES TO INFER
THERMAL PROPERTIES

Thermal properties in a laser flash experiment are determined
from the minimum of the objective function f (S) calculated using
Eq. (2) on a curve-to-curve basis. The argument S is defined as a
variable-size search vector constructed from the values of material-
dependant thermal properties (a/l2, Bi, and ΔTmax) plus from the
parameters klin, T lin, and t0, where t0 is the time shift between the
start of data acquisition and the laser pulse. In cases when noise is
large and heat losses are expected to be negligible, to avoid situations
where Bi may turn negative, it may be explicitly excluded from the
search. Thus, the dimension of S may vary from two (a/l2 and Tmax)
to six in the current implementation.

A. Nonlinear optimization algorithms
To find S, a nonlinear optimization algorithm is used to deter-

mine the minimum direction Smin. Once it is found, a linear search
determines the optimal magnitude of the step in the S direction.
These actions are repeated iteratively. If proper algorithms are cho-
sen, with each iteration, the objective function f (S) is brought closer
to the global minimum. If the model [given by Eq. (6)] is adequate,
an unbiased estimate of thermal properties is produced at the global
minimum of f (S).

1. Quasi-Newton method with approximated Hessian
The calculation of the objective function gradient takes one of

the central parts in the direction search routine. If ΔSi is a small
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variation of the i-th component of the search vector, the associated
component of the gradient is Δf (Si + ΔSi)ΔSi, or more precisely,36

gi =
f (Si + ΔSi) − f (Si − ΔSi)

2ΔSi
, (16)

where a central-difference approximation is used; f (Si + ΔSi) is the
value of the objective function calculated at a new search vector S,
all components of which are identical to S except for the i-th com-
ponent, which is defined as Si = Si + ΔSi. Equation (16) introduces a
calculation error ∼O(ΔSi).

Consider the following Taylor expansion to the second order of
f (xk) in the γkpk vicinity of xk = Sk: f (Sk + γkpk) ≃ f (Sk) + γkgT

k pk
+pT

k Gkpk. The minimum of this quadratic form then corresponds to
the Newtonian condition: pk = −G

−1
k gk. If the Hessian matrix Gk is

approximated by Hk, the direction to minimum is then defined as

pk ≈ −H
−1
k gk, (17)

where Hk is a positive definite matrix containing the curvature
information for the objective function.

A Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Ref. 36) algo-
rithm is used to calculate Hk+1 at the next iteration k + 1 using the
gradient value gk and the increment uk = gk+1 − gk,

Hk+1 = Hk +
1

gT
k pk

gkg
T
k +

1
γkuT

k pk
uku

T
k , (18a)

H0 = I, (18b)

where I is a r × r identity matrix, r is the dimension of the search
vector. Thus, the direction to the minimum at the first iteration
coincides with the inverted gradient, the same as in the gradient
descent algorithm, which searches for a stationary point of f (S). The
inverse of the approximated Hessian matrix Hk is computed using a
recursive procedure based on the Laplace expansion.

Note that Eq. (18) is extremely sensitive36 to the selection of γk,
which is chosen via a linear search algorithm. If the line search fails
even by a small margin, H−1

k+1 can end up being non-positive definite,
which will send the optimizer going uphill instead of downhill.

2. Inexact stochastic linear search based on the Wolfe
conditions

After the vector pk is calculated, the search vector Sk+1 at the
next iteration may be expressed as Sk+1 = Sk + γkpk. If γk ∈ [0, γmax],
a linear search may be applied to calculate γk, which minimizes the
objective function f (Sk + γkpk). In practice, it is convenient to choose

γmax = min
pi

k≠0
Li/pi

k, (19)

where Li is a safety margin pre-set for Si prior to calculation.
The Wolfe conditions are used to asses whether Sk+1 is likely

to be the minimum point. Here, the strong Wolfe conditions are
considered,37,38

f (Sk+1) − (Sk) ≤ c1γkp
T
k gk, (20a)

∣pT
k gk+1∣ ≤ c2∣pT

k gk∣, (20b)

where c1 = 0.05 and c2 = 0.8.

The computational procedure utilizing inequalities (20) starts
by generating a random point αk = z internal to the [a, b] seg-
ment. The objective function is then calculated at this point, and
if inequality (20a) is not satisfied, the segment is then reduced to
[a, z]. Otherwise, the second condition [inequality (20b)] is evalu-
ated. If the latter is satisfied, then z is considered to be the minimum
point; otherwise, the computational domain is reduced to [z, b]. The
procedure continues while the segment length is greater than Elin.

The algorithm described above works particularly well with the
quasi-Newton direction solver.

B. Initial conditions and stopping criteria
An initial value S0 is required and allows us to reduce the com-

putational costs if chosen reasonably. Fortunately, this is easy to
do once the half-rise time (Sec. II B) has been estimated from the
experimental data. The initial thermal diffusivity value is determined
using the classic solution by Parker et al.1 with the corrected coeffi-
cient reported by Heckman,31 Josell, Warren, and Cezairliyan,32 and
Carr:19 a0 = 1.370× l2/π2t1/2. The maximum heating and initial base-
line values are determined, as described in Sec. II B, and the initial
value of the Biot number is set to zero.

After starting the search, a fixed-size buffer (the default is eight
entries) is filled successively with Sk values at each new iteration
k; this is complemented by the SSR value [see Eq. (2) for a defini-
tion]. When the buffer is full, the standard deviation of those values
δSω is calculated for each ω-th component plus for the SSR. The
relative error, calculated as δSω/⟨Sω⟩, is then compared to a con-
stant Egen. If ∀ω ∈ Z : δSω/⟨Sω⟩ ≤ Egen, the search completes
normally. Otherwise, the buffer is cleared and the search contin-
ues until the criterion is finally satisfied or if the iteration limit is
reached.

C. Example applications and convergence tests
A few previously measured time–temperature profiles were

selected to represent a gradual deviation from the perfect experimen-
tal conditions. These deviations are introduced by different exper-
imental factors, which affect either the perceived temperature rise
or the actual heat transfer in the sample. The pre-selected data are
then reverse-engineered following the procedure described above to
produce an optimal Sk. The performance of this procedure under
real-world conditions is judged and the convergence is tested.

The raw data were collected using two experimental installa-
tions:

(a) The Kvant laser flash analyzer designed at the Moscow Engi-
neering Physics Institute equipped with two temperature
detection capabilities: (i) a thermocouple (pre-welded onto
the rear surface of the sample coated with platinum black
prior to each experiment) connected to a scalable amplifier
with automatic constant-voltage subtraction, providing rapid
detection of heating with an error of less than 2.5 × 10−3 K
and (ii) an in-house designed InGaAs pyrometer (field of view
dFOV = 6 mm). A combination of a rotary pump and a diffu-
sion pump ensures high vacuum (0.01 Pa or 10−4 mbar). An
additional capability of controlling the oxygen partial pres-
sure is provided by a solid–electrolyte galvanic cell; the oxy-
gen partial pressure can be changed on-the-fly. A ruby laser
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(wavelength 694.3 nm) delivers 1.5 ms fixed-width pulses with
an energy of 5–7 J/pulse.

(b) The Linseis Culham LFA, a prototype based on the Linseis
LFA 1600 instrument, modified by the manufacturer to allow
integration in a research room in the Materials Research Facil-
ity (MRF) at UKAEA for testing of mildly radioactive sam-
ples. The furnace ambient temperature is measured using a
low-resolution pyrometer, while a PbSe-based Peltier-cooled
detector is used to register the rear-surface heating of the sam-
ple. A simple rotary pump is capable of pumping the chamber
down to 0.1–0.01 mbar. The pulse width and pulse energy (up
to 31 J) of the Nd:YAG laser (wavelength 1064 nm), as well as
the detector gain and aperture, can be changed by the operator
during the experimental run.

The materials under study were the following: a sintered sam-
ple of nearly stoichiometric uranium dioxide (l = 1.7118 mm, d
= 10.061 mm) with a porosity of about 8.5%, an MPG-6 graphite
sample (l = 2.9302 mm, d = 9.9654 mm), and two 10-mm Zr-1%Nb
E110 alloy discs cut by electrical discharge machining (l = 0.414 mm
and l = 0.199 mm). The raw heating curve analyzed here for the ura-
nium dioxide pellet was reported previously (e.g., Baranov et al.39).
The measurements of the E110 alloy samples were conducted with
the Linseis Culham LFA, graphite-spraying both surfaces of the
samples prior to tests with a Graphit 33 Contact ChemieTM coating.

Thermal properties are reverse-engineered from experimental
data using the heat transfer model given by Eq. (6). A quasi-Newton
direction search (Sec. V A 1) with a linear stochastic search algo-
rithm based on the Wolfe conditions (Sec. V A 2) was applied to
reach the minimum of the objective function (gradient resolution
ΔSi/Si = 10−4, linear search error Elin = 10−7, and overall search error
Egen = 10−3). The model solution was calculated using a fully implicit
(σ = 1.0) difference scheme [see Eq. (9)] with the default grid set-
tings N = 30, τF = 0.25 (total number of points for the model curve
ns = 100).

1. Uniform low noise
Figure 5 shows a heating curve for a nearly stoichiometric

UO2 sample at a test temperature T0 = 1829.7 K. Due to a poor
thermal conductivity, which is especially low at high temperatures,
the characteristic heat conduction time is high. Conversely, the
heat losses due to radiation are huge. The heat transfer model
[defined by Eq. (6)] perfectly describes the experimental data, except
for the initial segment, which is perhaps attributed to the special
optical properties of the material.39 Since the baseline was accu-
rately determined by the instrument software, only the thermal
diffusivity a, the Biot number Bi, and the maximum temperature
ΔTmax were included in the search vector. Excellent convergence
is obtained already after 16 iterations, with the mean deviation per
point ∣ΔT̂i − ΔTi∣ ≈ 1.5 × 10−2 K. Interestingly, the first iteration
(same as for the gradient descent method) results in a shift of the
search vector to a different local minimum, but the numerical pro-
cedure quickly escapes it and gets to the right track to the global
minimum.

2. Synchronization errors
When the data acquisition from the detector is slightly ahead or

behind the laser pulse, the standard processing procedure will show

systematic errors. This is illustrated in Fig. 6 for an MPG-6 graphite
sample (measurements with an InGaAs detector/Kvant). The loss of
synchronization error can be easily identified by looking at the distri-
bution of residuals (inset in Fig. 6). As per the central limit theorem,
the latter should follow a Gaussian distribution if only random noise
is present in raw data. A deviation from this rule means a source of
systematic error needs to be accounted for; in this case, this is done
by including the time shift t0 and the baseline intercept T lin in the
search vector. The solution to the reverse problem results in a near-
perfect distribution of the residuals, meaning the systematic error
has now been completely excluded and the results are therefore more
accurate.

FIG. 5. An example run of the reverse-engineering procedure for an experimental
time–temperature profile measured with an InGaAs detector (total number of data
points nexp = 4800) of a 91.5% dense UO2 sample at T0 = 1829 K, showing the
final heating curve corresponding to the optimized set of model parameters and
the components of the search vector, fully converged after 24 iterations. Note the
small plateau on the SSR plot, which is likely attributed to a local minimum of the
objective function.
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3. Non-uniform high noise
Figure 7 shows a heating curve for a l = 0.414 mm E110 alloy

sample at a test temperature T0 = 1024 K. The material tested with
the Linseis Culham LFA is a fair thermal conductor, and the sample
is sufficiently thin so that the heat wave reaches the rear surface of the
sample relatively fast. Because of this, the heat losses are negligible at
this and even higher temperature; hence, they can be excluded from
the search vector. On the other hand, the baseline (initially defined
at klin = 0 as explained in Sec. II B) needs to be adjusted due to
the inaccurate baseline estimation based on the under-represented
statistics at t < 0 from noisy data. Same as previously, full conver-
gence is obtained after 24 iterations, with the average data spread
of ≈0.25 mV. The search for the optimal baseline slope seems to be
taking the longest time.

4. Pathological data
Figure 8 shows a heating curve for a l = 0.199 mm E110 alloy

sample at a test temperature T0 = 1024 K measured with the Linseis
Culham LFA. The low thickness of the sample leads to rapid heat
conduction, with the acquisition time less than 5 ms. At this time,
the baseline intercept estimated at t < 0 seemed to be sufficiently
accurate as it was measured over a longer time interval than the
actual heating curve. On the other hand, the data obviously showed
either a detector signal drift or an ambient temperature instability,
which needed to be corrected for by adjusting the baseline slope.
Additionally, the data in Fig. 8 show anomalies with pronounced
low-frequency, high-amplitude noise, which distorts the heating

FIG. 6. An illustration of the systematic error caused by a loss of synchronization
in timing of the data acquisition and the laser pulse. The reverse heat problem is
first solved using three variables (a, Tmax, and Bi), giving rise to the heating curve
(1), which corresponds to R2 = 0.999 43 and a thermal diffusivity value a = a0. The
distribution of residuals in this case differs from the ideal Gaussian function with a
zero mean. When the time shift t0 and the baseline intercept T lin are included in the
search, the heating curve (2) is obtained as a result, which yields a Gaussian-type
distribution of residuals and a markedly higher R2 = 0.999 93 value [(a − a0)/a0
= 9.73%].

curve so that it becomes nearly impossible to asses its true shape.
However, applying the nonlinear optimization procedure described
in this section allows reaching a global minimum of the objective
function in less than 24 iterations, with an average data spread
of ≈0.45 mV.

FIG. 7. An example run of the reverse-engineering procedure for an experimental
time–temperature profile with a high non-uniform noise (likely consisting of several
noise harmonics) measured with a PbSe detector (total number of data points
nexp = 864) of a graphite-coated l = 0.414 mm E110 alloy sample at T0 = 1024
K, showing the final heating curve corresponding to the optimized set of model
parameters and the components of the search vector, fully converged after 24
iterations.
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FIG. 8. An example run of the reverse-engineering procedure for an experimental
time–temperature profile with a highly inaccurate temperature measurement com-
bined with a detector signal drift measured with a PbSe detector (total number of
data points nexp = 1050) of a graphite-coated l = 0.199 mm E110 alloy sample at
T0 = 674 K, showing the final heating curve corresponding to the optimized set of
model parameters and the components of the search vector, fully converged after
24 iterations.

VI. CROSS-VALIDATION WITH EXTERNAL REFERENCE
AND COMMERCIAL SOFTWARE

An attested reference tungsten sample (l = 2.034 mm, d
= 9.88 mm) was purchased from Netzsch to conduct an indepen-
dent validation study. The sample arrived with a printed copy of a
reference table listing the pre-measured thermal diffusivity values
in accordance with the ASTM standard.9 The sample was then pre-
pared for laser flash measurements following the manufacturer and
ASTM recommendations by coating both sides with a thin layer of
high-emissivity carbon. As previously, a Graphit 33 Contact Chemie
spray was used on the sample pre-heated at 100 ○C. The coated tung-
sten sample had its thickness measured with a micrometer and then
was placed in a graphite sample holder on top of a graphite ther-
mal shield of the Linseis Culham LFA. The system was evacuated to

a pressure below 10−1 mbar and filled with Grade Zero argon gas.
This process was repeated three times, after which the gas flow was
set to 8 l/h. The heating curves were measured in a range of temper-
atures T0 = 473–2273 K (heating and cooling rates were 20 ○C/min)
with a PbSe detector. At each temperature, the detector parameters
(gain, iris, and acquisition time), as well as the laser power and pulse
duration, were changed manually by the operator to deliver the best
signal-to-noise ratio and recorded in a metadata file separately. Mea-
surements and data processing using the “Combined model” and
baseline subtraction were controlled from the commercial Linseis
Aprosoft v1.06 software adapted specifically for the Linseis Culham
LFA. Default settings were used for the temperature and detector
current stability controls, and a constant delay of 90 s was used
between shots. The resulting thermal diffusivity data from the first
run (to reduce the formation of tungsten carbide) are plotted in
Fig. 9.

The recorded detector signal exported in the ASCII-format
and metadata files prepared by the operator were used as input
when running PULsE. Again, as previously, a quasi-Newton direc-
tion search (Sec. V A 1) with a linear stochastic search algorithm
based on the Wolfe conditions (Sec. V A 2) were adopted for data
treatment (a gradient resolution ΔSi/Si = 10−4, a linear search error
Elin = 10−7, and a global search error Egen = 10−3). A fully implicit (σ
= 1.0) difference scheme was used to calculate T̂(t) [see Eq. (9)] with
the default grid settings N = 30, τF = 0.25 (total number of points for
the model curve ns = 100).

Experimental data were processed individually for each curve,
adjusting the time range only when such intervention was necessary;
an example of this is shown in Fig. 10(a), and a standard truncation
routine was applied automatically (see Sec. III C).

FIG. 9. Cross-validation results for PULsE (manual processing of each individual
curve) and Linseis AproSoft (batch processing) using the same dataset acquired
with a PbSe detector/Linseis Culham LFA on a standard tungsten sample supplied
by Netzsch, pre-coated with graphite. The solid line is plotted using the reference
values provided in the documentation for the standard sample (no information on
the error values or the type of detector is available).
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FIG. 10. Example benchmarking of
PULsE on two datasets: (a) an exper-
iment at T0 = 469 K. Due to a detec-
tor failure, the signal saturated at −10
mV for the first ≈12 ms after the laser
shot. PULsE was capable of correcting
for that error after manually limiting the
time range to exclude problematic val-
ues, resulting in a value of thermal dif-
fusivity a = 56.03 mm2 s−1, while Linseis
Aprosoft (a = 39.1 mm2 s−1) lacks that
capability. (b) An experiment at T0 = 973
K. Although the curves look similar, the
model calculations in PULsE (a = 41.1
mm2 s−1) are in closer agreement with
the measured data compared to Linseis
Aprosoft (a = 43.2 mm2 s−1).

The default search variables were the thermal diffusivity a, the
maximum heating ΔUmax, and the baseline intercept T lin. A lin-
ear negative drift of the detector signal could be observed at T0
= 473 K [see, e.g., Fig. 10(a)], which required including the base-
line slope as a search variable at that temperature. This drift likely
originates from the heat exchange between the sample and the sam-
ple holder34 (either by conduction, radiation, or both). If included
in the search vector, the latter would have been poorly estimated
due to a low signal-to-noise ratio [see Fig. 11(a)]. At T0 ≤ 1073 K
and T0 > 1873 K, the heat losses were indistinguishable from the
detector noise [e.g., Fig. 10(b)]. Likewise, at medium temperatures
(1273 ≤ T0 ≤ 1873 K), the accuracy of detector measurements was
sufficiently high, and the temperature-dependent heat losses pro-
nounced. All of these factors had to be taken into account manually
when performing the final calculations (see the supplementary mate-
rial). Unfortunately, PULsE still requires manual input based on the
recommendations above to produce the most accurate results. Work
is currently undergoing to deliver a fully automatic procedure for
determining the most important independent variables based on a
statistical data analysis.

Finally, a residual analysis was conducted for the thermal dif-
fusivity datasets from the Linseis Aprosoft and PULsE software
[shown in Fig. 11(b)]. A large number of outliers characteristic to

the Aprosoft results (Fig. 9) were due to an intermittent detector
failure, with the signal saturating at either the lower (−10 mV) or
higher (+10 mV) detection limits (this could have also been due to
an operator error when selecting the detector gain). PULsE, on the
other hand, was able to reconstruct the heating curve based on these
incomplete measurements by limiting the search range; hence, the
error distribution is localized near zero for PULsE data (Fig. 11).
Quite importantly, even though the commercial software was able to
deliver meaningful values in many cases, the associated error distri-
bution had a median at 0.867 mm2 s−1, meaning that an uncompen-
sated systematic error was present. The median error for the PULsE
data was significantly lower (−0.18 mm2 s−1), suggesting a better
quality of the search procedure, a better thermal transfer model, or
both.

VII. CURRENT LIMITATIONS OF THE COMPUTATIONAL
METHOD

The following list of problems will be addressed in future
publications:

● A source of uncertainty associated with non-uniform heat-
ing has not been considered in the present study but is listed

FIG. 11. Statistical analysis of the ther-
mal diffusivity data: (a) the coefficient of
determination R2 calculated with PULsE
and averaged at each test temperature,
showing a correlation with the detector
signal-to-noise ratio and (b) the probabil-
ity density of error ai − ai ,ref, where ai ,ref
are the Netzsch reference values, with
the median values 0.867 and−0.18 mm2

s−1 for thermal diffusivity data obtained
with the Linseis Aprosoft and PULsE
software, respectively.
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in the ASTM document.9 If the diameter of the laser spot
dlas is smaller than the diameter of the sample d, radial heat
fluxes will induce a change to the heating curve (e.g., as
shown by Baba and Ono16). Hence, a fully two-dimensional
heat conduction problem should be used instead.

● An automated procedure for selecting an optimal number
of variables to achieve the least influence of the system-
atic experimental errors on the values of thermal properties
is currently lacking; instead, some parameters are selected
manually. A better procedure will likely involve a con-
strained version of nonlinear optimization (to limit Bi ≥ 0)
and a variable time domain. The latter will need to rely on a
different statistic than the χ2—a possible solution would be
using a Bayeseian information criterion, which has proven
to be effective for a different problem considered recently by
Fulton and Lunev.40

● Parker et al.1 have originally estimated that in the adiabatic
case, the maximum front surface temperature of the sam-
ple after a laser pulse is Tmax(x = 0) = 38Tmax(x = l) ⋅ l/a1/2,
where [l] = cm and [a] = cm2 s−1. When heat dissipates
by radiative transfer, the front-surface heating will be lower;
however, it is clear that for sufficiently low test temperatures,
ΔT/T0 may no longer be considered small. The other side of
the problem consists in the intrinsic nonlinear dependence
of heating on the spectral radiance, which is especially pro-
nounced when ΔT > 30–40 K.41 This means that both the
nonlinear detector output and the nonlinear heat losses may
need to be taken into account for some cases, e.g., for the
setup used by Pavlov et al.7 and Ronchi et al.8

● Current analysis does not cover multi-layered heat transfer,
a distributed heat source, and possible modifications to the
original temperature detection concept.

It is hoped that some of the limitations may be resolved in
collaboration with other researchers.

VIII. CONCLUSIONS
The following typical errors have been identified by ana-

lyzing a large array of experimental data from two different
instruments:

(a) partial interruption of data acquisition from the detector, e.g.,
due to an electromagnetic fault or because of the wrong gain
setting, resulting in an incomplete measurement,

(b) synchronization failure causing a time shift in the raw data,
(c) periodically occurring outliers, which are suspected to orig-

inate from the imperfect soldering used for electric connec-
tions,

(d) superimposed noise harmonics caused by a combination of
factors including laser reflections due to a cracked sample
holder cap, mains hum, and mechanical vibrations,

(e) high-amplitude white noise caused by low specific detectivity
of the detector or a poorly transmitting optical window,

(f) unstable data acquisition (e.g., due to overheating of electric
connections to the main amplifier) causing a linear baseline
drift, and

(g) conductive or radiative heat transfer between the sample and
the sample holder.

A computational method based on nonlinear optimization and
finite-difference schemes (verified against some standard analytical
solutions) has been designed specifically to handle data processing
in experiments showing the above-listed problems. The implemen-
tation of this method in the PULsE software allows us to control
the search vector for data processing (by including or excluding
search variables) and to target specific parts of the raw data—features
not commonly present in the commercial software. A built-in tool
for the residual analysis helps to identify systematic errors in the
processed data.

A cross-validation study has been conducted with data gen-
erated using Linseis equipment at the Materials Research Facility
(UKAEA) on a Netzsch reference sample by benchmarking against
the packaged Linseis software. Generally, PULsE outperforms Lin-
seis Aprosoft due to wider data treatment capabilities and fine
tuning. Future work will focus on extending its capabilities and
improving batch-processing of data.

SUPPLEMENTARY MATERIAL

See the supplementary material for a complete set of exper-
imental data and calculation results using PULsE and Linseis
Aprosoft.
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