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Abstract
We describe the parameterization of a tungsten-hydrogen empirical potential designed for use
with large-scale molecular dynamics simulations of highly irradiated tungsten containing
hydrogen isotope atoms, and report test results. Particular attention has been paid to getting
good elastic properties, including the relaxation volumes of small defect clusters, and to the
interaction energy between hydrogen isotopes and typical irradiation-induced defects in
tungsten. We conclude that the energy ordering of defects changes with the ratio of H atoms to
point defects, indicating that this potential is suitable for exploring mechanisms of trap
mutation, including vacancy loop to plate-like void transformations.

Keywords: hydrogen isotope, fusion materials, lattice defects, tungsten, interatomic potential

(Some figures may appear in colour only in the online journal)

1. Introduction

For viable commercial D-T nuclear fusion, it is essential that
the breeding of tritium at least balances the tritium which is
retained after having penetrated the components. One of the
critical reactor components requiring study in this regard is
the tungsten divertor, which is anticipated to undergo very
high neutron flux [1, 2] and so develop a highly damaged
microstructure, especially near coolant pipes where the tem-
perature is kept below the onset of stage III recovery (vacancy
migration) [3–6]. It is well established that irradiation-induced
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lattice defects within tungsten act as strong traps for hydro-
gen isotopes [7–12]. While the modelling of binding energies
of hydrogen to prototypical small defects is properly under-
taken by density functional calculations, there is an emer-
ging awareness that in the high irradiation dose limit the com-
plex defect microstructure both generates and is responsive
to stress [13, 14]. This in turn can influence the evolution of
defects [15, 16] and lead to defect stabilization [17–21]. Such
complex emergent mechanisms require very large molecular
dynamics simulations which in turn requires simple empirical
potentials [22, 23].

Here, we develop a new potential for tungsten-hydrogen
based on the embedded atom model, specifically designed
for use with simulating high dose irradiation. It is only reas-
onable to expect an empirical potential to correctly repro-
duce the properties included in the set used during develop-
ment, and so over time, as a new set of properties become of
interest, it becomes necessary to develop or refine potentials.
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We conclude that the bond-order potentials of Li et al [24]
and Juslin and Wirth [25] have unsatisfactory binding energy
of H atoms to a monovacancy, thought to be the most import-
ant factor in understanding hydrogen-isotope retention at high
dose [26]. This is remedied by the EAM potentials by Bonny
et al [27] and Wang et al [28], but all these potentials have
poor vacancy-cluster binding, hydrogen-to-surface binding,
and surface energies, making them difficult to rely on for sim-
ulating larger clusters [29, 30], for correctly predicting the
energy ordering of void-like and vacancy-loop defects [31,
32], or spontaneous bubble formation [33].

Our principle point of comparison for the correct beha-
viour of our potential is electronic structure density functional
theory (DFT) calculations. In this work we report some new
DFT calculations performed to find the relaxation volumes of
vacancy-hydrogen clusters. The accurate prediction of relaxa-
tion volumes for various induced defects using DFT calcula-
tions plays an important role in understanding lattice swelling
and trapping mechanisms in materials under irradiation within
the multi-scale modelling approach [10, 34–38], and this work
specifically aims to reproduce these properties with an empir-
ical potential. We make extensive comparison to the empirical
potential of Wang et al [28], which we believe gives the best
values in the current literature for hydrogen-vacancy cluster
binding energies.

In section 2.1, we show that the monovacancy and vacancy
cluster properties in pure tungsten match DFT results, includ-
ing the low divacancy binding energy [39], vacancy migration
barriers, and relaxation volumes. In section 2.4, we show the
binding energies of H atoms to vacancies and interstitials, and
relaxation volumes of vacancy-H clusters also match DFT res-
ults. We also find an increased binding of the H atom to the
surface compared to previous work. We show that molecular
hydrogen is stable inside voids, and that increasing the H/point
defect ratio increases the stability of open vacancy structures.
Finally in section 3, we compute properties for lattice defects
typical of irradiation damage—small dislocation loops and
voids. We show that molecular H2 exists within nanocavities,
and that a supersaturation of hydrogen gas atoms can signi-
ficantly disrupt the local atomic structure around dislocation
loops in order to reduce energy.

Throughout this work we have made comparisons exclud-
ing the zero point energy contributions to the binding energy,
which are not insignificant for hydrogen isotopes. This choice
has been made to avoid fitting the classical potential energy
surface to the curvature of the potential energy found in DFT.
This is also an acknowledgement of the fact that molecu-
lar dynamics (MD) simulations are classical, and so do not
include quantum-mechanical phonon effects. We have, how-
ever, computed zero point energy corrections for this poten-
tial and added these to the results separately as appropriate.
We have also decided to compute and report relaxed zero tem-
perature defect configurations rather than dynamic effects at
elevated temperatures, leaving this to future work. A limited
number of dynamic properties of the tungsten lattice are given
in section 2.2.

This empirical potential is well suited to simulations of the
retention of deuterium in highly irradiated tungsten [40], and
to investigate trap mutation mechanisms whose effect is clear
experimentally [41, 42] but where the atomistic origin is cur-
rently speculation.

1.1. The form of the potential

The basic form of the embedded atom potential suggested by
Daw and Baskes [43] gives the potential energy Ei of atom i as
a local function of the positions and types of the neighbouring
atoms. We write the distance from atom i to a neighbour j as
xij, and the types of atoms i and j as α and β respectively. Then

Ei =
1
2

∑
j

Vαβ (xij)+Fα

∑
j

ϕβ (xij)

 , (1)

where Vαβ(x) is a pairwise interaction energy depending on
the type of both atoms, ϕα (x) is an electron density function,
depending only on the type of the neighbour, and Fα(ρ) is an
embedding function capturing the many-body nature of metal-
lic bonding. This potential form for alloys is supported by the
classical MD code LAMMPS [44] as the eam/alloy pair style.

We have made changes to the forms of the functions V,
ϕ, and F, suggested by Finnis and Sinclair [45] and later
developed by others for similar potentials. The first obser-
vation we make is that potential hardening at short range is
often required to simulate displacement cascades [25, 46–48].
Typically the short-range hardening used is the universal ZBL
form [49] added as a very large correction at short range. Here
we start with the ZBL form for the pairwise interactionVα, and
add a small correction near equilibrium lengths. Secondly, we
note that in the second moment approximation, the embedding
function Fα[ρ] has a square root form [50], which is very suc-
cessful for modelling transition metals. We add a spline cor-
rection to this function. The final observation we make is that
potentials need to be smooth in their second derivatives at least
in order to avoid discontinuities in the quasiharmonic phonon
spectrum. We ensure this by using quintic splines with well-
separated knots. The explicit form of the potential, and all the
parameters needed to reconstruct a data-table is given in the
appendix.

2. Fitting the potential

The three parts of the potential, giving the W–W, H–H and
W–H interactions, were fitted separately, then together, to
reproduce sets of electronic-structure derived data. Possible
fits to the target data set were then run through an expan-
ded set of more time-consuming tests, reported here, to check
for transferability. We report the overall best performing
parameterization.
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Table 1. Targetted properties of the W–W potential. A comparison is given to the empirical EAM form ‘EAM-2’ [51], and a our earlier
MNB potential [36].

Category Property Units DFT Expt This work EAM-2 MNB

perfect lattice const Å 3.186a 3.1652b 3.145 3.140 3.1652
bcc cohesive energy eV 8.90b 8.949 8.900 8.900
lattice C11 eVÅ−3 3.229a 3.324c 3.201 3.260 3.222

C12 eVÅ−3 1.224a 1.279c 1.257 1.265 1.263
C44 eVÅ−3 0.888a 1.018c 1.020 0.996 0.998

point Evf eV 3.619d 3.631 3.49 3.727
defects Ωv

rel Ω0 −0.32a −0.329 −0.045 −0.36
Evm eV 1.756d 1.754 1.856 1.523
V2 binding eV 0.048d 0.080 0.490 0.170
V3 binding eV 0.311d 0.365 1.417 0.433
Eif([111]) eV 10.5 9.736 10.52 9.31
Ωi

rel Ω0 1.57a 1.485 1.172 1.40
Eif([100])−Eif([111]) eV 0.29 0.236 0.30 0.25

surface E{110} eVÅ−2 0.212 0.220 0.144 0.218
energy E{100} −E{110} eVÅ−2 0.047 0.028 0.026 0.021
a Mason et al [54].
b Finnis and Sinclair [45].
c Featherston and Neighbours [55].
d Mason et al [36].
In this table and subsequently, italics indicate values which could produce significant errors in simulation. These values are discussed in the text.

2.1. W–W properties

The W–W potential was fitted to structural and elastic prop-
erties of bcc tungsten, to vacancy cluster properties and sur-
face formation energies, and to single interstitial proper-
ties. The initial fit was chosen to be as close as possible
to the MNB potential [36]—a modification of the trans-
ferable Finnis–Sinclair form with improved vacancy cluster
properties—within the constraints of the new functional form.
The downhill simplex method was used to minimise the fit-
ting in a least-squares sense. Additional weighting was placed
on keeping the knot points in the potential far apart, in
order to mitigate overfitting. The fitted properties are given
in table 1, and include formation energies (denoted Ef in the
text and tables), relaxation volumes (Ωrel), binding energies
(Eb), and migration energies (Em) for point defects. A com-
parison is given to two empirical EAM forms: ‘EAM-2’ given
by Marinica et al [51], as this is the basis for the W–W part of
both the Bonny et al [27] andWang et al [28] W–H potentials;
and our earlier MNB potential [36]. We find that the potential
described here is good in these targetted properties, as indeed
are the comparison potentials generally. A direct comparison
between the functional forms for this work and the EAM-2
potential [51] is shown in figure 1. The only significant dif-
ference to the eye is that this work has a shorter range—the
EAM-2 potential has a long range repulsion between equilib-
rium atom spacings which has a strong effect on the energetics
of interstitial defects.

We first consider vacancy and open surface properties.
The new potential performs comparably to the MNB in the
vacancy cluster and surface energy properties, whichwas itself
designed to improve on the EAM-2 results. The only signific-
ant improvement we make in this redraft of the W–W part of

the potential is a better monovacancy migration energy, which
was included in the refitting. We find with a nudged elastic
band calculation that this is raised from 1.52 eV in MNB to
1.75 eV in this work, which can be compared to the DFT value
1.75 eV [36]. This result is illustrated in figure 2(a).

The divacancy energies and migration barriers are also a
good fit to the DFT values of [36]. If one vacancy is at lattice
site [0 0 0], the lowest energy configuration is with the second
vacancy at nearest neighbour [1/2 1/2 1/2], though even here the
binding energy is only 0.080 eV. To move the second vacancy
to position [1 0 0], [1 1 0], [1 1 1] has a barrier 1.900, 2.146,
1.696 eV respectively, which can be compared to the pattern
of the DFT values 1.825, 1.807, 1.717 eV [36]. The trivacancy
binding energy is reproduced well, but its migration barrier is
not. This potential finds the migration barrier 1.752 eV, similar
to that of the monovacancy. But DFT is able to rehybridise
the electrons at the saddle point configuration, and finds a low
saddle point of 1.146 eV. This problem with EAM empirical
potentials was discussed in [36].

We define the formation and binding energies of a m—
vacancy cluster in tungsten as, respectively,

Evmf = E(vm)− (N−m)E0

Evmb = mEv1f −Evmf , (2)

where E(vm) is the lowest total energy of a box containing N
lattice sites of which m are vacant, and E0 is the energy per
tungsten atom (equal to the negative of the cohesive energy).
For this work, the lowest energy has been found in the same
manner as [36]. m sites were selected as a string of nearest
neighbour positions, within a box of 7× 7× 7 conventional
unit cells, removing the atoms on those sites, and relaxing
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Figure 1. W–W potential comparison to [51] (dashed lines). (a) Pairwise potential, black line ZBL repulsion. (b) Density function,
(c) embedding function, black line square root form. The vertical lines in (a) and (b) indicates the equilibrium spacing of neighbours in the
bcc lattice. The density is scaled in (b) and (c) by the level for a W atom in the perfect bcc lattice.

Figure 2. NEB calculation for migration in W. (a) Monovacancy
migration, compared to DFT result from [52], with lines to guide the
eye. (b) H in otherwise pure W. DFT comparison results from Kong
et al [53].

atomic positions with constant volume. Up to one thousand
randomly selected strings of atoms were compared to find
a good minimum energy configuration. The relaxed energy
quoted includes an elastic energy correction [56].

Figure 3. (Total) binding energy of vacancy clusters in pure
tungsten.

The binding energy of vacancy clusters in pure W is shown
in figure 3, and relaxation volumes of vacancy clusters are
shown in figure 4(a). We see that the current potential finds
excellent agreement with DFT values from [36], a slight
improvement on the previous MNB potential and a consider-
able improvement on the EAM-2 potential.

The properties of some unreconstructed low index surfaces
in pure W are given in table 2. The surface energies and
stresses are a good match to DFT results from [57]. As noted
in [36], the high formation energy of the surfaces in bcc tung-
sten is due to the pseudo-gap in the electronic density of states
near the Fermi level—the practical outcome of which is to
make electron-deficient tungsten atoms higher energy than the
square-root form of the embedding function second-moment
(Finnis–Sinclair) potentials would suggest. The approxim-
ate energy level of the surfaces is therefore adjusted by
reducing the embedding energy in this low-electron-density
region, as can be seen in figure 1(c). We note that the
energy of the [1 0 0] surface is lower than the [1 1 1] sur-
face, in common with other empirical EAM or tight-binding
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Figure 4. Relaxation volumes of (a) empty vacancy clusters Vm and
(b) monovacancies filled with H V1Hn, in units of the atomic
volume Ω0. The lines are to guide the eye. DFT results in figure (a)
from [36].

Table 2. Surface properties of the W potential. Surface energies γhkl
and surface stresses shkl for surface normal [hk l] are given in
eVÅ−2. DFT and MNB values from [57], experiment from [59].
Values showing significant discrepancy are indicated with italics.

Property DFT Expt This work EAM-2 MNB

γ110 0.212 0.229 0.220 0.144 0.218
γ211 0.224 0.248 0.171 0.241
γ111 0.239 0.266 0.184 0.259
γ100 0.259 0.248 0.170 0.240
s110 0.301,0.178 0.363,0.194 0.330,0.215
s211 0.223,0.151 0.220,0.151 0.262,0.251
s111 0.135,0.135 0.130,0.130 0.215,0.215
s100 0.147,0.147 0.242, 0.242 0.229, 0.229

second-moment approximation (Finnis–Sinclair) potentials.
In these potentials, the leading energy contribution can be
estimated by simply counting bonds: the surfaces (1 1 0),
(2 1 1), (1 0 0) and (1 1 1) have, respectively a nearest- and
next-nearest- neighbour count of (6,4), (5,3), (4,5), and (4,3).
Hence the (1 1 0) surface has the lowest energy, in qualitat-
ive agreement with DFT calculations, but the (1 1 1) surface
has the highest energy. However the empirical potential mod-
els that relate the surface energies to the cohesive energies
are flawed because while they include the contributions from
the d band in transition metals, they ignore the general trend

Figure 5. Formation energy of interstitial clusters and loops per
point defect. DFT results from [60], with extrapolating lines being
fits to the data from [54].

of sp electrons to spread smoothly at the surface. The latter
sp-d hybridisation not only affects the attractive bonding con-
tributions but also the repulsive energy from electrostatic and
exchange-correlation contributions. Using DFT calculations,
the predicted surface energies can be improved by 10%–20%
leading to the different trends observed [58].

The practical result of this failing of EAM potentials is that
the (1 0 0) surface is the least reliable, and both the surface
energy and surface stress are not well reproduced.

We now consider interstitial properties of the W–W poten-
tial. Interstitial properties were computed in a 5× 5× 5 con-
ventional unit cell with fixed volume and the elastic correction
made, to be a close comparison to DFT values. The forma-
tion energies for single interstitials in 1/2[1 1 1] and [1 0 0] ori-
entations are raised slightly compared to the previous MNB
potential, which we have achieved by adding a small repuls-
ive bump in the pairwise potential V(r) between second- and
third- neighbour positions, similar to the one seen in EAM-2.
The relaxation volume of the 1/2[1 1 1] crowdion is found to
be 1.485 times the volume per tungsten atom in the perfect
0 K lattice, Ω0. This is a good match to the DFT—determined
relaxation volume, 1.57 Ω0 [54].

The transferability of the potential to larger interstitial
clusters is tested by computing the formation energy of inter-
stitial clusters and loops in pure W, shown in figure 5. Small
interstitial clusters up to size 6 point defects were gener-
ated using a method similar to vacancy clusters, constructing
a string of m lattice sites at random, then placing an inter-
stitial atom into randomly selected tetrahedral or octahedral
sites along the string. 500 such strings were constructed to
find a low energy, using a cell size 16× 16× 16 unit cells
with fixed volume. Larger interstitial loops were construc-
ted to be circular within a box size 48× 48× 48 unit cells
with fixed volume. The energy per point defect is slightly
higher than in the MNB or AT potentials, and the increase
in energy of [1 0 0]—Burgers vector defects over those with
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Figure 6. Energy for quasi-static drag of a single atom in direction
indicated. Lines denote DFT values from [48]. Some representative
points for the DND interatomic potential from [48] are shown using
filled symbols.

1/2[1 1 1] is raised slightly. A comparison to DFT [54, 60]
shows both these changes are improvements, and in particular
the 1/2[1 1 1] loops are in good agreement with DFT. We note
that the GAP potential of [61] is closer to DFT for the [1 0 0]
loops. Some other tungsten empirical potentials [51, 62] find
[1 0 0] loops have the lower energy. While the significance of
this ordering is not clear in atomistic high dose microstruc-
tures generated by MD [22, 23, 63], we shall see in section 2.4
that the energy ordering of dislocation loops is further affected
by the presence of hydrogen isotopes, so these potentials can-
not be used as a base for seeking trap mutation mechanisms
depending on defect energy ordering.

We consider the transferability of the short-range part of
theW–Wpotential using the Quasi-Static Drag (QSD)method
introduced by Becquart et al [48]. A single atom is displaced
along a fixed vector direction, and the energy is recorded
without relaxing the atoms. We consider vector directions
[1 0 0], [1 1 0], [1 1 1], [1 3 5]. As the atoms get close together,
the potential tends to the ZBL repulsive form, and the energy
rises rapidly. The results are shown in figure 6. DFT res-
ults generated in [48] using semi-core electrons in the PAW
approximation are indicated in the figure, and we see this work
follows the DFT values quantitatively for the head-on colli-
sions considered ([1 0 0] and [1 1 1]), and is acceptable for the
[1 1 0] and [1 3 5] directions. To make a proper comparison
with literature, we include indicative results generated using
the DND W potential [62], known to generate collision cas-
cades in agreement with experimental observations [64]. We
see this work is very similar to DND, closer than the other
empirical potentials considered in [48], but we note that this
work follows DFT more closely even than DND for the head-
on [1 1 1] collision.

2.2. Dynamic properties of the tungsten crystal

In this section we compute some simple dynamic properties of
the pure tungsten crystal, in order to demonstrate the stability

Figure 7. Thermal expansion coefficient, defined by
∆L/L= α(T)∆T of pure tungsten crystal as computed using MD in
the NPT ensemble. Experimental results: upper line Miiller and
Cezairliyan [65], lower line Dubrovinsky and Saxena [66].

at elevated temperatures. No phonon properties were included
in the fitting, so these results represent a test of transferability
to MD simulation.

Figure 7 shows the thermal expansion coefficient of
pure tungsten crystal computed using molecular dynam-
ics in the NPT ensemble using PARCAS [67, 68].
Comparing to experimental results shows that all poten-
tials considered here give good thermal expansion proper-
ties above room temperature, with this work and EAM2
starting from a slightly lower lattice constant at 0 K.
The melting points for MNB and this work were found
using the two-phase method [69] to be 5050± 50K and
4950± 50K respectively. These values are high compared
to experiment (3695 K), a common failing of empirical
potentials [14].

Figure 8 shows some phonon properties of the perfect
tungsten crystal. These plots were generated at 0K using
the ideal lattice parameter by direct diagonalization of the
dynamical matrix [71]. This work behaves similarly to the
MNB potential, which is a fair match to the experimental
phonon dispersion relation and density of states. The low-
frequency density of states shows the quadratic rise charac-
teristic of the Debye model. As the speed of sound is very
similar in all the empirical potentials considered, and set
to be close to experiment [70], the curves overlap at low
frequency. The first peak, corresponding to transverse-mode
phonons is at a slightly lower frequency than experiment in
the MNB potential and this work, and the second peak (lon-
gitudinal phonons) is higher frequency than experiment. The
EAM-2 potential shows phonon properties characteristic of
bcc metals, but with both peaks significantly below experi-
mental values. We find the maximum phonon frequency in
this model is 7.62 THz, compared to 6.6 THz experiment-
ally [70]. A value around 6 THz is commonly taken as a char-
acteristic frequency in object kinetic Monte Carlo simulation
[72].
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Figure 8. Computed properties of phonons in the pure tungsten
crystal. Experimental points from Landolt and Börnstein [70].
(a) The phonon dispersion along high symmetry directions. (b) The
phonon density of states per atom (normalised to give an area under
the curve = 3.0).

Table 3. Properties of the H–H potential. A comparison is given to
the empirical Wang potential [28].

Property Units Expt This work Wang

H2 length Å 0.74 0.744 0.726
1/2 EH2

f eV −2.26 −2.121 −2.358
H2 spring const eVÅ−2 35.95 34.44 31.0
1/3 EH3

f eV −0.808 −1.389
cohesive E hcp eV 0.990 1.386

2.3. H–H properties

Though much is known about molecular hydrogen, classical
empirical potentials can only reproduce a rather limited subset
of their properties. The initial fit was chosen to be as close as
possible to Wang et al [28], and a comparison of properties
is given in table 3. There is little difference between the two
EAM potentials, in particular note that the H2 dimer is formed
using either potential, and H3 and close packed (hcp) hydro-
gen are strongly unfavoured. A direct comparison between the
functional forms for this work and the Wang potential [28]
is shown in figure 9. Note that we have only needed to use
experimental properties of molecular hydrogen in this work.

The only small change made here is increasing the binding
energy at low electron density—this change allows slightly
higher binding energy of the H atom to a surface. Note that
while the embedding function technically starts with a square
root form, the deviation from it is substantial. The majority
of the work done fitting of the H–H potential was tuning the
embedding function F[ρ] in order to reproduce W–H binding
energies.

2.4. W–H properties

The W–H interaction used an initial fit as close as possible
to Wang et al. A direct comparison of the potential forms
for this work and Wang is shown in figure 10. This work
shows stronger binding at typical H-W separation distances,
and weaker repulsion at short range.

The targetted properties are given in table 4. Some of the
values have zero point energy contributions included. For this
work, these have been computed by finding the phonon fre-
quencies {ωi } directly from the full dynamical matrix, and
computing the sum EZPE =

∑
i
1/2h̄ωi. The stable position for

interstitial H is the tetrahedral site, with the octahedral site
0.36 eV higher in energy, in agreement with DFT. The migra-
tion barriers for a mobile interstitial H atom moving from one
site to the next are illustrated in figure 2(b), and also are a
good match to DFT. We have also targetted unrelaxed inter-
stitial formation energies, a good test of the W–H potential at
short bond length.

The present DFT calculations of relaxation volumes were
performed for this work using the VASP ab initio simula-
tion code, using the PAW method [78–80] with semi-core
electrons included through the use of pseudo-potentials. It is
important to emphasize that the inclusion of semi-core elec-
trons in the valence states has a significant effect on the pre-
dicted formation energies of both vacancy and self-interstitial
atom (SIA) defects for all the bcc transition metals [35, 81,
82]. In the present study of vacancy interaction with hydrogen
atoms, the exchange-correlation effects were described using
the Perdew–Burke–Ernzerhof generalised gradient approxim-
ation [83]. A kinetic energy cut-off of 500 eV was used, with
a 5× 5× 5 Monkhorst-Pack grid for electron density k-points
employed in the case with super-cell (5× 5× 5) calculations.
The set of hydrogen-vacancy defect clusters used was similar
to those described in [84, 85] with larger super-cell size. The
full cell relaxation method was used to evaluate the relaxa-
tion volumes. A comparison between fully relaxed calcula-
tions with those using the constant volume approximation in
a combination with the corrected elastic dipole tensor calcu-
lations has been recently discussed in [38]. While the latter
approximation can be extended to investigate the relaxation
volume of radiation induced defects at mesoscopic scale in
pure tungsten [37], it has been demonstrated clearly in the case
of interaction between helium atoms and vacancy clusters that
the former method is more reliable not only in reproducing
experimental data of the lattice swelling but also the modulus
change in a helium-implanted tungsten alloys.

Relaxation volumes of vacancy clusters and
monovacancies filled with H are shown in figures 4(a) and (b)

7
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Figure 9. H–H potential comparison to [28] (dashed lines). (a) Pairwise potential, black line ZBL repulsion. (b) Density function,
(c) embedding function. The vertical line in (a) and (b) indicates the dimer equilibrium spacing. The density is scaled in (b) and (c) by the
level for the dimer at equilibrium spacing.

Figure 10. W–H potential comparison to [28] (dashed lines). Black
line shows ZBL repulsion.

respectively. The new potential fitted here is a good match to
DFT, suggesting it should well reproduce the local stresses
generated by high concentrations of dissolved hydrogen gases
and vacancy clusters. The relaxation volume of an H atom
bound to a crowdion is found to be 1.593 Ω0, in good agree-
ment with the DFT value 1.719 Ω0.

We test transferability by considering the binding of single
H atoms to defect clusters, and the binding ofmultiple H atoms
to point defects, as both these have comparable DFT calcula-
tions in the literature. Figure 11(a) shows the highest binding
energy of a single H atom to interstitial clusters and 1/2⟨111⟩
interstitial loops. The binding energy increases from 0.36 eV
for the single SIA to 0.64 eV for a large loop (m= 55 intersti-
tials, diameter 2 nm), in good accordwith theDFT calculations
of De Backer et al [10]. Figure 11(b) shows the highest bind-
ing energy of a single H atom to vacancy clusters. The binding
energy increases from 1.23 eV for the monovacancy to plat-
eau around 1.7 eV for large vacancy clusters. This increase in
binding energy was reported in a DFT study by Hou et al [21],
and is consistent with the high binding energy to a surface in

the limit of infinite void size. The potential of Wang does not
reproduce a significant increase in binding energy of H with
the size of the vacancy cluster. Care should be taken overes-
timating the importance of this result in dynamic studies, as
the binding energy of H to any void-space is high, so instead
of finding a true thermodynamic equilibrium, MD simulations
will most likely be stuck in a long-lived transient state with H
atoms decorating the first vacancy cluster they encounter and
rarely being detrapped.

Figure 12(a) shows the binding energy of multiple H atoms
to a single interstitial, with the DFT comparison from [10].
Both the Wang potential and this work do a similarly good job
reproducing the near-linear increase in total binding energy up
to 12 H atoms. Figure 12(b) shows the binding energy per H
atom to a single vacancy. Again, both empirical potentials are
showing the correct trend, with this work producing a slightly
higher binding energy, closer to DFT. The H atoms are placed
at the octahedral [1/200] interstices.

Binding energies of an H atom to the surface are given
in table 5. Note that the reference point for these energies
is the vacuum level of molecular hydrogen. These energies
are somewhat below that predicted by DFT and found exper-
imentally, with the highest binding energy being 0.487 eV
for an H atom on the (1 1 0) surface. Care should be there-
fore taken when attempting to model the equilibrium between
gas phase and the surface, particularly if the [1 0 0] surface is
used. Note that the Wang potential has poor surface energy
properties generally, with surface energies 30% lower than
DFT, and that potential only gives a positive binding energy
for H on a [1 0 0] surface. The improvement made here is
modest, but is the most we have been able to achieve—
the near-field atomic configuration of an H atom on the
surface looks similar to the atomic configuration inside a
vacancy. In order to stabilise H on a surface further with
an EAM potential without changing the vacancy binding
energy requires a low-electron-density binding state (which
can be seen in figure 9(c)), but be were not able to make
this state even more binding without destabilising molecular
H2.

8
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Table 4. Targetted properties of the W–H potential. Values in brackets include zero point energy. A comparison is given to the empirical
EAM potential by Wang et al [28].

Category Property Units DFT Expt This work Wang

H in bcc W EH,tetf eV 0.93(1.04)a, 0.685(0.95)b 1.04 ± 0.17 0.798(1.049) 1.056
EH,octf −EH,tetf eV 0.44a 0.359 0.35
EH,tet−tet
m eV 0.21a 0.216 0.22

relax vol H tet Ω0 0.15c 0.133 0.241
EH−H
b (2nn) eV −0.446d −0.468 −0.525
EH−H
b (3nn) eV −0.093d −0.013 −0.112
EH,tetf (unrelaxed) eV 2.87 2.682 0.968

EH,octf (unrelaxed) eV 2.81 2.629 3.217
H in vac Ev−H

b eV 1.28(1.43)e 1.233(1.290) 1.011
EvH−H
b eV 1.25(1.41)e 1.349(1.456) 1.098
EvH2−H
b eV 1.11(1.22)e 0.975(1.032) 0.819
EvH3−H
b eV 1.00(1.11)e 1.050(1.074) 0.688
EvH4−H
b eV 0.91(1.00)e 0.705(0.742) 0.561
EvH5−H
b eV 0.32(0.47)e 0.486(0.670) 0.285
EHsubb eV 0.375 0.550
ΩvH

rel Ω0 −0.24 −0.273 −0.027
ΩvH2

rel Ω0 −0.205 −0.232 0.008
ΩvH3

rel Ω0 −0.170 −0.256 0.119
ΩvH4

rel Ω0 −0.131 −0.216 0.263
ΩvH5

rel Ω0 −0.094 −0.121 0.429
ΩvH6

rel Ω0 −0.055 −0.043 0.774
H + int Ei−H

b eV 0.33c 0.357 0.416
H + surface Eb[100] eV 0.93f 0.7,0.82f 0.312(0.466) 0.146
a Fernandez et al [73].
b Heinola and Ahlgren[74].
c De Backer et al [10].
d Liu et al [75].
e Heinola et al [76].
f Johnson and Carter[77].
The binding energy for a pair of H interstitial atoms is given for tetrahedral sites separated by [1/2 00] and [1/2 1/4 1/4].
In this table and subsequently, italics indicate values which could produce significant errors in simulation. These values are discussed in the text.

3. Large defect clusters in a hydrogen-rich
atmosphere

In this section we consider how the energy levels of proto-
typical nanoscale lattice defects produced by radiation dam-
age [86] are affected by the binding of multiple hydrogen iso-
tope atoms. There is little DFT data for larger clusters, so the
results in this section are predictions made with the current
empirical potential, together with a discussion of where they
may prove important for gas retention studies.

In this section, the ‘best’ relaxed structures were found by
a random sampling process. First, the extended defect in pure
W was constructed and relaxed at constant volume using con-
jugate gradients. The supercell size was 32× 32× 32 conven-
tional unit cells, and the defect was taken to be either a circu-
lar loop or spherical void containing about 60 point defects.
Any empty space regions were then detected with the void
isosurface detection method of [40]. H atoms were then placed
into these void regions, with an artificial repulsion keeping the
unrelaxed H positions >3× the H2 dimer length apart. Any
surplus H atoms were added to tetrahedral lattice sites at ran-
dom. The decorated defect was then relaxed again using con-
jugate gradients. We considered 1000 initial configurations at

order 1 H per point defect, rising to 10 000 initial configur-
ations at 5 H per point defect. We cannot say that the struc-
tures produced are guaranteed to be the lowest possible energy
structures, only that they represent carefully chosen low
energy structures. At finite temperature, the configurational
entropy associated with a large number of similar-energy con-
figurations will become more important than the true 0K min-
imum. Subsequent thermal annealing with 1 ns MD at up to
900K does not show any significant structural transformation
in these defects, indicating they are reasonably stable.

In figure 13(a) we plot the binding energy of multiple
H atoms to interstitial dislocation loops, in terms of bind-
ing energy of H atoms to an existing loop, ie the quantity
Eb(ImHn) = Ef(ImH0)+ nEf(H)−Ef(ImHn), where Ef(ImHn)
is the formation energy of the m interstitial loop decorated
with nH atoms. In this figure we have created circular disloca-
tion loops with radius 3a0, giving a diameter of about 2 nm—
around 60 interstitials. In both the ⟨100⟩ and 1/2⟨111⟩Burgers
vector cases, the H atoms are bound close to the dislocation
core. At higher ratios of H atoms to interstitials, excess H
atoms are weakly bound in the region of tensile stress just out-
side the disc of inserted atoms. The binding energy per H atom
is greater to the [1 0 0] loop than to the 1/2[1 1 1] loop, as the

9
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Figure 11. Binding energy of single hydrogen atoms to extended
defects in tungsten. (a) Binding energy to interstitial clusters and
1/2⟨111⟩ loops. The dashed line indicates the fit suggested in [10].
(b) Binding energy to vacancy clusters. The dashed line indicates the
binding energy of the [0 0 1] surface from [84]. DFT values from De
Backer et al [10], Hou et al [21], and Ohsawa and Kuramoto [85].

former has the larger Burgers vector and so creates a greater
tensile stress. Figure 13(b) replots the data as the total bind-
ing energy bringing all interstitials and H atoms from infin-
ity, ie the quantity Etot

b (ImHn) = (N+m)E0 +mEf(I1H0)+
nEf(H)−Ef(ImHn), where the simulation cell has N bcc lat-
tice sites. Though the undecorated 1/2⟨111⟩ loop has higher
binding energy than the ⟨100⟩ loop, adding H atoms brings the
total formation energy of the ⟨100⟩ loop down faster, giving a
crossover point between them at m/n∼ 0.25. As noted above,
in this empirical potential, the energy gap between ⟨100⟩ and
1/2⟨111⟩ is smaller than that predicted by DFT, so we should
expect this crossover point to be higher in reality. The qualitat-
ive result that dissolved hydrogen isotope gas should stabilise
⟨100⟩ loops is likely to be robust.

Figure 13(c) shows the relaxation volume per H atom, com-
puted from the dipole tensor and the elastic constants [87].
We see that each H atom contributes a small positive volume
change, smaller than that of the interstitial H in a tetrahedral
position in the perfect lattice. This volume change is in addi-
tion to the much greater relaxation volume of the interstitial
loop itself, ordermΩ0, indicating that an H atom brought from

Figure 12. Binding energy of multiple hydrogen atoms to point
defects in tungsten. (a) Total binding energy to single SIA
(crowdion). (b) Total binding energy to monovacancy. DFT values
from De Backer et al [10], Heinola and Ahlgren [84], and Ohsawa
and Kuramoto [85].

Table 5. Surface binding energies of H on W, computed as
Ef(surface)+ 1/2Ef(H2)−Ef(surface : H). DFT and experimental
values reported in [77]. Figures in brackets include zero point
energy contributions.

Property DFT Expt This work Wang

[1 1 0] 0.75 0.487(0.722) −0.291
[2 1 1] 0.389(0.707) −0.024
[1 1 1] 0.394(0.696) 0.001
[1 0 0] 0.93 0.7,0.82 0.312(0.466) 0.146

infinity to the loop will reduce the total elastic stress, but only
slightly. There is little difference between loops with ⟨100⟩
and 1/2⟨111⟩ Burgers vectors. This result suggests little is to
be gained in terms of reducing elastic stress build up by bind-
ing H atoms to interstitial defects, and coupled with the low
binding energy per gas atom seen in figure 13(a), we conclude
that using this potential at room temperature and above there
will be little hydrogen gas associated with interstitial loops
except under plasma loading conditions. This is in line with
the conclusions of the meso-scale study in [10].

Figure 14(a) shows the binding energy of H atoms
to vacancy-type defects, Eb(VmHn) = Ef(VmH0)+ nEf(H)−
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Figure 13. Interaction of hydrogen atoms with extended
interstitial-type defects in tungsten as a function of the ratio of H
atoms to point defects. (a) Binding energy per H atom to interstitial
clusters and dislocation loops. (b) Total binding energy per
interstitial (binding energy of interstitial defect and binding energy
of H atoms) for extended interstitial defects. (c) Relaxation volume
per bound H atom, expressed as a fraction of the volume per
tungsten atom Ω0. Dashed line shows relaxation volume of a single
H atom in the tetrahedral position in perfect W.

Ef(VmHn). Here we have considered the circular dislocation
loops with Burgers vectors ⟨100⟩ and 1/2⟨111⟩, as well as
the spherical void and the ‘open’ vacancy loop [31]—a plate-
let of vacancies with habit plane ⟨100⟩ and 1/2⟨111⟩ formed

when the atomic planes inside the corresponding prismatic
dislocation loop are separated. All defects have around 60
unoccupied lattice sites. As with the binding to interstitial
loops, we see H atoms trapped near the vacancy loop disloca-
tion cores, and with higher binding energies than the intersti-
tial counterparts. This binding energy is slowly reduced as the
ratio of H to vacancies is increased. The open defects, the void
and the vacancy platelets, have higher binding energy than the
dislocation loops. It is notable that some vacancy platelets have
higher binding even than the void, which is likely due to a
single H atom being able to stabilise the electron-deficient W
atoms on either side of the platelet.

In figure 14(b) we replot the data using the total bind-
ing energy of the defect plus the binding of the H atoms per
vacant lattice site, Etot

b (VmHn) = (N−m)E0 +mEf(V1H0)+
nEf(H)−Ef(VmHn). Here we see that the void is by far the
strongest bound defect per vacancy at this defect size, which
is to be expected as the energy of the open defects scales
with surface area. At high H occupation, n/m> 1, it appears
the binding energy per vacancy is greater than the formation
energy per vacancy. This does not mean that a void can spon-
taneously form—that would require the emission of intersti-
tials which are very high energy point defects. At low H occu-
pation, n/m≪ 1, we see the vacancy dislocation loops are the
second most stable defects, with the platelets very similar at
this defect size. But as with the interstitial loop case, increasing
the number of H atoms changes this order, and the ⟨100⟩ plate-
let is more stable with only a few added H atoms present. At
higher ratios n/m> 0.6, the 1/2⟨111⟩ platelet becomes more
stable than the dislocation loop, and at n/m> 3, the plate-
lets have similar stability to the void. These observations from
the empirical potential, suggest that in a rich hydrogen iso-
tope atmosphere condition, such as might be found in a plasma
loading condition, there is a driving force for transformation
between dislocation loops and open platelets.

The relaxation volume perH atom bound to vacancy defects
is shown in figure 14(c). In contrast to the result for intersti-
tial loops, here we see considerably more structure. H atoms
bound to dislocation loops show a greater relaxation volume
than in the tetrahedral interstitial position, which acts to allevi-
ate the large negative relaxation volume (order −mΩ0) of the
vacancy loop itself. For open-volume defects—the void and
plates considered here—the relaxation volume is very small
for the first few gas atoms binding to the surface of the defect,
as these do not contribute significant additional surface stress.
Figure 14(d) shows the total relaxation volume per vacancy
for H decorated vacancy defects. As the H level increases,
so does the relaxation volume. Of particular note is that at
around 2 H per vacancy, the sign of the relaxation volume of
the open defects changes from negative to positive. This result
shows that non-zero stress applied as boundary conditions, or
as locally varying stresses due to nearby defects, will further
change the energy levels of the defects. In particular this res-
ult suggests that under tensile stress conditions, produced by
interstitial defects in the early stages of radiation damage [13],
open structures may be further favoured. Further study of this
effect is beyond the scope of this paper, but warrants future
investigation.
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Figure 14. Interaction of hydrogen atoms with extended vacancy-type defects in tungsten as a function of the ratio of H atoms to point
defects. (a) Binding energy per H atom to extended vacancy defects. (b) Total binding energy per vacancy (binding energy of vacancy defect
and binding energy of H atoms) for extended vacancy defects. Dashed line is the monovacancy formation energy for comparison.
(c) Relaxation volume per bound H atom, expressed as a fraction of the volume per tungsten atom Ω0. Dashed line shows relaxation volume
of a single H atom in the tetrahedral position in perfect W. (d) Total relaxation volume per vacancy. Dashed lines show the gradient of the
corresponding relaxation volume of H atoms in perfect W.

Figure 15 shows renderings of some of the decorated
defects. We have used the method of [40] to find void isosur-
faces, and DXA [88, 89] to find dislocation lines. Two sets of

images are shown, with filling ratios n/m∼ 1 and n/m∼ 4.
At n/m∼ 1, the dislocation loop defects are easily identifi-
able as such, with a small number of H atoms decorating the
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Figure 15. Extended defects in tungsten decorated with multiple H atoms. Each has a size of around 60 point defects, making the loops and
plates ∼2 nm diameter, and the void ∼1.5 nm diameter. The top row, left-to-right, shows interstitial loops with ⟨100⟩ and 1/2⟨111⟩ Burgers
vectors, decorated with 64 H (n/m∼ 1), then vacancy loops with ⟨100⟩ and 1/2⟨111⟩ Burgers vectors. H atoms are shown as blue dots. The
second row shows a void, then a open vacancy platelet in [1 0 0], [0 0 1], and 1/2⟨111⟩ orientation. H2 molecules are indicated as green
dumbbells. The third and fourth rows show the same defects decorated with 256 H (n/m∼ 4). Pink lines show ⟨100⟩ edge dislocation lines,
green lines show ⟨111⟩ edge dislocation lines. Purple surfaces show boundaries of cavity regions. Tungsten atoms not shown. Rendered
with OVITO [88].

dislocation lines. Void spaces do arise between W atoms even
at low n/m, but they appear as cracks, significantly thinner
than a monovacancy, between W atoms under considerable
tensile strain in the direction of the Burgers vector. In the open
defects (voids and platelets) molecular H2 can be seen in the
interior, with H atoms also decorating the surface. At n/m∼ 4,
the interstitial dislocation loops are still identifiable, but the
vacancy dislocation loops have lost their cores, instead appear-
ing closer to a thin toroidal crack between the atoms in the

direction of the Burgers vector. No molecular H2 is observed
in decorated vacancy loops. No spontaneous interstitial ejec-
tion is observed in any structure.

It is notable that some H sits in interstitial positions bey-
ond the defect. This observation of a Cottrell atmosphere of H
atoms in the elastic field of an extended defect was seen previ-
ously by De Backer et al [10] using a core–shell model for the
binding energy and Metropolis Monte Carlo to generate low
energy decorated structures.
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4. Conclusions

No empirical potential is expected to perfectly reproduce all
properties, especially those outside the targetted set, and this
potential is no exception. We have tried to report faithfully
areas where there could be concerns. We therefore note

• The trivacancy migration energy in pure W is close to the
monovacancy migration energy, and is not the very low
value found by DFT. This is a failure of the EAM potential
form to reproduce the correct sp-d hybridization and can not
be easily fixed. This may have an impact in studies concern-
ing the clustering of monovacancies.

• The (1 0 0) surface energy of pure W is ordered incorrectly,
again as a failure of the EAM potential form to reproduce
the correct sp-d hybridization. The (1 0 0) surface should be
treated as least reliable in quantitative studies.

• The binding energy of an H atom to a surface is low, ran-
ging from 0.3 to 0.5 eV compared to the experimental value
0.7–0.8 eV. While this is an improvement on previous liter-
ature potentials, it is most likely related again to the diffi-
culty of reproducing surface electron states. This may have
an impact where equilibrium between molecular H2 and the
surface is required.

We have shown that the potential described here is capable
of reproducing a range of DFT-calculated properties of the
interactions between hydrogen isotope gases dissolved in a
tungsten lattice, and point- and extended-lattice defects intro-
duced by irradiation damage. In particular, we have focused on
ensuring that not only the binding energies, but also the relax-
ation volumes of the defects are well reproduced. This gives
us more confidence that the potential will show qualitatively
correct trends as a function of the applied boundary conditions
of stress and strain.
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Appendix. Parameterization

In this section we present the parameterization of the potential.
The explicit form chosen for the three functions is

V(r) =


Z(r)+P(0)

V (r) , 0⩽ r⩽ r(1)V

Z(r)+P(1)
V (r) r(1)V ⩽ r⩽ r(2)V

P(2)
V (r) r(2)V ⩽ r⩽ r(3)V

0 r⩾ r(3)V

ϕ(x) =


P(0)
ϕ (r) , 0⩽ r⩽ r(1)ϕ

P(1)
ϕ (r) r(1)ϕ ⩽ r⩽ r(2)ϕ

0 r⩾ r(2)ϕ

F(ρ) =


α
√
ρ+P(0)

F (ρ) , 0⩽ ρ⩽ ρ(1)

α
√
ρ+P(1)

F (ρ) ρ(1) ⩽ ρ⩽ ρ(2)

α
√
ρ ρ⩾ ρ

(2)
ϕ

, (3)

where the functions P(n)
σ (x) are fifth-order polynomials which

match zeroth, first, and second derivatives at the knot points
x(n)σ . The full parameterization is given in table 6. We also con-
strain by fiat some of the values and derivatives at zero or the
cutoff range, to ensure continuity and smoothness.

The functional form of P(n)
σ (x) can be found by substituting

into the general polynomial form

P(n)
σ (z) = P0 +P ′

0z+P ′ ′
0 z

2/2

=−(20P0 − 20P1 + 12P ′
0 + 8P ′

1 + 3P ′ ′
0 −P ′ ′

1 )z
3/2

+(30P0 − 30P1 + 16P ′
0 + 14P ′

1 + 3P ′ ′
0 − 2P ′ ′

1 )z
4/2

− (12P0 − 12P1 + 6P ′
0 + 6P ′

1 +P ′ ′
0 −P ′ ′

1 )z
5/2,

(4)

where z= (x(n)σ − x)/(x(n)σ − x(n−1)
σ ), and P0,1,P ′

0,1,P
′ ′
0,1 are

the values of the function and its derivatives with respect
to z which are matched at either end of the interval. Note
that in table 6 we present the derivatives with respect to
x not z.

To the repulsive pairwise potential we add the ZBL form
between r= 0 and r= r2. This has the universal form repro-
duced here for completeness

VZBL(r) =
Z1Z2
4πεr

( 0.1818e−3.2x/a+ 0.5099e−0.9423x/a

+0.2802e−0.4029x/a+ 0.02817e−0.2016x/a
)
, (5)
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Table 6. Full parameterization of the potential, defined as function values and derivatives at knot points. Lengths (x) in Å, energies (V,F) in
eV.

FW(ρ)

α −10.392 487 15
ρ0 0 F(ρ0) 0 F ′(ρ0) 2.069 577 25 F ′ ′(ρ0) −5.116 781 24
ρ1 0.660 597 43 F(ρ1) 0.619 680 10 F ′(ρ1) −1.079 627 70 F ′ ′(ρ1) 0.958 866 30
ρ2 1.052 264 57 F(ρ2) 0 F ′(ρ2) 0 F ′ ′(ρ2) 0

ϕW(r)

r0 0 ϕ(r0) 0.513 046 56 ϕ ′(r0) −0.266 141 97 ϕ ′ ′(r0) 0.062 741 33
r1 3.273 329 80 ϕ(r1) 0.045 215 07 ϕ ′(r1) −0.074 992 84 ϕ ′ ′(r1) 0.064 327 26
r2 4.649 955 91 ϕ(r2) 0 ϕ ′(r2) 0 ϕ ′ ′(r2) 0

FH(ρ)

α −2.094 997 341
ρ0 0 F(ρ0) 0 F ′(ρ0) −0.999 828 063 F ′ ′(ρ0) 13.297 127 96
ρ1 2.206 458 605 F(ρ1) 3.026 5026 F ′(ρ1) 2.597 429 616 F ′ ′(ρ1) 6.826 075 643
ρ2 232.470 2459 F(ρ2) 0 F ′(ρ2) 0 F ′ ′(ρ2) 0

ϕH(r)

r0 0 ϕ(r0) 3.150 746 82 ϕ ′(r0) 0.081 501 79 ϕ ′ ′(r0) 0.023 703 87
r1 1.739 569 71 ϕ(r1) 0.21 459 106 ϕ ′(r1) −0.585 589 91 ϕ ′ ′(r1) 1.401 275 98
r2 3.059 538 85 ϕ(r2) 0 ϕ ′(r2) 0 ϕ ′ ′(r2) 0

VWW(r)

r0 0 V(r0) 0 V ′(r0) 0 V ′ ′(r0) 0
r1 2.756 823 38 V(r1) −0.360 458 09 V ′(r1) 0.788 131 64 V ′ ′(r1) −1.388 444 45
r2 3.095 505 08 V(r2) −0.161 344 21 V ′(r2) 0.232 114 07 V ′ ′(r2) 3.092 847 96
r3 4.447 465 15 V(r3) 0 V ′(r3) 0 V ′ ′(r3) 0

VWH(r)

r0 0 V(r0) 0 V ′(r0) 0 V ′ ′(r0) 0
r1 1.483 013 29 V(r1) 2.421 633 09 V ′(r1) −7.641 619 63 V ′ ′(r1) 10.586 129 68
r2 2.671 176 36 V(r2) −0.126 279 64 V ′(r2) −0.414 496 13 V ′ ′(r2) 0.249 454 55
r3 3.967 808 40 V(r3) 0 V ′(r3) 0 V ′ ′(r3) 0
r4 4.844 774 78 ∆V −0.100 567 16

VHH(r)

r0 0 V(r0) 0 V ′(r0) 0 V ′ ′(r0) 0
r1 0.299 325 96 V(r1) −0.002 775 62 V ′(r1) −0.011 039 95 V ′ ′(r1) 504.901 7561
r2 0.739 727 33 V(r2) −4.653 878 43 V ′(r2) 14.211 494 52 V ′ ′(r2) −74.740 558 20
r3 1.412 690 52 V(r3) 0 V ′(r3) 0 V ′ ′(r3) 0

with Z1(2) being the atomic number of element 1(2), and a=
0.078908Å the screening length constant.

Finally, in order to increase the binding of hydrogen atoms
to surfaces, we further add a long range attractive interaction to
the VWH potential, of the form V+(r) = V0, r< r3, tapering to
zero at r= r4.
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