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Abstract
We perform a study of system-scale to gyro-radius scale electromagnetic modes in a
pedestal-like equilibrium using a gyrokinetic code ORB5, along with a comparison to the
results of wimulations in a local gyrokinetic code, GS2, and an MHD energy principle code,
MISHKA. In the relevant large-system, short wavelength regime, good agreement between the
gyrokinetic codes is found. For global-scale modes, reasonable agreement between MHD and
the global gyrokinetic code is observed. There are various formulational and implementational
issues with using standard gyrokinetic codes in this limit, so even this level of agreement is
promising. In order to correctly model the physics it is important to keep the effect of magnetic
field strength fluctuations (which are not directly included in ORB5) in this case, where the
gradient of β is large. The pressure stability threshold does not change substantially between the
MHD and global gyrokinetic simulations, for the conditions present in this paper. It is also
noted that the main stabilising mechanism at short wavelength is the diamagnetic drift, for
which a two-fluid (rather than gyrokinetic) formulation would be sufficient.

Keywords: pedestal, kinetic ballooning mode, gyrokinetic, global, MHD

(Some figures may appear in colour only in the online journal)

1. Introduction

When sufficiently heating power is deposited into a tokamak
plasma, a strong pedestal forms, and the plasma enters an H-
mode [1]. This edge transport barrier is responsible for signi-
ficantly improving overall confinement time, and is considered
essential for fusion reactor ignition. Various attempts have
been made to understand the properties of the H-mode ped-
estal [2–4]. For example, the EPED model [5–7] is a predict-
ive model for the pedestal region and relies on two constraints
on pedestal height and width: the peeling ballooning mode,

Original Content from this work may be used under the
terms of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

which is well understood [8, 9], and kinetic ballooning modes
(KBMs) [10], which are less well understood. The narrow
width and large gradients of the pedestal means that local
gyrokinetic modelling is not well-justified for these KBMs,
and we have been exploring the use of global gyrokinetic mod-
elling for this task [11, 12].

There are arguments that KBMs cannot be responsible for
significant transport in the pedestal [13]: but in this case, to
explain why KBMs do not play a role, we must still be able
to correctly model them. More broadly, there are a range of
electromagnetic instabilities that appear in the pedestal, and
addressing KBMs, which are reasonably simple ideal-MHD
related instabilities, provides a pathway to a more compre-
hensive understanding,

During this work, an attempt to explore some of the prac-
tical and theoretical questions that arise when using global
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gyrokinetic codes to simulate electromagnetic instablities in
the pedestal is undertaken: a simplified geometry allows us to
focus on basic questions of instability drive and, in particu-
lar, to avoid the question of how to deal with the X-point and
the boundary condition at the plasma wall. The strong gradi-
ent means that the transition to instability occurs for meso-
scale modes, where both global and FLR effects are important,
unlike in the study of core KBMs, where the marginally stable
mode is on the ion gyro-scale (and global effects are weaker
and thus less interesting).

Previous studies with ORB5 [14] and other global electro-
magnetic codes (for example, global GENE [15]) have already
shown good agreement with MHD for global modes in the
appropriate limits (as well as comparisons of these modes
between two gyrokinetic codes in the core region [16]). This
manuscript’s purpose is to understand whether and where the
theories and numerical formalisms modelling KBMs in the
pedestal agree, rather than to study the parameter dependence
of these linear modes (which has in any case been extensively
studied [17]). This study was motivated by earlier attempts to
model realistic device pedestals [11], which were not com-
pletely satisfying. We therefore created a test-case, interme-
diate in complexity between device-specific pedestals and
approximate equilibria (e.g. s–α models); we will report else-
where on benchmarking with other codes and with WKB the-
ory using this equilibrium.

The use of standard global gyrokinetic formalisms for
simulating large scale electromagnetic modes is problematic
because the derivations of these models [18] order the per-
pendicular wavelength to be much smaller than the scale-
length of magnetic equilibrium variation. In general, the major
radius, R, is used as a proxy for the scale-length of variation
of the system magnetic field, but actually derivatives of the
magnetic field, like ∇B can vary by order 1 across the ped-
estal. That means that, although the formal ordering para-
meter ρ/R is small (where ρ is the gyroradius), a detailed ana-
lysis may find that certain terms ordered small are not neg-
ligible. We certainly must keep the variation of the magnetic
field strength on the minor-radius scale length, which is key
to the instability drive. So for modelling low-mode number
instabilities, with wavelength comparable to the minor radius,
global gyrokinetics is not well-justified. Drift-kinetic form-
alisms, can, however, be motivated for these conditions, and
because the gyrokinetic model reduces to this formalism in
certain limits, we can proceed by interpreting long-wavelength
results in the framework of drift-kinetics.

We are using the ORB5 code [19, 20] which is able to
simulate the plasma from the magnetic axis out to the last
closed flux surface, and includes most of the relevant phys-
ics. A number of approximations, however, are made, which
may not be sufficiently accurate for large-scale MHD motion.
For example, the perpendicular derivative in the Poisson and
Ampére’s equations are replaced by a derivative in the pol-
oidal plane. It is also conventional to run with an unshifted
Maxwellian plasma distribution, which means that the paral-
lel current is not taken into account (an extension was under
development at the time of this work to allow shifted Max-
wellians [21]). In general, large-scale modes are also difficult

for numerical reasons, in particular due to the cancellation
problem [22, 23]. Although ORB5 includes collisional phys-
ics, gyrokinetic simulations will be collisionless in this paper.

Many gyrokinetic codes, especially global gyrokinetic
codes such as ORB5 [19], allow only variation of the field
line direction, and ignore the perturbation to the magnetic field
strength, which then results in an artificial stabilising effect
on ideal MHD instabilities, a stabilising effect from having
a perturbed magnetic curvature [24] (the global version of
GENE has recently implemented variations to the magnetic
field strength [25]). The perturbed magnetic field direction is
usually represented using the magnetic vector potential paral-
lel to the field line, A∥, and the resulting perturbed magnetic
field is then largely perpendicular to the unperturbed field, for
short-wavelength perturbations. This simplifies the gyrokin-
etic equation and allows gyrocentre motion to be expressed in
terms of an effective potential [26–28]. However, ignoring the
B|| fluctuation leads to an underestimate of the KBM drive for
β > 0 tokamak plasmas, and plasmas with strong parallel cur-
rents. The relevant quantity controlling the strength of finite-β
terms is the gradient of β, which is often strong in the pedestal
(due to the steep pressure profile) even when the local β is of
order 1%. Parallel currents lead to a kink-mode drive, that may
be directly quantified in MHD using the energy principle.

The remainder of this paper begins (section 2) by noting the
relationship between gyrokinetics and drift-kinetics, to explain
why it is appropriate to simulate large-scale modes using a
gyrokinetic code. Section 3 then discusses the compressional
effects on the drive terms for KBMs, (reprising the account
of reference [29]) and an argument is then provided for how to
account for this effect in the ORB5 code (this method could be
adapted for other gyrokinetic codes that use the A∥ formalism
[24]). Then a simplified equilibrium is described (section 4),
allowing a practical study of the drive terms of KBMs. Simu-
lations in ORB5, of this simplified equilibrium, are then com-
pared (section 8) to GS2 [30], a local gyrokinetic code, and
MISHKA [31] (section 7), an MHD energy principle code.
The theory of reference [29], and in particular, simple dia-
magnetic drift stabilisation, is shown to account for the short-
wavelength stabilisation of the KBM seen in GS2 and ORB5
simulations.

2. Gyrokinetics versus drift-kinetics

In drift- and gyro-kinetic theory, the overall Lagrangian may
be decomposed into an expression for the field Lagrangian,
which is the same for both theories (and just magnetic energy
density where quasineutrality is assumed, with the polarisa-
tion density for electrons being neglected), and a per-particle
energy Lp. The long wavelength drift-kinetic particle Lag-
rangian up to first order (keeping strong flow terms) may be
written

Lp=(mv||b+qA).
dṘ
dt

+µ
dθ
dt

−
(m
2
v2||+µB+ qϕ− m

B2
(∇ϕ)2

)
(1)

[32–34]. This first order expressions are sufficient to find the
Euler–Lagrange equations for _R and v̇|| to first order [35].
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This gives the currents in the plasma up to the order of the
diamagnetic drifts, sufficient to resolveMHD-ordered currents
and plasma motion. Indeed two-fluid andMHD theory may be
derived directly from these equations, on taking moments and
enforcing the highly-collisional limit.

For the sake of comparison with the ORB5 gyrokinetic the-
ory, we take the vector potential A= A0 +bA||, with the per-
turbed fields A|| and ϕ taken one order smaller than A (With
this assumption, it is still possible to derive the reduced MHD
equation for the vorticity [36, 37]). We then have

Lp = (mv||b+ qA0 +bA||)

× dṘ
dt

+µ
dθ
dt

−
(
m
2
v2|| +µB+ qϕ− mE2

B2

)
, (2)

where b and B are found from A0, since B is not modified at
first order by the introduction of this perturbed field and the
first order modification of b only modifies the drifts at second
order. At this point the gyrokinetic theory used in ORB5 (in the
linear regime) is only different to this drift-kinetic Lagrangian
through the gyroaverages on the perturbed fields A|| and ϕ
(also p|| is used as a dynamical variable rather than v||). In
the long-wavelength ordering gyroaveraging leads to a modi-
fication to the perturbed particle motion two orders lower than
that due to the perturbed motion itself, and to a modification
to the current at least one order lower than the perturbed cur-
rents (since some perpendicular currents nearly cancel). As a
result, running ORB5 with gyroaveraging suppressed, we can
interpret the results as those of a drift-kinetic code; despite the
fact the code was designed to implement a gyrokinetic theory
not fully valid in the limit of system-scale motion, the code
should correctly simulate large scale linear mode properties,
in the region where this drift-kinetic theory is valid, as long
as the results are interpreted in a drift-kinetic framework. In
particular, growthrates and field properties are unmodified.

3. Gyrokinetic ballooning theory

In reference [29], a general derivation of (local) gyrokinetic
ballooning theory for modes with large toroidal mode number,
N, is provided in certain limits (the derivation is self-contained
except for the derivation of the linear gyrokinetic equation,
which is given in reference [38]). As explored in reference
[17], an effective strong pressure gradient limit is taken, and
drift resonances do not play a role. This means that the kinetic
effects can be written in a simpler form: the high-β ordering
described in reference [17]. There is a slightly more complic-
ated correction involving trapped electrons, but this is gen-
erally small. Therefore good agreement is expected between
numerical gyrokinetic analysis and this simple analytic theory
in the large ρ* limit for high N modes. For low N modes, the
global profile effects cannot be ignored, and a more complete
theory is needed.

Due to the strong pressure gradients, the theory regime of
interest in this paper (at least at short wavelength, where the
diamagnetic term is large) is when the ion transit frequency
is lower than the mode frequency, but for simplicity the low

frequency theory, where the converse is true, is described here
(the relevant outcomes are not modified by this substitution).

For low frequency modes, with frequencies lower than the
electron and ion transit frequencies, equation 3.24 from refer-
ence [29] (ignoring trapped particles, and at wavelength longer
than the gyroscale) is derived by placing solutions to the lin-
earised gyrokinetic equation (in an extra step at the end of
each iterative step in equation 2.18 from reference [29]) in the
quasi-neutrality equation (equation 2.31 from reference [29]):

L2c
JB2

∂

∂χ

(
b
J
∂

∂χ
Φ

)
+

(
ω

ωA

)2

×
[
2ω∗pωk
ω2

Φ+(k2⊥ρ
2/2)

(
1−

ω∗p

ω

)
Φ

]
= 0, (3)

where ω∗p =
NT0
e

d
dψ ln(n0T0) is the diamagnetic frequency, Lc

is the connection length, ω2
A = v2A/L

2
c is the Alfvén frequency

squared (vA is the Alfvén velocity), k⊥ is the perpendicu-
lar wave number and ψ is the poloidal flux. The MHD limit
corresponds to setting the final term to zero, with the first
term corresponding to field line bending stabilisation, and the
curvature is the first term in the straight brackets. (Since we
are in SI units, factors of c that appear in ref [29] are absent).
The only difference between this formula and the MHD result
is the replacement of ω2 by ω(ω−ω*p). Therefore it should
be possible to calculate the local and large-N global results,
where global effects are negligible, using this analytical for-
mula, which includes the diamagnetic drift frequency. For the
cases of interest, the assumption that the wavelength is longer
than the ion gyroradius may be justified a posteriori: the dia-
magnetic drift stabilisation is sufficiently strong that unstable
modes have kρ≪ 1.

The equivalent equation for the A∥ formalism in ORB5 can
be derived by setting δB∥ = 0. This then results in the effect-
ive drive term 2ωk being replaced by ωk+ωB (such that the
first term in the square brackets in equation (3) can be writ-
ten [ω∗p(ωk+ωB)/ω

2]Φ , where ωk is the frequency related
to the curvature drift and ωB is the frequency related to the
∇B drift. In order to correct the growth rate in ORB5, we will
replace the grad-B drift in the codewith the curvature drift; this
is somewhat ad-hoc, and only justified where drift-resonances
and gyroaveraging do not play a key role. A more in depth
derivation of this method is provided in reference [24].

Note that MHD is a collisional theory; including suffi-
ciently strong collisions, the gyrokinetic theory reduces to
standard fluid theory at long wavelength. In the specific col-
lisionless limit under discussion, the only additional kinetic
effect is the effect of the trapped particles, although this is rel-
atively small [29].

4. Equilibrium

The base case is a relatively simple equilibrium designed to
exhibit similar pressure-driven instabilities to a plasma pedes-
tal, with a moderate aspect ratio, R/a= 10/3. To simplify the

3



Plasma Phys. Control. Fusion 62 (2020) 095005 J P Martin Collar et al

numerics and interpretation, an equilibriumwith a circular out-
ermost flux surface was chosen. The pressure profile is almost
flat except for a sharp step at mid-radius to simulate a pedestal-
like region. The pressure-gradient in this region is strong
enough to drive an MHD instability. Unlike in an H-mode
tokamak, where the pedestal is very close to the outer last
closed flux surface, this provides a substantial buffer region
between the large pressure gradient region and the boundary.
For gyrokinetic simulations, we specified that Te = Ti and that
the density was constant, which constitutes the criteria for a
high-temperature gradient regime as described in reference
[17]. The pressure profile is then determined by the temper-
ature profile, shown in figure 1 (we will use s= [ψ/ψ0]

1/2,
where ψ is the poloidal flux, as a radial parameter) for the base
case equilibrium. The equilibrium parameters for the base case
appear in table 1. The numerical equilibrium is then determ-
ined using the Grad-Shafranov [39] solver, CHEASE. The ion
species is Deuterium.

We adopt the ORB5 conventions for describing the β and
ρ* values of these equilibria, which we detail to illustrate
some potential pitfalls. The normalised pressure β is defined
using β = ⟨n⟩T(s0)/(B2

0/µ0) (note that this paper uses an SI
electromagnetic formulation but some other ORB5 papers are
in Gaussian formulation), where B0 is the magnetic field at
the axis, ⟨n⟩ denotes the volume-averaged electron density,
and T is the electron temperature in energy units. s0 is the
radial position used for normalisation, for which we choose
s0 = 0.5. Note that this is not the same definition used in
MHD, where all plasma species contribute to the pressure,
and a factor of 1/2 appears in the denominator, and a variety
of volume averages may appear. ORB5 defines ρ∗ = cs/a=
(T(s0)mi)

1/2/qBa (minor radius a is defined as half the differ-
ence between the major radius on the outboard and inboard
midplane, which in this case is just the radius of the circle
defining the simulation boundary).

There are some practical issues to be overcome to allow
a simple comparison of the gyrokinetic code with MHD. For
example, CHEASE generates an equilibrium with zero pres-
sure at the outer boundary, which would be problematic in a
gyrokinetic code; a spatially uniform pressure is added to the
profile after the CHEASE run.

Cylindrical stability criteria suggest that zero global mag-
netic shear, sm = (r/q)(dq/dr), would be expected to be the
most unstable [40], but the actual toroidal MHD equilibrium
with the pressure profile given and q ~ 1 is stable. This appears
to be due to the strong Shafranov shift, which leads to a
large local shear at the outboard mid-plane, where the drive
is strongest.

To ensure a strong instability, an equilibrium with small
local magnetic shear in the unstable outboard region was cre-
ated. Near the outboard mid-plane, radially displaced field
lines are aligned with the unperturbed lines, so flux-tubes of
high-pressure plasma can slip between the existing field lines
without needing to bend.We quantify the alignment of the field
lines by considering the phase of a field-aligned mode, which
may be written as P= N(ζ − qχ)+K, where χ is the poloidal
angle-like coordinate and ζ is the toroidal angle. Here K= 0
is for a mode with zero radial wavenumber at the outboard

Figure 1. Temperature profile (T i = Te) versus radial parameter
s= (ψ/ψ0)

1/2 for β= 0.013 5.

Table 1. Profile parameters for the benchmark base case described
in this chapter. mD is the mass of a Deuterium ion and e is the
absolute value of the electron charge. The values are also given in
ORB5 code units. The temperature pedestal height is defined as the
difference between the core temperature and the edge temperature.
The temperature gradient length is the value used in GS2, as this
value is only required for local gyrokinetic simulations.

Parameter SI Code units

q at axis 1.05 1.05
Minor radius 0.3 m 70ρi
Major radius 1 m 233ρi
B at axis 0.956T B0

Te at axis 1144eV 1.368T0

Te pedestal height 757 eV 0.947T0

ne 7.37× 1019 m−3 n0
qi e e
mi mD mD

Global shear, s
q
dq
ds (s= 0.5) 0.999 88 0.999 88

R/LTe 20(GS2 value)

midplane. We attempt to create an equilibrium where lines of
constant phase, in the poloidal plane, of field-aligned modes
at some fixed toroidal mode number N are nearly perpendic-
ular to the flux surfaces for a range of χ near the outboard
midplane.

An initial parallel current profile is chosen such that
q roughly of order 1: this is much smaller that typical
pedestal-top q values, but, for this cylindrical, moderate
aspect-ratio configuration, results in a field line pitch (ratio
of poloidal to toroidal magnetic field strength) in the ped-
estal region comparable to typical tokamak configurations.
The current profile in the equilibrium is modified such that
∇[q(R,Z)χ(R,Z)].∇s= 0 in the outboard quarter (χ=−π/4
to χ=π/4), which results in straightening of lines of con-
stant q χ on the outboard side as can be seen in figure 2. This
involves running the CHEASE equilibrium code with a con-
stant plasma current density to find an initial guess for the

4
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Figure 2. Lines (in black) of constant qχ for (a) an equilibrium with zero global shear and (b) an equilibrium with low local shear on the
outboard side (with ∇[qχ].∇s ~ 0). Blue traces are flux surfaces at s= 0.5 and 1.

Figure 3. (a) Safety factor before and after the procedure to minimise the local shear. (b) The toroidal current density on the outboard
midplane before and after the procedure to minimise the local shear.

equilibrium. Based on the approximate relation between the
q and toroidal current I, an updated current profile is chosen
that would result in straight lines of constant q χ at χ=π/4,
if the equilibrium shape was fixed. The CHEASE equilibrium
code could then be run again with the corrected current profile
(but other parameters fixed). The resulting current profile has
a sharp peak roughly proportional to the pressure gradient. We
tried iterating this procedure again, but it lead to CHEASE not
finding an equilibrium solution.

Although constant q χ lines are nearly straight on the out-
board side, lines of constant χ are strongly bent. It is the com-
bination of q and the shape ofχ(R,Z) that allowsMHDmodes,
which are elongated along the field line but have little bending
energy (which would otherwise stabilise the mode), to grow.

This procedure is not of course necessary for generating an
equilibrium with a strong instability; we could simply have
imposed an appropriate current profile without explanation.
However, we hope the discussion illuminates aspects of ped-
estal physics. In particular, to explain the dependence of ped-
estal stability on the current profile; the current profiles have
a large bootstrap component and are difficult to predict and
measure.

The global gyrokinetic formalism is expected to agree with
MHD and local gyrokinetics for small ρ* in the appropriate,
and opposite, limits (low-N for MHD and high-N for local
gyrokinetics). We performed a ρ* scan to examine system-
size effects, by rescaling the base-case parameters. To per-
mit this, B was scaled proportional to 1/ρ* and density was
scaled proportional to 1/ρ*2, but other parameters were kept
fixed (including R). This means that both β and vA/R=

(T/m)1/2 /Rβ1/2 are kept fixed, so MHD instability growth
rates (for fixed toroidal mode number) are constant in units
of seconds. Note that many of the runs were done with small
ρ∗ = 1/800 rather than the base case value 1/70.

For β scans, the base-case pressure profile is scaled by
a constant proportional to β. The preliminary current profile
used was kept fixed during the scan, but the local-shear reduc-
tion technique was used for each value of β to define the final
equilibrium current profile.

5. Numerical parameters

Simulations were undertaken with a time step of Ωci, which
was sufficiently small to avoid numerical instability, and also

5
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Figure 4. 2D poloidal cross-section of the electrostatic potential versus R and Z for (a) MISHKA and (b)ORB5 where N= 30 and
ρ∗ = 1

800 . The grey lines are the same flux surfaces in both plots. The ORB5 result is at late time, and has converged to an eigenmode.
Maximum absolute amplitudes are normalised to 1 for these eigenmodes.

a) b)

Figure 5. Maximum electrostatic potential ϕ on the flux surface versus radial parameter s for three different values of N in (a) MISHKA
and (b) ORB5 with ρ∗ = 1/800. (The peak value is normalised to one).

found to be sufficient for convergence. The field grid sizes
chosen for the three spatial coordinates were Ns= 256, Nχ =
256 and Nϕ = 256, for N= 20. These grid sizes were chosen
after undergoing convergence tests. As toroidal mode num-
bers were increased, the number of grid points in the χ and
ϕ directions also had to be increased, such that the value was
more than 4 times the toroidal/poloidal mode number (Since
at least four points per wavelength are required to describe
a wave [41]). Simulations were performed for each toroidal
mode number, and at each flux surface a range of poloidal
mode numbers with |m| − nq≤ 10 were resolved. The number
of numerical markers was kept fixed at 8× 107, after perform-
ing convergence tests.

6. Drive strength

Firstly, to verify that the basic interchangemethod has the right
strength in the gyrokinetic formulation, electron-ion simula-
tions were run with the standard drift terms active and with a
‘corrected’ drift term for which the ∇B drift was replaced by
the curvature drift to ensure that the MHD drive strength was
recovered. This increased drive strength would be provided by
δB∥ in a self-consistent simulation. This was accomplished by
doubling the pressure gradient in the ORB5 equilibrium input

file. The simulation results were then compared to a similar
simulation performed in MISHKA, a linear MHD stability
code.

ORB5 simulations run without the modified drive term
showed no mode present, even though a strong MHD instabil-
ity was verified using MISHKA. With the modified drive
terms, however, a mode can be seen growing at a rate compar-
able to the MHD growth rate (these will be compared quantit-
atively later). The electrostatic potential of the observed mode
is shown in figure 4. The mode resolved in ORB5 is centred
on the outboard midplane at the region of greatest pressure
gradient (pedestal-like region) as expected for kinetic balloon-
ing modes and is similar to the mode observed in MISHKA.
The ballooning angle is finite for ORB5, as opposed to zero in
MISHKA leading to a tilt in the mode structure that can also be
observed in figure 4. This is normally thought to arise because
the local mode frequency is a function of the radius (this is
zero for MHD, resulting in the zero ballooning angle). This
can lead to significant global effects (not directly accessible
by local simulation) for higher frequency instabilities (such as
Ion Temperature Gradient modes) [42]. However, at lowN, the
KBMs presented in this paper have low mode frequency com-
pared to typical mode growthrates. As such the major global
effect is the finite width of the large pressure gradient region.

6
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Figure 6. E∥ and
∂A∥
∂t versus radial parameter s for the eigenmode

resolved in ORB5 with N= 30, ρ∗ = 1
800 along the outboard

midplane.

Regions of strong electrostatic potential are concentrated
in the pedestal-like region of the plasma (figure 5), centred at
the point of greatest pressure gradient. As N is decreased, the
mode widens until it extends beyond the region of strong pres-
sure gradient (e.g the N= 10 curve). For MHD modes, there
is usually an increase in radial wavelength associated with an
increase in poloidal wavelength; WKB analysis suggests that
mode extent should scale like a fractional power of the pol-
oidal wavelength for confined modes [43, 44]. There are some
minor differences between the mode shapes between ORB5
and MISHKA that we do not analyse in detail here.

The parallel electric field is given by E∥ =−h⃗ ·∇ϕ+
∂A∥/∂t, and this is exactly zero in ideal-MHD. For gyrokin-
etics, a small non-zero parallel electric field is expected to
develop; since, at long wavelength, this maintains electron
pressure balance along the field line. The MHD-like nature of
the mode resolved in the gyrokinetic simulation was verified
by checking that E∥ is small in magnitude compared to the

inductive field
∂A∥
∂t , and this was indeed the case, especially at

long-wavelength as seen in Figure 6.

7. Comparison with MISHKA

Note that all simulations in ORB5 described from this point
include the modified drive term. Figure 7 shows the growth
rates of kinetic ballooning modes for the benchmark case in
both MISHKA and ORB5, with three different values of ρ*,
1

800 ,
1
400 and 1

200 . The three ORB5 curves appear to match
each other closely for low N and so it can be concluded
that convergence had been achieved; therefore, any remain-
ing difference from the MISHKA curve at low N is not due
to finite system-size effects. The ORB5 growth rate curves
have similar magnitudes and qualitative behaviour to theMHD
growth rates for low N, but a somewhat larger critical N value
thanMHD. At larger N, the peak growthrate increases towards

Figure 7. Growth rate of KBMs vs N for ρ∗ = 1
800 ,

1
400 ,

1
200 , of

ballooning modes for MISHKA and drift kinetics vs N for the same
equilibrium.

Figure 8. Growth rate of balloning modes vs β for N= 30,
ρ∗ = 1

800 in MISHKA (blue curve, crosses) and in ORB5, for both
the gyrokinetic model (red curve, circles) and the drift kinetic model
(green curve, squares).

the MHD growth rate as ρ* decreases (and the N value where
this peak occurs increases), but is still somewhat below the
infinite-N balloning growthrate resolved in the MHD simula-
tion. So overall the gyrokinetic model is slightly more stable
than MHD; possible reasons for the differences between the
MHD growth rates and ORB5 growth rates are discussed in
the conclusions.

The low-N drop off in growth rate for KBMs is due to global
effects associated with the finite width of the pedestal, absent
in local gyrokinetic simulations. Figure 4 shows that the radial
mode extents of low-N modes are comparable to the width of
the region of large pressure gradient, and this is consistent with
a drop in mode growthrate, as the mode is then not fully local-
ised at the radial position with maximum local growth rate. For
higher-N, the global gyrokinetic growth rate decreases due to
the diamagnetic drift [29], an effect which is captured by local
gyrokinetics, but not ideal-MHD (the infinite-N ideal-MHD

7
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Figure 9. (a) Growth rate (b) Real frequency vs effective toroidal mode number Neff (Neff = N(ρ∗/ρ∗0 )) for several different values of ρ
* in

ORB5, the theory described in reference [29] and the GS2 simulations.

ballooning equation may be found by setting ω*p= 0 in equa-
tion (3), and the growthrate then becomes independent of N).

For drift kinetics, similar behaviour to that observed for the
global gyrokinetic simulations is observed. The global effects
at low-N are still present along with the high-N decrease
observed from the diamagnetic drift. The growth rates are still
observed around the same magnitude, but are closer to the
MHD growth rates compared to the gyrokinetic simulations,
especially for intermediate N. This shows that FLR effects
lower the growth rate, even for ρ∗ = 1

800 .
A scan over β was then performed (figure 8) for N= 30,

and ρ∗ = 1/800. This β scan was achieved by scaling the
height of the pressure pedestal, while keeping the edge tem-
perature fixed. For both global gyrokinetic and MHD simu-
lations, there is a critical-β, below which ballooning modes
do not grow. The critical-β is the same for the ORB5 simu-
lations and the MISHKA simulations. The drift-kinetic scan,
performed by neglecting gyroaveraging, has a higher critical-
β than either MHD or global gyrokinetics: the very good
agreement in critical β between gyrokinetics and MHD was
initially unexpected, as some previous work has resulted in
observed differences between the critical-β observed between
these two theories [45]. However, other work [17] shows that
in the high temperature gradient regime, which we are in for
this equilibirium as the pressure gradient is due to solely the
temperature gradient, the critical-β is comparable for MHD
and gyrokinetics, as the theory presented in reference [29] is
valid. Note that we are looking here at relatively largeN where
(WKB-) ballooning theory would be expected to be valid. We
have not examined the ρ* dependence of the critical β value.

8. Local comparison

One effect that ismissing from the basicMHD formalism com-
pared to gyrokinetic formalisms is diamagnetic drift stabilisa-
tion. The frequency associated with the diamagnetic frequency
(the diamagnetic velocity divided by the wavenumber) is pro-
portional to N as shown in equation (4) (since the diamagnetic

drift is proportional to the poloidal mode number, M, and, for
KBMs, Nq (s= 0.5)=M), which results in a decrease in the
growth rate as N increases (the diamagnetic drift is oppos-
ite to the ∇B and curvature drifts that drive the instability).
A formulation of the diamagnetic drift frequency is given in
section 3, as

ω∗p =
NT0
e

d
dψ

log(n0T0). (4)

The diamagnetic drift frequency is−N× 1.089 5× 105s−1

for the base equilibrium, at the point of largest temperature
gradient. Note that the values are negative, as the diamagnetic
drift is in the opposite direction to the grad-B and curvature
drifts. The diamagnetic frequency is proportional to the logar-
ithmic pressure gradient.

We plot the analytical prediction for the growthrate (the
Tang curve in figure 9) based on the relationship ω2

MHD =
ω(ω+ω∗p), where ωMHD is the infinite-MHD ballooning
growth rate. Figure 9(a) shows that the GS2 and ORB5 results
are a good match to this simple theory (For ORB5 this is the
case for the higher values ofN, where global effects are small).
The relevant perpendicular length scale for the local code (and
for micro-physics effects like diamagnetic drift stabilisation)
is the ion gyroradius, so the local and global results should be
compared at the samewavenumber in inverse gyroradius units.
A simple way to do this (avoiding questions of where and how
gyroradius or wavenumber are normalised), is to use an effect-
ive Neff = Nρ∗/ρ∗ref, which is proportional to k⊥ρi: this is used
as an x-axis in figure 9. For large N, short wavelength, and
small ρ* the ORB5 results also quite closely match the GS2
results as expected. Again, the decrease in growth rates for
low-Neff for the ORB5 simulations is due to the global effects.

Overall the frequency behaves as expected, as can be seen
in figure 9(b). Firstly, the frequencies are in the ion diamag-
netic drift direction, as expected from KBMs. Secondly, the
frequency for all the ORB5 and GS2 simulations increase
as Neff increases, along with being of the correct mag-
nitude. However, the observed increase in the frequency
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observed for Neff > 15 in the TANG curve, is not observed
for the other curves. This is because the increase in the
rate of increase of the frequency observed in the TANG
theory, which assumes only a singular flux surface, occurs
for modes that have zero growth rate. The GS2 frequen-
cies and growth rates were chosen by taking the largest
growth rate from a series of simulations undertaken from
several flux surfaces. The ORB5 simulations include these
flux surfaces by definition. However, the theory could still be
used to make a good estimate of the frequency that will be
observed from the simulations. This is more so for the GS2
simulations.

9. Conclusions

We have performed a comparison of MHD stability with local
and global gyrokinetic codes, and a simplified diamagnetic-
drift stabilisation estimate, for a simple equilibriumwith a nar-
row pressure-step.

The initial goal of this work was to perform a compar-
ison between global gyrokinetic models (and specifically, the
ORB5 code) in the long-wavelength limit and MHD. In gen-
eral, KBMs can differ from ideal MHD ballooning modes
in a complicated way dependent on a variety of paramet-
ers, including (but not limited to) pressure profiles, safety
factor profiles, local magnetic shear and the location of the
region of maximum pressure gradient. However, the situ-
ation is much simpler in the high temperature gradient regime
used in this paper, where the KBM is a drift-stabilised bal-
looning mode; MHD ballooning modes are very well under-
stood and hence a good mode for comparison. In this regime
the critical-β for KBMs and MHD ballooning modes are
similar.

To recover correct growth rates of KBMs in ORB5, it is
necessary to include the effects of B|| fluctuations, by setting
the grad-B drift equal to the curvature drift in the code. This
approach allows KBMs, at low finite β, to be simulated cor-
rectly in codes using an A∥ formalism. The need to include
effects related to B|| fluctuations for KBMmodelling has been
previously noted elsewhere [46–48].

Secondly, the small parallel electric field, and the similarity
of growthrates and eigenfunctions between ORB5 results and
the ideal MHD theory in the long wavelength regime indic-
ates that the modes growing in the ORB5 simulations may be
regarded as kinetic ballooning modes. The MHD equilibrium
defined is sufficiently pedestal-like to serve as a good proxy for
a true pedestal (for the purposes of theory and numerical study)
while circumventing the problems with using a real pedestal
equilibrium, such as the effect of the simulation boundary.

In the local gyrokinetic limit (short wavelength and small
ρ*), the ORB5 results match the GS2 growth rates of KBMs
as expected. As can be seen from figure 9, the growth rate of
KBMs at high toroidal mode number is well approximated by
using the theory provided in reference [29], which involves
applying a diamagnetic drift correction to the MHD growth
rate. Thus, for this high-gradient case, other kinetic effects
appear to be not important.

In the MHD limit (long wavelength), there is a significant
difference between MISHKA and ORB5 growth rates of bal-
looning modes. There are several reasons why this might be
so (beyond simple methodological errors):

• These ORB5 simulations use an unshifted local Max-
wellian as the equilibrium distribution function. Thismeans
that the background parallel current in the plasma is not
consistently included and hence forces arising from J0∥ ×
δB⊥ are not accurately calculated (i.e. kink drive is absent).

• The long wavelength limit of the gyrokinetic equation
could be fundamentally not appropriate for modelling
MHD motion.

• The B∥ effects are included in a way that may not be valid at
long wavelength (which appears not to be the case accord-
ing to reference [24], as it explored exactly this question).

• The effects of trapped particles, which are absent in the col-
lisional limit of MHD, may play an important role under
these conditions (and more generally collisional effects
may be important).

• The derivation in the short-wavelength, used to show that
MHD and gyrokinetics should agree in certain parameter
regimes, does not apply for long-wavelength modes.

• MISHKA uses an approximation for the plasma inertia
(although this does not effect the critical-β).

• A seemingly innocuous approximation used in ORB5, such
as approximation of the perpendicular wavenumber as the
poloidal wavenumber, or slight inconsistencies in the equi-
librium treatment, actually has a significant effect.

In conclusion, at short wavelength (high N), there is good
agreement between local gyrokinetics and global gyrokinetics,
as shown in figure 9. This is even further expanded by direct
comparison with theory from reference [29], which involves
using the N goes to ∞ limit of the MHD growth rate for
ballooning modes and then applying a correction from the
diamagnetic drift. Therefore, growth rates of KBMs at short
wavelength could be calculated cheaply, in terms of compu-
tational resources, by using local gyrokinetic codes or even
MHD codes and applying the diamagnetic drift correction,
when in the high-β regime as described in reference [17]. At
long wavelength, there is reasonable agreement between bal-
looning modes simulated inMISHKA and KBMs simulated in
ORB5. The qualitative behaviour is similar and it appears that
the same global effects that govern the behaviour of ballooning
modes in MHD are important for KBMs in global gyrokin-
etics. Although further work is necessary to fully complete
the quantitative differences between these two codes, several
important behaviours already match between these two codes
(such as critical β) for the specified equilibrium.
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