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Abstract
We describe the development of a new object kinetic Monte Carlo (kMC) code
where the elementary defect objects are off-lattice atomistic configurations.
Atomic-level transitions are used to transform and translate objects, to split
objects and to merge them together. This gradually constructs a database of
atomic configurations- a set of relevant defect objects and their possible events
generated on-the-fly. Elastic interactions are handled within objects with
empirical potentials at short distances, and between spatially distinct objects
using the dipole tensor formalism. The model is shown to evolve mobile inter-
stitial clusters in tungsten faster than an equivalent molecular dynamics (MD)
simulation, even at elevated temperatures. We apply the model to the evolution
of complex defects generated using MD simulations of primary radiation damage
in tungsten. We show that we can evolve defect structures formed in cascade
simulations to experimentally observable timescales of seconds while retaining
atomistic detail. We conclude that the first few nanoseconds of simulation fol-
lowing cascade initiation would be better performed using MD, as this will
capture some of the near-temperature-independent evolution of small highly-
mobile interstitial clusters. For the 20keV cascade annealing simulations con-
sidered here, we observe internal relaxations of sessile objects. These relaxations
would be difficult to capture using conventional object kMC, yet are important as
they establish the conditions for long timescale evolution.
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1. Introduction

Nuclear materials for Gen IV fission and fusion power stations will be required to operate
under unprecedented irradiation fluence. The successful retention of good thermal and
mechanical properties depends on the balance between damage generation due to neutron
irradiation and restoration through defect recombination. Predicting the evolution of defect
clusters is therefore of utmost importance.

Two popular tools for characterising defects, transmission electron microscopy [1, 2] and
atom-probe tomography [3] are very successful techniques for identifying (respectively)
nanoscale dislocation loops and precipitates, but both struggle to identify the smallest point
defects and clusters. This is a significant omission, as state-of-the-art STEM microscopy [4],
Field-Ion Microscopy [5], and molecular dynamics (MD) [6, 7] suggest that the majority of
damage produced in primary damage cascades should be invisibly small defects.

But MD has also shown us that some defects generated during the heat spike phase of
cascades are not small—a power-law size-frequency distribution of defects has been found in
simulations of irradiated tungsten and iron [8, 9], and confirmed in experimental observations
of self-ion irradiated tungsten [10]. Recently the spatial distribution [11] and count per
incident ion [12] of larger defect clusters has also been measured in MD simulations and
in situ irradiations at cryogenic temperature, giving a characteristic length-scale of a single
primary damage cascade for 150 keV PKA ions in W of order one nanometre. This proves
that large defects are generated sufficiently close together that the interaction between them is
a significant driving force on their subsequent evolution [13, 14].

To model the evolution of nanoscale defects to experimentally observable timescales at
elevated temperature, we often turn to cluster dynamics (CD) [15], or object kinetic Monte
Carlo (okMC) [16–18]. In the limit of no spatial correlation, i.e. defects produced homo-
geneously and with no elastic interactions, CD and okMC give essentially the same results
[19]. However, if defect objects are produced in a spatially correlated manner, then this could
lead to some rapid recombination in okMC [20, 21]. A challenge therefore is how to handle
the spatial correlation in defect production- MD will give this information in the form of
atomic positions, but okMC typically simplifies complex configurations to a small handful of
parameters describing size, orientation and position of the defect. It is not obvious that the
complex atomic configurations seen in MD, particularly in overlapping cascades, should
resolve quickly to prismatic loops and clusters [22, 23]. Furthermore it may be the case that if
this resolution to simpler forms does occur, it is because of the mutual proximity of defects.
okMC often relies on simple capture radii to determine whether clusters react, which may not
correctly describe self-climb [24] or correlated atom motion in a dislocation core [25]. Finally
we note that including elastic interactions into okMC shows that dislocation loops can be
trapped to experimentally observable times by drawing each other into favourable positions in
their stress fields [13]. The elastic interaction is most pronounced when loops are close
together, which is exactly when the assumptions of okMC starts to break down.

On-the-fly kinetic Monte Carlo methods [26–28] are sometimes used to evolve arbitrarily
complex defects, as they work by searching the configuration space of atomic positions for
saddle points between atomic configurations [29]. Accelerated MD (AMD) can also be used
to seek transitions at high temperatures and then map back to transition rates at the desired
low temperature [30, 31]. To find a barrier requires a considerable calculation effort, but when
seeking infrequent events over thermally activated barriers, these methods are extremely
powerful. For very low barriers, of the order 0.1 eV or less, such as might be seen for
interstitial cluster movement, these methods struggle to compete with MD: put simply kMC
methods are stochastic and so sample a range of local minima, whereas MD is deterministic

Modelling Simul. Mater. Sci. Eng. 27 (2019) 055003 D R Mason et al

2



and so moves from one minimum to the next. Irradiation damage cascades give us very low
barriers with quasi-independent interstitials, mid-range barriers for strongly interacting
clusters and high barriers for vacancy clusters. All must be treated consistently.

In this paper we develop okMC with arbitrarily complex off-lattice atomic configura-
tions. The okMC framework constructs a database of previously visited objects and transi-
tions, minimising recalculation. However, rather than search for a comprehensive set of
saddle points on-the-fly [32], we use a prescribed set of correlated atomic moves based on
those well-known in MD and coarse-grained simulations, and well-parameterised by DFT.
We discuss the advantages and disadvantages of this simplified scheme. We also demonstrate
how to incorporate elastic interactions efficiently in an off-lattice kMC code.

In section 3.1 we apply the model to some simple test cases to demonstrate correct and
efficient running, and in section 3.2 we apply the model directly to radiation damage cascades
generated using MD. We conclude that very mobile interstitial clusters may be rapidly lost to
the boundaries of the simulation cell, or may collide. If they do collide, then a complex sessile
interstitial cluster may be formed first, which then later relaxes to a low energy mobile cluster.
These effects would not be seen in earlier okMC models which use simple rules to determine
the result of collisions, for instance taking only the experimental in situ observation that when
loops collide, the resultant loop takes the Burgers vector of the larger [33]. Our results using
okMC are, however, in accord with previous MD observations of sessile defects formed by
the collision of glissile interstitial defects [34–36]. By capturing glissile to sessile to glissile
transitions within an okMC framework, we are able to observe long-timescale detrapping
mechanisms at microseconds and beyond, but which can preserve a population of interstitial
defects in the microstructure.

2. Atomistic- or object-kMC

The code we describe here could be described either as atomistic- or object-kMC, and either
as having transitions computed on-the-fly or predetermined. As these terms are common in
the kMC literature, and can appear to be mutually exclusive, we will first clarify our meaning.

In materials science, particularly when discussing nanoscale defects in metals, it is
common to talk about point defects, clusters, dislocation loops, voids etc. In doing so we are
implicitly stating that such defects have a spatial localisation (they exist as quasi-independent
objects within a crystal), and a temporal persistence (they are metastable, rather than
ephemeral atomic configurations). This is the theoretical basis of okMC and CD—we define
the nanoscale defects as objects, and rules determine their dynamic evolution. An okMC state
can be completely specified by the types of object, and their positions. An okMC model
consists of the current state, together with rules for evolving the objects. A clear exposition of
okMC is given in [18].

Often defect objects will be defined with a very small number of parameters—for
example a void may be given a position and number of vacancies contained. The small
number of parameters used is for convenience only, there is no a priori reason why a void
should not be given additional parameters defining its shape, if these could be meaningfully
employed in the dynamics. The logical limit of okMC is to describe each object with atomic
resolution: provided each atomic configuration has a padding boundary of perfect crystal, the
defect regions are spatially localised, and provided the atoms are elastically relaxed then the
configuration is metastable. We describe our okMC state as the types, and positions of objects
that it contains, where the type of each object is stored as a hash key to an atomic config-
uration stored in a database. Note that this is a different approach to previous akMC-okMC
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hybrid techniques where a handshaking is made between atomistic and idealised objects
[37, 38]—all objects here are fundamentally atomistic. This allows us to handle arbitrarily
complex defects, including interstitial-type defects and complex combined vacancy-interstitial
objects.

In okMC the rules for evolving the state are often simplified to rigid body translations; a
transformation from one object to another; and splitting one object into two3. These rules
often are given as simple rates which vary depending on object type, but with atomistic detail
it is possible to find these rates explicitly. The rates for evolving the atomistic defect objects
are constructed on-the-fly by considering possible atomistic processes which change the
configuration.

Finally we note that in okMC the host crystal is hardly referenced, except possibly as an
homogeneous elastic medium, in contrast to MD or standard atomistic kMC. In our simu-
lation the atoms in the ‘perfect crystal’ far from the objects are not stored. In common with
existing okMC codes such as MMONCA [18], the computational cost using our code for a
simulation of one object contained in a one thousand atom system is therefore similar to the
cost of one object in one million atom system. In contrast with other okMC codes, there is
only one type of object in our work- an atomic configuration, with one set of rules for its
dynamics as described below.

2.1. An atomistic object

The problems of identifying an atomic configuration or transition are related and have been
tackled previously with graph theory [26] and bitmaps [39]. We will use the bit-twiddling
Zobrist hashing method [40]. We start with the observation that atoms repel each other at
short range and so are never too close together. Consider a simple cubic crystal mesh with
side a0/4. The furthest apart two atoms could get while mapping to the same node is
a 3 40 . This is 50% the nearest neighbour separation on a bcc lattice side a0, or 61% the
nearest neighbour separation on an fcc lattice. If atoms would prefer to be on bcc or fcc lattice
sites, then except during high energy collisions they will never get so close together they will
map to the same a0/4 simple cubic node. For practical purposes any complex atomic con-
figuration may be represented by having zero or one atoms slightly displaced from a0/4
simple cubic nodes. If interstitial alloys are considered, the validity of the finer lattice may
need to be verified, but the principle of non-multiply occupied sites on a sufficiently fine
lattice remains clear: if we cannot guarantee zero or one atom per node spaced by a0/4, it may
yet be possible if the node spacing is a0/8. The extension to non-cubic lattices is similarly
trivial.

It is less clear that the mapping of the real space positions in N3 to fine-scale nodes is
one-to-one rather than many-to-one. For the former to be true, then only one relaxed con-
figuration of atoms maps to a particular set of fine-scale nodes, and a small displacement of
the atoms would relax back to the same point. This is impossible to guarantee for all
potentials, as the watershed hypersurfaces between local minima can be arbitrarily complex
[41]. If during a kMC simulation, two slightly perturbed configurations of atoms were
associated with a single local minimum, then the damage done to the dynamics would be
small, as all the evolution is quasi-static and the barrier between such close minima is most
likely negligible anyway. We therefore assert that each configuration of atoms on a fine mesh
is associated with a unique minimum, and use the fine mesh occupations to define the

3 The reverse event (coalescence), which combines two objects into one, is required by detailed balance and may
occur at a much higher rate than dissociation. But this event is a result of object proximity rather than a fundamental
dynamic process of one object.
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configuration. This reduces the description of the configuration to the atomic-chess-board
problem, and so we use the extremely efficient Zobrist key [40] to find a 128 bit hash key for
an atomic configuration. These hashes index stored objects—that is the atomic configurations
plus their associated transitions—on a large database. We return to the issue of the size of the
database needed in section 3.2.

We define an object by first identifying all defected unit cells—meaning those which do
not have the same occupation of the same fine-scale nodes as the perfect crystal. A buffer
region of m unit cells in each direction (i.e. the cube of (2m+1)3 cells including the defected
unit cell) is added, and then centred in a cubic minimal bounding box. This region of atoms is
ascribed to an object. An object can therefore be rather large, spanning 323 unit cells in some
of our cascade evolution simulations, and contain both interstitials and vacancies. We have
found that insisting on a buffer region of m=2 unit cells around defects is adequate to
reproduce the elastic interaction energy between pairs of defects to within 10%, as determined
by comparing the energy computed using the dipole tensor formalism (see section 2.3) to a
full atomistic relaxation.

In this work we do not include alloying species. We would expect adding an interstitial or
substitutional atom like hydrogen or helium to work using this same model for objects (note
that bcc tetrahedral 01

2
1

4[ ] and octahedral 01
2

1
2[ ] interstices are perfectly resolved). As an

aside, we note that alloying elements have previously been tackled using a grey-alloy
approach [42], but this is left for future work for our model.

2.2. Finding a transition

In a lattice-based kMC simulation, a transition consists of a mobile atom species moving from
one lattice site to another, or for a pair of atoms to exchange sites. The number of transitions is
determined by the number of mobile atoms and the number of moves each can make. The rate
of each transition may be found by consulting a table using the "before" and "after" local
configurations.

In an off-lattice kMC simulation, transitions can be sought on-the-fly using the dimer
method [32], kART [26, 43], or AMD [30, 44]. The number of transitions is limited by the
length of computational time available to search, there will always be more high energy (and
therefore low probability) transitions. Though it offers a more exhaustive list of possible
transitions in principle, on-the-fly searching is not without its difficulties. Some transitions
may be more readily found than others, and care must be taken not to double-count them. It is
also difficult to ensure that all relevant barriers are added. As an example consider the eight
1

2
1

2
1

2⟨ ⟩ nearest neighbour vacancy-atom exchanges in a perfect bcc lattice (we ignore second
neighbour 100⟨ ⟩ exchanges for clarity of exposition). Each saddle has the same probability of
discovery, so the number of times each saddle is found should be Poisson distributed. The
probability of not finding a particular saddle is p mexp 8= -¯ ( ), where m/8 is the mean
number of hits per saddle given m trials. The probability of finding all saddles is
p p1all

8= -( ¯) . To have a pall>50% chance of finding all 8 saddles, we need p 0.083<¯ ,
and so m>20. To have a pall>99% chance of finding all 8 saddles, we need m>53. If
objects are to be reused, we need a good coverage of saddles, and so this is potentially a lot of
work. Using the symmetry of the system could help reduce wasted work, but in general cases
the local surrounding environment will show little symmetry and so make it difficult to
achieve great gains. SEAKMC [27] avoids this problem by sampling the saddle points rather
than attempting an exhaustive survey. This is efficient, but requires careful tuning before
starting a simulation to get correct residence times. It would not be appropriate for a model
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where barriers are reused. Progress has been made recently to minimise the impact of
unsearched transitions using the AMD framework to find transitions [31].

An alternative route for computing the transition energy for this off-lattice atom-vacancy
exchange example is to recognise that the move remains identifiable even when atoms are
displaced slightly from lattice sites. For 111⟨ ⟩ crowdions the moves are also well-known—
there exists a Frenkel–Kontorova string pull in the 111⟨ ⟩ direction [45, 46], and a rotation
through the 110⟨ ⟩ dumbbell to 111⟨ ¯⟩ [46]. We can code these moves by searching for the
correct atomic environment to permit the move, then moving atoms appropriately. The
number of possible transitions is easily established, and moves which have the same final
configuration clearly have different routes, so double- counting them is not a problem. We
explicitly sacrifice the chance of finding unusual or unexpected transition paths in favour of a
reusable and smaller, but complete, set of transitions.

With the fine mesh defined, we can define three prototype atomic transformations for the
bcc lattice illustrated in figure 1.

• Vacancy-atom exchange: Find a high energy atom, and look for an unoccupied ‘vacancy’
lattice site separated by 1

2
1

2
1

2⟨ ⟩. We permit the transition attempt if the unoccupied site
itself is surrounded by 26 unoccupied neighbours on the fine mesh lattice (the
region :a a

4 40 0- / / ).
• Rotation: Look for a pair of high energy atoms, and displace in opposite 1

4
1

4
1

4⟨ ⟩
directions.

• String pull: Look for a high energy atom, and then check in successive 1
4

1
4

1
4⟨ ⟩ cells for

two more high energy atoms. If they are present, then the original and its first neighbour
are displaced along the string.

We also need a fourth prototype transformation for the cooperative motion of clusters of
atoms. The multi-string F–K model [25] is a simple extension for understanding the motion of
clusters and loops. Here many 111⟨ ⟩ strings move over the potential surface, but are addi-
tionally coupled together with elastic springs. The springs represent the energy stored in the
dislocation core, and acts to prevent one string getting too far ahead of its neighbours. If a

Figure 1. A cartoon illustrating transitions defined on a fine lattice, with the top row
indicating the ‘before’ and the bottom row the ‘after’ configurations. From left to right,
the bcc lattice, (a) an atom-vacancy exchange, (b) a rotation move, and (c) a string pull
move. Note that inside the code the atom positions are fully off-lattice, and the fine
a0/4 simple cubic lattice is present to distinguish quickly between similar states.
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single string of atoms is pulled over the potential energy surface, the restoring force of its
neighbours will tend to bring it back again. There may not even be a relaxed metastable
configuration of a dislocation line with just one string of atoms pulled. This is the physical
origin of the Ohsawa transition [47] between motion of an interstitial cluster as a single rigid
body and by the double-kink mechanism for a large dislocation loop.

A good model might consider simultaneous movement of multiple strings of atoms. But
it would be difficult to justify moving two strings together rather than three, or more. The
multiplicity of final states to investigate would, at present, lead to an unsupportable slowdown
of the code.

For now we can ensure there is a macroscopic diffusion of the centre of mass of a cluster
by exploiting the okMC nature of the model. Within an object, we search for a contiguous
subcluster of defected unit cells (excluding padding) containing only interstitials. Then for
this subcluster we check the principle eigenstresses, as computed by diagonalizing the dipole
tensor. An interstitial cluster will have one large eigenstress along its Burgers vector. If these
conditions are met, then the rate of transition to the same subcluster translated by 1

2
1

2
1

2[ ]
along the Burgers vector is fixed to nIn , where ν is the attempt frequency of a single string
pull (see table 1) and nI the number of interstitials. This square root dependence of the
prefactor has been observed in simulation [48, 49] and experiment [50]. We leave invest-
igation of the cooperative motion of multiple strings to future work, and acknowledge that our
model is currently limited to smaller interstitial clusters.

With these sets of moves and with the atoms off-lattice, a great range of atomic con-
figurations can be explored. It is interesting to note, however, that all transition events that an
object can make can be simply categorised.

• Events can define a transformation of the atomic configuration, taking one object to
another.

• A transformation may require/permit a resizing of the object to preserve its buffer of
perfect crystal.

• A transformation may translate the origin of the object.

Table 1. Parameterisation of the three akMC and one okMC transition events con-
sidered in our simulations. High energy atoms with potential energy over the threshold
are considered as candidates for the move. The migration barriers in equation (2) use
these tabulated values, weighted by the difference in before- and after- energies,
according to equation (8). The rate 6.45 THz is the Debye frequency for tungsten [51].
The energy barrier for vacancy migration is taken from DFT [52], which is in good
agreement with experiment [53]. The energy barrier for string pull and crowdion
rotation are taken from DFT [46]. The string pull and translation moves are assumed to
be friction limited, with rate constant linearly proportional to kBT.

Move High energy Barrier Rate Padding
atom (eV) ΔEm (eV) prefactor (THz) (u.c.)

Atom-vacancy 0.25 1.75 6.45 2
exchange

Atom pair 1.10 0.40 1.0 3
rotation

String pull 0.50 0.013 0.75 kBT 3

Cooperative Cluster 0.013 0.75 kBT/ N 2
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• Events can split the object into two or more. In our code we do not consider splitting into
more than two objects- which can temporarily leave an object with parts far enough apart
that they do not overlap. This is a rare case, and there is no damage done by this to the
dynamic evolution anyway, only a minor suboptimal evolution until the full
decomposition has been recognised. There is no requirement to include a transition
event combining pairs of objects. This can be automatically included by testing for the
overlap of objects at the beginning of every kMC step.

2.3. Parameterisation of kMC simulations

All kMC simulations reported here use the same parameterisation, with no additional tuning.
If the transition takes an object from configuration (A) to A¢( ), the transition rate A A ¢( ) is
taken to be

r
E

k T
exp , 1A A A A

m
A A

B
n= -

D
 ¢  ¢

 ¢⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )( ) ( )

( )

where A An  ¢( ) is a rate prefactor (which itself might be temperature-dependent) and Em
A AD  ¢( )

a temperature-independent migration barrier. As shown in [54], for pure tungsten at least, the
simple Kang–Weinberg model [55] is a good approximation for the migration barrier for an
atom-vacancy exchange. If we consider a transition which takes an object configuration (A) to
A¢( ), then the migration barrier is

E E E
E E

E
E

max
2

,
2

, 2m
A A A A A

A A

m
m

saddleD = - =
-

+ D
D ¢  ¢

¢⎧⎨⎩
⎫⎬⎭ ( )( ) ( ) ( )

( ) ( )

where ΔEm is a constant for the transition category, and E(A) is an appropriate ‘relaxed’
energy for object configuration (A). ΔEm barriers for all moves are given in table 1. The
maximum function is used to ensure that the migration energy is always positive; E(A) may
take any value but (A) is known to be metastable. We take the minimum value for the barrier
as E 2mD / , which is an empirical choice taken to be sufficiently low to be rarely needed in
practice and not unduly affect the dynamics. For fast-moving interstitial clusters the barrier is
close to zero in any case; for vacancy defects this limit will only be applied where there is a
strong driving force to select one move in preference to another. We define the appropriate
relaxed energy below.

As previously noted, we store atomic configurations of defects as localised objects
surrounded by a buffer region of perfect crystal, and an object can be large. We compute the
energy barrier for a transition by first finding the region where atoms are expected to move,
then adding a buffer region to this (see table 1). This cutout region of 8–10 unit cells can be
significantly smaller than the original object, which might be 20–30 unit cells. We fix atoms
in the outermost unit cell boundary of the cutout, and relax. This takes the energy of the
cutout region from E A

cut
( ) to E A

cut
¢( ).

Fixing the atoms ensures that the transition region after the event fits back into its parent
object, and takes some account of the strain field in which the transition is located, but note
that this is not treating the elastic interaction fully. Firstly, we need to account for the response
of the remainder of the object to the transition. If fembed


is the force on the atoms in the object

introduced by reintroducing the cutout after the event, and D E r rab a b
2= ¶ ¶ ¶

 
is the Hessian

computed with atoms in their ‘after’ positions, then the linear elastic response in the object is
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E f D f . 3embed
1

2 embed
1

embed= - -
 

· ( )

This can be evaluated using a Lanczos recursion technique [56, 57], and typically takes order
ten milliseconds on a single core, a few percent of the time taken to fully relax the atom
positions in the cutout region. Secondly, as the object is defined by atomic positions, we need
to account for the self-energy of the object due to its periodic images. This can be done using
the method of Varvenne et al [58]. As we are using embedded atom potentials, the dipole
tensor is easily computed using

P
V

r

F

r

r r

r
P , 4ij

a b r r

ab i ab j

ab a
ij
a1

2
, ,

a ab a ab
å å år

f
= -

¶
¶

+
¶
¶

¶
¶

º
rÎ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )/

where rab i, is the ith Cartesian coordinate of the separation between atoms a and b, V(r) is a
pairwise potential and F[ρ] a many body contribution from the embedding density function

rr f= å ( ). This is a simple sum over atoms and their neighbours, using the same first
derivatives as a force, and so is of negligible computational cost. The elastic energy between
an object with dipole tensor Pij

A( ) and a second with dipole tensor Pij
B( ) located at separation

RAB


is [59]

E R P
G R

x x
P , 5A B

AB ij
A ik AB

j l
kl

B
elas

,
2

=
¶

¶ ¶

 
( ) ( ) ( )( ) ( ) ( )

where Gij is the elastic Greens function. In this work we use the isotropic elastic Green’s
function for convenience, as tungsten is nearly elastically isotropic. This requires the bulk
elastic Lamé parameters λ and μ, which we compute at the beginning of the simulation using
the empirical potential supplied. The centre-of-position of an object is taken to be [60]

R
P R

P
, 6a

n a a

a

n a
1

1

å
å

= =

=

 

 
( )

where P PTra a 2=  (( ) ) is the Frobenius norm- a measure of the strength of the stress field
generated by the ath atom.

The self-energy of the object is found in principle by the conditionally convergent sum of
equation (5) over defect periodic images [58, 61]:

E E R , 7A

uvw

A A
uvwself elas

,å=


( ) ( )( ) ( )

where Ruvw


is the position of the image translated u v w, ,{ } periodic repeats in each Cartesian

direction. To avoid convergence issues we simplify using u v w, , 1: 1Î -{ } [ ].
Thirdly we need to account for the changing elastic response of the system as a whole.

This is again done with the dipole tensor formalism, an approach previously exploited by
Subramanian et al [62], and in a simplified form in [13]. If the transition takes the object from
configuration (A) to A¢( ), then the energy difference is

E E E E

E E

E E

P
G R

x x
P

G R

x x
P . 8

A A A A

A A

A A

B A
ij

A ik A B

j l
ij

A ik AB

j l
kl

B

cut cut

embed embed

self self

2 2

å

- = -

+ -

+ -

+
¶

¶ ¶
-

¶
¶ ¶

¢ ¢

¢

¢

¹

¢ ¢
 ⎛

⎝⎜
⎞
⎠⎟

( ) ( ) ( )

( ) ( ) ( ) ( )
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The spatial regions for each level of relaxation are illustrated in figure 2.
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The migration barriers, characteristic frequencies and padding used for the cutout region
are given in table 1. As a side-benefit of having categories of transition defined, the rate
prefactor may itself be a function of temperature or characteristic of the defect structure. We
set the rate prefactor of string-pull type low energy barrier moves to be linearly dependent on
temperature, corresponding to the friction limited regime [63].

Note that the embedding energies can be stored as data for the transition and reused, and
the self-energy is a property of the object. The long-range inter-object energy of interaction
needs to be recomputed at every okMC step. If the dipole tensor is stored on the object, this
takes negligible time compared to relaxing the atoms.

We compute and store all the transition rates (according to our search rules) and so can
use rejection-free kinetic Monte Carlo [64] using the basin-autoclimbing mean rate
method [65].

3. Results

3.1. Individual defects

Before moving to complex systems with multiple moving defects, we present some validation
work with isolated individual defects. This offers a comparison with literature, and demon-
strates the working of the code.

Figure 2. A cartoon illustrating a transition A A ¢( ) ( ). The top row shows a small
rearrangement of the atoms in object (A). To compute the rate of the transition
(equation (1)), the steps are indicated in the bottom row as follows: (i). A small box
surrounding the moving atoms is defined, indicated by the hashed lines, with the atoms
on the boundary fixed. The energy of the atoms in the cutout region is computed using
empirical potentials. (ii). The relaxation of the object due to re-embedding the cutout is
computed at the harmonic level using the Hessian over the whole object A¢( ). (iii). The
self-energy of the object due to interactions with periodic copies of itself is computed
using its dipole tensor. (iv). Finally the interaction of the object with a distant second
object (B) is computed with dipole tensors. These four energy differences are inserted
into equation (2). Finally table 1 is consulted to find the rate prefactor and fixed
component of the energy barrier.
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We consider the dynamics of a single monovacancy, a quad-vacancy cluster, a mono-
interstitial, and interstitial clusters of size 2, 7, 13, 19. Here, all are simulated at 600 K, using
an empirical potential known to be good for vacancy defects [54]. In section 3.3 we show this
empirical potential is also good for interstitial defects.

In section 2.3 we explained how the migration barrier E A AD  ¢( ) was computed. In
figure 3 we present histograms of barriers computed over a selection of 1000 step simulations.
The monovacancy always has equal-energy before- and after- states, so every barrier is
exactly E E 1.75 eVA A

mD = D = ¢( ) . By contrast the quad-vacancy is a low energy cluster,
so to evolve it must gain energy. It therefore shows a range of barriers above 1.75 eV, and a
few transitions back to the low energy cluster below 1.75 eV. The crowdion shows transla-
tions and transformations between crowdion and dumbbell near 0.0 eV, and some rotations
near 0.4 eV. It also shows some high energy barriers to higher energy single-interstitial
formations. The interstitial clusters show an increasing fraction of low energy string-pull and
cooperative cluster transitions either to different configurations or translations.

When all low energy barriers describing translations and transformations have been
computed, the object kMC model is fully determined, and so the code can evolve them at the
same speed as any other okMC. This is illustrated in figure 4. On this plot is also indicated the
performance of a good MD code such as LAMMPS [66], which currently takes about one
second wall time to perform an update step for 1 million atoms, the update step being a
simulated time of one femtosecond. An important point to note in figure 4 is that our kMC
code starts slower, but becomes faster than this canonical benchmark for MD because of the
efficient reuse of object information.

Figure 3. Histograms of relative frequencies of migration barriers computed over
1000 kMC steps at 600 K, using the MNB potential in tungsten [54]. Top: vacancy-
type objects. A single monovacancy has a barriers at exactly 1.75 eV by construction,
but a quad-vacancy explores a wider range. As the quad-vacancy itself is a low energy
cluster, many are above the isolated vacancy barrier. Bottom: interstitial-type objects. A
single crowdion shows barriers near 0 and 0.4 eV, corresponding to translation and
rotation modes, and a few higher energy transitions to other single-interstitial
formations, octahedral, 100⟨ ⟩ dumbbell etc. The di-interstitial has a wider range of
translation modes where one string pulls past the other, and a few rotations are found.
The 7 interstitial cluster and 19-interstitial loop show mostly translation modes.
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We have computed the diffusion constant for interstitial defects using the method of [46].
The result is shown in figure 5. The string-pull attempt frequency and energy barrier are fixed
to give a good crowdion diffusion constant. The computed diffusion constant for clusters is
within an order of magnitude of literature results. This error is not expected to have a
significant impact—clusters undergo a fast macroscopic displacement of the centre of mass,
so this will not be a rate limiting step in longer term microstructural evolution. We would
prefer not to overfit the model by introducing additional rules.

3.2. kMC annealing of primary radiation damage cascades

In this section we anneal the complex defects produced in MD simulations of irradiation
damage cascades.

Irradiation cascade simulations were performed using the classical MD code PARCAS
[68]. The simulations were performed in bulk tungsten, using the interatomic potential for
tungsten by Derlet et al [46], stiffened at short range [69]. Simulation cells were
68×68×68 unit cells (629k atoms), initially at 0 K, with the atoms on the periodic
boundaries thermostatted to 0 K [70]. Electronic stopping was modelled using a frictional
force applied to atoms with kinetic energy over 10 eV, with the magnitude of the electronic
friction determined by SRIM [71]. As discussed in section 2.3, our model is currently only
parameterised to correctly simulate the dynamics of small interstitial clusters, so we use low
energy cascades, which have a low probability of producing a large loop [9, 72]. One atom
was given an initial kinetic energy of 20keV, and the simulations followed until cool (<10 K)
at 40 ps. Details of the simulation method are given in [73]. Five cascade configurations so

Figure 4. Data from a single run computing the diffusion constant of a 13 interstitial
cluster at 600 K in a 32×32×32 unit cell box. Left: for three minutes wall time
(using a single core on a desktop PC), string pulling moves are considered and stored.
After this they can just be recalled, and so the code accelerates. The solid black line is
an indication of MD speed, assuming a good MD code can perform one million atom
update steps per second (per core), and each timestep is 1fs. Right: the (x-) position of
the centre of mass of the cluster, computed using equation (6), showing expected
Brownian motion with no significant drift. This is a trivial exercise using standard
okMC where the rules for translations are predetermined, but less so for an on-the-fly
code where the rules for translation are computed.
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formed were used as the starting point for further simulations described below. We cut out a
cubic region of 40×40×40 unit cells (128 000 atoms) containing the cascade with ample
buffer. The simulations were run at 300, 600 and 900 K multiple times with different random
seeds.

For these cascade annealing simulations it was necessary to use a large database of
30 000 stored objects and 400 visited states, with the most recent 20 states used to construct
the equilibrating basin [65]. Over the course of the simulation many more than 30 000
different objects- many only separated by minor atomic configuration changes- were visited.
To prevent the database from continually growing, the next pensionable state replacement
strategy [40] was used to purge the database of less recently used objects. The memory
footprint of each simulation was therefore large- about 12 Gb- but constant.

One additional simulation technique used for the cascade annealing simulations is to
employ absorbing boundary conditions. This is simple to implement in atomistic kMC: at the
beginning of each move all atoms in the unit cells on the boundary of the simulation are set to
be perfect crystal. If this affects an object, then the object is relaxed before continuing, but
now it may contain a different atom count. Using this method there is no strong bias towards
the boundary, but neither will the defect return from the boundary.

First we consider the timing results of our kMC code. It is important that an off-lattice
kMC code is actually faster than MD, and this is a difficult milestone to reach. We see in
figure 6 that our code overtakes MD after about 1ns of simulated time, which corresponds to
about 24 hours wall time using a single processor.

Next we consider the evolution of the energy of the system. In figure 7 we see that the
greatest portion of the energy reduction is in the first nanosecond of simulated time. This
again we attribute to crowdion diffusion, absorption and annihilation. Figure 8 shows this

Figure 5. The diffusion constant (points) computed using our model, multiplied by the
square root of the interstitial count. The dashed lines are the theoretical prediction from
Swinburne et al [67], and Derlet et al [46], and solid symbols data points from MD
simulations reported in those papers. We conclude that the model presented here has
order of magnitude correct diffusion coefficients for isolated interstitial clusters. Note
that non-Arrhenius behaviour can be seen in this plot, a consequence of the
temperature-dependent rate prefactor (see table 1.)
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behaviour for a cascade which starts with a diffuse collection of small defect clusters. Three
crowdions are lost to the boundaries within 100 ps and two more have annihilated by
recombination with vacancies. Two further crowdions are elastically trapped by each other

Figure 6. Performance of the code, plotted as simulated versus wall time. The thick
black line corresponds to a good MD code, running at 1 fs/1 M atoms s−1. After the
first nanosecond of simulated time the kMC code overtakes MD. Note that we are
considering multiple independent simulations on a single processor, and that we
acknowledge parallelising MD is significantly easier than parallelising kMC.

Figure 7. Evolution of the energy in the cascades considered as a function of simulated
time. We can broadly split the evolution into the three parts, indicated by the vertical
bands. The greatest reduction in energy comes in the first few ns of simulated time.
After this the energy evolves through a number of descending plateaux. At the longest
times simulated vacancy motion becomes possible, and further relaxation is possible.
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Figure 8. Snapshots from the evolution of a 20 keV irradiation damage cascade in
tungsten evolving at 600 K. Reading left-to-right and top-to-bottom, the snapshots are
taken at time t=0, 10 ps, 100 ps, 113 ps, 100 ns, 1000 s. Starting from the top left
image, the cascade starts with a number of crowdions. After 100 ps three have diffused
out of the simulation cell, and two more have annihilated on vacancies. At the bottom
right we see a loose i4 111⟨ ⟩ interstitial cluster, indicated by a red arrow, gather a
crowdion to become a i5 111⟨ ⟩ interstitial cluster. After 150 ps only two small
interstitial clusters remain, and by 120ns both have left the simulation cell. Brownian
motion of the vacancies ultimately leads to accumulation into small 3- and 4-vacancy
clusters. Only high energy atoms are shown, coloured from blue (+0.1 eV) through
green to red (+1.5 eV). This calculation took 26 h on a single processor.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 055003 D R Mason et al

15



and a small cluster of vacancies nearby. After 150 ps only two interstitial clusters remain, and
both are glissile, so that after 120 ns both have left the simulation cell.

After one nanosecond simulated time, the system evolves through a set of descending
energy plateaux. This is common behaviour in kinetic Monte Carlo, associated with escaping
trapping basins of energy states. In our case we find sessile interstitial clusters form through
collisions of smaller clusters. These then eventually relax to mobile clusters.

In figure 9 we show snapshots from a simulation showing the rapid formation
and slow relaxation of a sessile interstitial cluster. We first see the collision
i i i2 111 6 111 8 100+ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩. This is a stable sessile defect, which would not then further
evolve if simulated in isolation. In our case the sessile cluster is formed close to the centre of a
dense cascade. The cluster is a complex object associated with a vacancy, too close to be
treated separately. After 100 s simulated time, the vacancy moves and is absorbed, in the
reaction i v i8 100 7 complex+ ⟨ ⟩ ( ). This then initiates a transformation into a glissile
cluster i i7 complex 7 111( ) ⟨ ⟩. In other simulations we have seen small sessile 3- and
4- interstitial clusters transform into a glissile cluster by absorption of an interstitial. A similar
observation of vacancy-assisted detrapping was made previously using MD by Puigvi et al
[35]. The difference here is quantitative rather than qualitative- our simulation was run at a
temperature of 600 K, where vacancies have a small mobility and so would never have been
seen in MD.

The last phase of annealing that we observe occurs after 1 ms at 900 K, or 1 s at 600 K.
This phase is the onset of vacancy mobility. In the simulation shown in figure 8 the vacancies
start well separated, and after one hour simulated time only a trivacancy and a quad-vacancy
remain.

3.3. Discussion

The most physically interesting phase of the annealing is in the nanosecond to microsecond
timescale, where complex sessile interstitial clusters are formed and subsequently relax, as
these processes would not be observed in conventional okMC with idealised object geo-
metries. To investigate the occurrence of sessile defect clusters, we have systematically
explored the energy landscape of interstitial clusters in tungsten. We placed N interstitials into
a 2×2×2 unit cell box, randomly placed at the fine-mesh quarter lattice positions, then
embedded this into a 16×16×16 unit cell box and relaxed at constant volume. We took
10N2 initial configurations. The binding energy is defined as the difference in formation
energy between the lowest energy monointerstitial and the N-interstitial cluster:

E NE E . 9b
f

N
f

1º - ( )

Figure 10 shows the result as a histogram over binding energies. The height of the peaks
is proportional to the number of times the bin is hit, without accounting for the same structure
being found multiple times. We find that the lowest energy structures for each cluster size
correspond to all interstitials close together and orientated along 111⟨ ⟩, but there are also a
large number of higher energy clusters, many of which are difficult to categorise. This same
conclusion about distinct low energy clusters and a semi-continuum band of metastable states
was previously drawn by Marinica et al for the Fe-interstitial landscape [74]. A full study of
these interstitial defect clusters can be found in [75]. We conclude that the MNB empirical
potential [54] gives good formation energies and relaxation volumes for these clusters,
compared to DFT calculations.

The complex energy landscape of uncategorisable interstitial cluster configurations is
significant for the microstructural evolution found in this study. This result suggests that if
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Figure 9. Snapshots from the evolution of a 20 keV irradiation damage cascade in
tungsten evolving at 600 K. Reading left-to-right and top-to-bottom, the snapshots are
taken at time t=0, 50 ps, 103 s, 104 s, 104 s, 300 s. Starting from the top left image,
the di-interstitial at the top left combines with the larger i6 111⟨ ⟩ interstitial cluster,
indicated by a red arrow. These form a sessile eight-interstitial cluster, too small to
identify a clear Burgers vector. The remaining monointerstitial and di-interstitial
rapidly diffuse out of the simulation cell leaving only sessile objects. After 100s the
eight-interstitial cluster absorbs a monovacancy, starting a rapid transformation into a
mobile seven-interstitial 111⟨ ⟩ cluster. Brownian motion of the vacancies leads to
accumulation into a single nine-vacancy void at about 1000 s. Only high energy atoms
are shown, coloured from blue (+0.1 eV) through green to red (+1.5 eV). This
calculation took 58 h on a single processor.
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interstitial clusters generated in a cascade collide they can first form a single high energy
interstitial cluster, before subsequently relaxing further, ultimately to a low energy mobile
defect cluster.

Figure 10. If interstitials are randomly placed in close proximity and relaxed, a wide
range of different structures are found. The top figure shows a histogram of binding
energies found for three-interstitial clusters, with some of the structures drawn. The
bottom figure shows similar histograms for cluster sizes 2–13 interstitials. Inset: a
comparison of the binding energy for the minimum energy structures computed with
DFT [76] and different empirical potentials. The lowest energy structures found for
each cluster size are mobile 111⟨ ⟩-type defect clusters, but the majority are sessile and
difficult to simply categorise. We conclude that if defects produced in cascades collide,
they are likely to form a sessile metastable configuration before transforming to a
mobile configuration.
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4. Conclusions

We have developed a new okMC code which takes atomistic configurations as the elementary
objects, rather than using simple idealised defects. The code operates by searching for, and
storing atomistic transitions, based on vacancy-atom exchange, and correlated atom rotation
and string pulling moves. These moves are stored, and recalled, so that an object once
discovered needs never be recomputed. Typically a large number of configurations of each
defect cluster will be computed, but when all relevant configurations are found no further
expensive atomic searches or relaxations are required and the code speed is comparable to a
regular okMC code, albeit with a higher memory footprint. If defects collide, or transform
into a previously unexplored configuration, the object cannot be recalled from the database
and so more atomistic transitions are added.

Elastic interactions are treated differently at four different length-scales. Within an object,
the atoms are kept relaxed using interatomic potentials, allowing for arbitrarily complex
atomic configurations. When a local transition is considered, this is done by clamping atoms
on the boundary of the transition active volume. The energy impact of this clamping is
removed by computing the harmonic elastic relaxation energy, computed using the Hessian.
The self-energy due to interactions with periodic replicas is subtracted using the dipole tensor
(computed with interatomic potentials) and the isotropic elastic Greens function, in the
manner of Varvenne et al [58]. Finally the interaction between objects is treated using dipole
tensors and isotropic elasticity. The long-range elastic energy difference between the before-
and after- states is added to each transition.

We have found that the first nanosecond simulated time is by far the most computa-
tionally expensive part of the simulation. In future work it would be advantageous therefore to
exploit MD to run the first nanosecond of simulation, rather than stopping the simulation
shortly after the PKA was set in motion. Our cascade annealing results were produced using a
serial code, taking tens of hours to complete each run. While it may be possible to parallelise
the code in the future, this is not a trivial task due to the difficulty in load-balancing: each
kMC event requires atomic relaxations with very different times required for convergence. As
our computational burden is light, we can of course benefit from the trivial parallelisation
offered by running multiple independent simulations for generating statistics. It is also
important to note that we have deliberately simulated cascade annealing in the dilute (low-
fluence) limit, exploiting the loss of mobile defects to distant sinks to accelerate the dynamics.
In the dense limit we would expect cascade overlaps, which would be better modelled with
MD rather than kMC alone.

Our results demonstrate that there may exist interesting modes of cascade relaxation,
where glissile defects collide to form a sessile defect. This sessile defect may then sponta-
neously transform to a glissile form, or may have such a transformation initiated by
absorption of a mobile defect. At present we do not have sufficient statistical information to
be able to draw strong conclusions about the relative rate of these relaxation modes, but this
does indicate that it may be necessary to take into account the spatial correlation of multiple
defects generated in a small cascade.
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