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Abstract
If correct, the Lengyel model offers a simple and powerful tool to predict the conditions
required for detachment onset in future fusion reactors. We assess its validity against a
comprehensive SOLPS-4.3 simulation database of ITER baseline (Q = 10) neon-seeded
plasmas (Pacher et al 2015 J. Nucl. Mater. 463 591). In absolute terms, the Lengyel Model is
found to significantly overpredict the simulated impurity concentration required in the ITER
outer divertor for outer target ion flux rollover (by a factor ∼4.3 in this particular case).
Importantly though, at detachment onset, and even beyond onset, the Lengyel model does give
a remarkably accurate prediction of the scaling interdependencies between the electron
density at the outer divertor entrance, the parallel energy flux density at the outer divertor
entrance, and the impurity concentration in the outer divertor. However, the generalisation of
these two key results to other machines, and in the presence of additional physics not included
in these simulations, requires further studies. The analysis techniques described here provide a
framework for such studies. Regarding the factor ∼4.3 overprediction of the simulated outer
divertor impurity concentration, the main contributors to the disagreement are found to be
other energy loss mechanisms besides impurity cooling (primarily neutral losses and radial
transport) combined with convective energy fluxes near the target, as well as non-constant
electron static pressure due to poloidally variable T i/Te. None of these are included in the
Lengyel model. By themselves, these do not strongly influence the scaling interdependencies
of the main Lengyel parameters over the explored parameter range. The impurity residence
time τ is observed to increase with density, which tends to flatten out the impurity
concentration scaling at low density, relative to the Lengyel model (which usually assumes
constant τ ). In these simulations, however, this flattening out was cancelled by an
accumulation of other effects, so that the scaling prediction of the Lengyel model was still well
met. A simple physics model is derived for neτ that matches the simulation data well. Neon is
found to migrate from the inner divertor to the outer divertor with increased puffing, thereby

∗Author to whom any correspondence should be addressed.

Original content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s)
and the title of the work, journal citation and DOI.

1741-4326/21/046029+21$33.00 1
© 2021 Crown copyright. Reproduced with the permission of the Controller of

Her Majestys Stationery Office Printed in the UK

https://doi.org/10.1088/1741-4326/abe4b2
https://orcid.org/0000-0001-9455-2698
mailto:david.moulton@ukaea.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/abe4b2&domain=pdf&date_stamp=2021-3-17
http://creativecommons.org/licenses/by/4.0


Nucl. Fusion 61 (2021) 046029 D. Moulton et al

increasing the outer divertor neon enrichment. At outer target ion flux rollover, though, the
enrichment is approximately independent of the upstream concentration, so that the Lengyel
model predicts well the scaling dependency between the upstream impurity concentration and
the upstream electron density, both key quantities dictating the operational range of a tokamak.

Keywords: SOLPS, ITER, detachment, Lengyel, divertor, residence time, impurity

(Some figures may appear in colour only in the online journal)

1. Introduction

The Lengyel model [1] continues to be used in many scrape-
off layer (SOL) studies in order to relate the divertor condi-
tions (in terms of the impurity concentration in the divertor,
the upstream SOL electron density, and the upstream parallel
energy flux density) to the power dissipated. See e.g. [2–13].
If detachment onset is assumed to occur at the point where
plasma power dissipation is total (or when the target temper-
ature reaches a certain value), then the Lengyel model can be
used to calculate the divertor conditions required for detach-
ment onset. In this paper we assess the validity of the Lengyel
model by comparing it to the SOLPS-4.3 (no drifts4) simula-
tion database of ITER Q = 10 baseline neon-seeded plasmas,
first presented in [14] and more recently in [15].

It is useful to rederive the Lengyel model, while accounting
for the extra terms included in SOLPS-4.3. The total plasma
energy balance equation in the code is

B
d
ds

(q‖
B

)
= n2

ecαLSOLPS
α + SQother, (1)

where

q‖ = κe‖0,FLT5/2
e

dTe

ds
+ q‖other, (2)

is the total parallel kinetic energy flux density associated with
charged particle motion, B is the magnetic field strength, and
s is the parallel distance along the flux tube of interest. Note
that s is defined to increase away from the target, while q‖ is
defined as positive towards the target.

The first term on the right-hand side of (1) is the energy loss
density due to cooling by the primary impurity radiator α:

SQα = n2
ecαLSOLPS

α , (3)

where ne is the electron density,

cα =

z0,α∑
z=0

nαz/ne, (4)

is the concentration of impurity species α (with proton number
z0,α

5), z is the charge number of impurity ionisation state αz

4 The importance of drifts is considered further in appendix A.
5 We consider only neon in this paper for which α= ‘Ne’ and z0,Ne = 10. Sput-
tered tungsten was not included in these simulations. Helium was included but
plays a negligible role in the power balance.

(with density nαz),

LSOLPS
α =

z0,α∑
z=0

FSOLPS
αz

ηSTRAHL
αz

, (5)

is the electron cooling function from SOLPS due to the pri-
mary impurity radiator,

FSOLPS
αz

= nαz/

z0,α∑
z=0

nαz , (6)

is the SOLPS-calculated fractional abundance of αz (which
includes impurity transport effects), and ηSTRAHL

αz
is the elec-

tron cooling coefficient for αz. These ηSTRAHL
αz

values are
inputs to SOLPS and include line radiation, recombina-
tion, bremsstrahlung and ionisation cost. For the particu-
lar simulations analysed here, they were taken from the
STRAHL database [16]. Their calculation assumes a suffi-
ciently low electron density that effects such as electron impact
de-excitation can be ignored (the coronal approximation);
ηSTRAHL
αz

are therefore density independent6. In most applica-
tions of the Lengyel model, cooling by the primary impurity
radiator is assumed to be the dominant energy loss mechanism.
However, SOLPS includes other energy loss mechanisms due
to plasma interactions with deuterium neutrals SQneut and net
radial energy flux out of the considered flux tube SQRT:

SQother = SQneut + SQRT. (7)

Coming back to equation (2), the first term on the right-hand
side of (2) is the electron-conducted component of q‖:

q‖e,cond = κe‖0,FLT5/2
e

dTe

ds
, (8)

where κe‖0,FL (units Wm−1 eV−7/2) is the parallel electron

heat conductivity divided by T5/2
e after any flux limiting pro-

cedure has been applied and Te is the electron temperature
(units eV). In most applications of the Lengyel model, elec-
tron conduction is assumed to be the dominant energy trans-
port mechanism in the parallel direction. However, SOLPS
includes other energy transport mechanisms due to electron

6 It should be noted that the default option in the more recent SOLPS-ITER
code is to use ADAS 96 rates for neon, which include non-coronal effects so
that the electron cooling coefficients are density dependent. We emphasize
that the coronal approximation used here does not imply any transport-free
approximations; the transport of each impurity charge state is followed in the
code.

2



Nucl. Fusion 61 (2021) 046029 D. Moulton et al

convection q‖e,conv, ion conduction q‖i,cond and ion convection
q‖i,conv:

q‖other = q‖e,conv + q‖i,cond + q‖i,conv. (9)

We now integrate equations (1) and (2) to obtain an expres-
sion for q‖ at the target end of an SOL flux tube:

q‖t =

(
q2
‖u − 2

∫ u

t
κe‖0,FLT5/2

e n2
ecαLSOLPS

α dTe + 2tB − 2tother

)1/2

,

(10)

where u and t in the integral limits refer respectively to the
divertor entrance (‘u’ for ‘upstream’) and to the target. The
term

tB =

∫ u

t
Bq‖ d

(q‖
B

)
−

∫ u

t
q‖dq‖, (11)

accounts for variation in the magnetic field strength along the
divertor leg (typically small for conventional divertors like
ITER’s); tB = 0 when B is constant. The term

tother =

∫ u

t
Bq‖other d

(q‖
B

)
+

∫ u

t
κe‖0,FLT5/2

e SQother dTe,

(12)
accounts for the effect of other heat flux mechanisms besides
electron conduction, as well as other heat loss mechanisms
besides neon cooling. This term will be considered further in
section 4.2.

Equation (10) is the SOLPS-4.3 equivalent of the self-
contained Lengyel model discussed below. Note that it is not
an alternative to the Lengyel model because it requires inputs
from the SOLPS-4.3 simulations. Nevertheless, its equivalent
form to the Lengyel model means that we can use (10) to bet-
ter understand discrepancies between the simulations and the
Lengyel model. This analysis will be presented in section 4.1.

Now, in order to move from equation (10) to a self-
contained set of solvable equations, we assume that:

(a) The electron static pressure neTe is constant in the region
of impurity cooling, but drops to half its upstream value
in a target-localised region such that the total (static plus
dynamic) pressure is conserved. In addition, cα, κe‖0,FL,
and B are assumed constant along the flux tube of interest.

(b) LSOLPS
α can be accurately represented by

Lneτ
α (Te) =

z0,α∑
z=0

Fneτ
αz

ηSTRAHL
αz

. (13)

Here, in order to approximate the impurity transport, the
fractional abundances Fneτ

αz
(Te) are taken from an ioni-

sation balance calculation for a population of impurity
atoms exposed to a plasma at fixed ne and Te for a
‘residence’ time τ [17].

(c) q‖other = SQother = 0.
(d) The ion and electron target temperatures are equal

T it = Tet.

These assumptions, in addition to a sheath heat transmis-
sion boundary condition and a specification of the connection

length, give the following three equations:

q‖t =

(
q2
‖u − 2κe‖0,FLcαn2

euT2
eu

∫ u

t
Lneτ
α (Te)

√
Te dTe

)1/2

,

(14)

q‖t = γ
(
neuTeu/2

)√
2Tet/mi (15)

L‖ = κe‖0,FL

∫ u

t
T5/2

e /q‖(Te)dTe, (16)

where γ is the sheath energy transmission coefficient.
equations (14)–(16) are the equations previously solved in [12]
and will henceforth be referred to as the ‘full’ Lengyel model,
after the author who first introduced equation (14) [1].

In order to predict the detachment onset, the full Lengyel
model can be solved with assumptions for γ and the Tet at
which detachment occurs. Alternatively, equations (14)–(16)
can be simplified further, by assuming q‖t = Tet = 0 and
the standard two-point model expression for Teu [18]. This
‘simplified’ Lengyel model is then a direct expression that can
be rearranged for cα, q‖u or neu:

cα =
q2
‖u

2κe‖0,FLn2
eu(T2PM

eu )2
∫ T2PM

eu
0 Lneτ

α

√
Te dTe

, (17)

with

T2PM
eu =

(
7
2

q‖uL‖
κe‖0,FL

) 2
7

. (18)

In this paper we will compare to both the full and simplified
Lengyel models.

The Lengyel model is potentially very useful for predicting
the point in

(
cα, q‖u, neu

)
-space at which a future machine will

detach. The purpose of this paper is to gauge its validity, by
comparing it (with the help of equation (10)) to SOLPS-4.3
solutions for the ITER divertor.

The paper is organised as follows. In section 2, details are
presented of how we compared the simulations to the Lengyel
models, in particular what simulation outputs were used as
inputs to (and compared to outputs of) the Lengyel models.
Section 3 shows the comparison itself. Section 4 provides an
in depth analysis of the comparison, giving the reasons for the
differences between the simulations and the Lengyel model
predictions. Section 5 looks at the validity of using a fixed neτ
approximation to the neon transport in the Lengyel model, and
describes a novel predictive model for neτ which fits the simu-
lated data well. In section 6 we investigate the important topic
of neon enrichment, which is not accounted for by the Lengyel
model. Finally, in section 7 we draw our conclusions.

2. Detailed methodology behind the comparison
to the Lengyel model

2.1. The SOLPS-4.3 database

We will compare the Lengyel model to the SOLPS-4.3
simulation database of Q = 10 baseline neon-seeded plasmas
previously presented in [14]. In this database, nine puff scans
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Table 1. The nine puff scans within the database assessed here, as
first presented in [14]. Each tick represents a scan containing
between 5 and 10 converged simulations.

Input power Pin (MW)

60 80 100 120

〈cNe〉sep(%)

0.3 �
0.4 � � � �
0.6 �
0.8 �
1.2 �
1.8 �

were carried out, constituting 72 converged simulations in
total. By ‘puff scan’ here we mean that both the D2 puffing rate
and the neon puffing rate were varied such that the separatrix
neon concentration, 〈cNe〉sep, was kept fixed. Here, 〈cNe〉sep is
defined as the total number of neon particles (all charge states
including neutral neon) divided by the total number of elec-
trons, in the portion of the first SOL flux ring that lies above
the x-point7. We assume this to be an ‘operationally relevant’
parameter, in the sense that it affects the core impurity con-
centration and thereby the operational range of the tokamak.
Six of the nine puff scans were performed at input power
Pin = 100 MW, 〈cNe〉sep = {0.3, 0.4, 0.6, 0.8, 1.2, 1.8}%,
while the other three were done at Pin = {60, 80, 120} MW,
〈cNe〉sep = 0.4% (see table 1). For all simulations, the
D+ particle flux across the core boundary was fixed at
9.1 × 1021 s−1. This mimics pellet and NBI fuelling (the latter
being much less significant on ITER). See [14, 15] for more
details of the simulation setup. A list of all the simulation
IDS case numbers can be found in [19]; all simulations are
available in the public ITER IMAS database.

2.2. The third SOL flux ring is chosen for analysis

Within this database, we focus our assessment of the Lengyel
model on the operationally-limiting flux ring in the outer diver-
tor, from a target loading standpoint. This is defined as the last
flux ring whose total target heat load drops below 16 MWm−2

as the puffing is increased (note that, as the puffing increases,
the location of the maximum target heat load moves radially
outwards). We choose 16 MWm−2 as an approximate maxi-
mum tolerable stationary heat load, on the basis of the new
analysis presented by [15]. Our focus is on the outer diver-
tor, rather than the inner, because the maximum target heat
load usually occurs here (except at the very highest puff rates,
beyond outer target flux rollover, when the maximum inner tar-
get load can slightly exceed the maximum outer target load; see
figure 13 of [15]).

Figures 1(a) and (b) show near-SOL zoom-ins on the total
outer target heat load profiles mapped to the outer mid-plane,
including contributions from charged particles (kinetic energy
and surface recombination to atoms), neutrals (kinetic energy
and surface recombination to molecules) and photons. As in

7 A flux ring is the volume enclosed by two adjacent flux surfaces on the
numerical grid, and by the two targets.

[15], the charged particle contribution is multiplied by a factor
sin (4.2◦) / sin (2.7◦) to account for tile shaping8. For each puff
scan, profiles are shown for the highest puff case at which the
maximum total target load still exceeds 16 MWm−2. 9 Also
shown in figures 1(a) and (b) are the reductions in the total
target heat load due to anomalous net radial energy transport
out of each flux ring (positive values cause a decrease in the
load).

An important conclusion from these plots is that the first
SOL flux ring is not operationally-limiting, because of the
large radial flow of energy into the PFR (assuming diffusive
anomalous radial transport; for these simulations values of
D⊥ = 0.3 m2s−1 and χ⊥ = 1 m2s−1 were kept constant over
the whole grid). This is fortunate from the point of view of
the Lengyel model, which does not account for radial trans-
port. The second and third SOL flux rings can be regarded as
equally operationally-limiting in that, for all puff scans, the last
flux ring to drop below a target load of 16 MWm−2 is always
the second or third SOL ring. However, we choose to compare
the Lengyel model to the third SOL ring here because of the
much lower net radial transport sink on that ring. The outer
divertor portion of this flux ring is highlighted in magenta in
figure 1(c). Note that this ring sits at a distance ∼λq from the
separatrix, calculated in the same way as described in [15].

2.3. Simulated quantities used for the Lengyel model
comparisons

Having chosen our flux ring of interest, we now describe the
simulated quantities that were used for the Lengyel model
comparisons. The key quantities in the Lengyel models are the
upstream parallel energy flux density q‖u, the impurity concen-
tration cNe, and the upstream electron density neu. We begin by
discussing these.

2.3.1. q‖u. In all cases, q‖u was taken at the outer divertor
entrance of SOL ring 3. In the constant Pin, variable 〈cNe〉sep

simulations (vertical ticks in table 1), the simulated q‖u val-
ues were held approximately constant and used as inputs to
the Lengyel models. These inputs are given in figure 2(a)
using a legend convention that will be repeated throughout
the paper: values before, at, and after outer target ion flux
rollover in ring 3 are plotted as dots, diamonds and open cir-
cles, respectively. As expected in the absence of drifts and
current, the q‖u is approximately constant at constant Pin.
Meanwhile, in the constant 〈cNe〉sep, variable Pin simulations
(horizontal ticks in table 1), the simulated q‖u varied signifi-
cantly and was compared to the output of the Lengyel mod-
els. Since in these simulations q‖u was regarded as an out-
put of the Lengyel models rather than an input, we do not

8 Without tile shaping, the angle between the magnetic field and the toroidally
symmetric target surface is 2.7◦. However, with toroidal tile shaping (neces-
sary to avoid exposed leading edges), the average angle between the magnetic
field and the toroidally asymmetric target surface has an increased value of
4.2◦. To account for this, we multiply the toroidally symmetric simulated target
heat loads by a factor sin (4.2◦) / sin (2.7◦).
9 Note that, for the {Pin = 60 MW, 〈cNe〉sep = 0.4%} puff scan, there are no
simulations for which the maximum load lies above 16 MWm−2, so we show
the lowest puff case.
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Figure 1. Justification for focussing our analysis on the third SOL flux ring. The total outer target heat load profiles (including neutral,
plasma and radiation contributions) are shown for the maximum puff simulation before the peak heat load drops below 16 MWm−2. Each
point corresponds to a single flux ring. Note that all profiles are zoomed in and mapped to the outer mid-plane; PFR values are not plotted.
The reduction in the total load due to net radial transport out of each flux ring is also shown (positive values cause a decrease in target heat
load). The λq range is also indicated by a shaded band, calculated in the same way as in [15]. In all cases, λq is the distance from zero to
some point inside the grey band. (a) For constant Pin = 100 MW and variable 〈cNe〉sep (as labelled). (b) For constant 〈cNe〉sep = 0.4% and
variable Pin (as labelled). (c) The numerical grid with the outer divertor portion of the third SOL flux ring highlighted in magenta (note that
we show only the outer divertor part of the ring here; the entire ring runs between the two targets).

Figure 2. Some of the inputs to the Lengyel model. (a) q‖u at the outer divertor entrance for the third SOL ring as a function of 〈cNe〉sep, for
the puff scans in the third column of table 1 (constant Pin = 100 MW, variable 〈cNe〉sep). (b) 〈cNe〉div in the third SOL ring as a function of
Pin for the puff scans in the second row of table 1 (constant 〈cNe〉sep = 0.4%, variable Pin). Values in (a) and (b) are shown before, at, and
after rollover of the outer target particle flux for SOL ring 3. (c) Parallel-averaged κe‖0 for the third SOL ring in the outer divertor for all of
the simulations in the database. Flux-limited and non-flux-limited values are given.

plot it in figure 2; the simulated q‖u are plotted in figure 4(b)
and will be discussed in section 3.

This definition for q‖u (as the simulated q‖ at the outer
divertor entrance of SOL ring 3) was chosen to allow a fair
comparison between the Lengyel models and the simula-
tions, for the operationally limiting flux ring 3. Of course,
a user of the Lengyel models would ideally like to have a
procedure to relate the power through the separatrix to q‖u.
However, this relationship depends on both the radial posi-
tion of the operationally limiting flux ring, as well as λq.
Both of these quantities are themselves dependent on the
radial transport, which in these simulations was prescribed via

anomalous diffusive transport coefficients. In addition, con-
vective energy fluxes due to drifts are likely to affect q‖u in
some circumstances (e.g. [20, 21]), but are not considered
here.

Predictions of detachment onset using the Lengyel models
must therefore resort to some other model to relate the power
crossing the separatrix to q‖u in the operationally limiting flux
ring, none of which are currently very satisfactory. One sim-
ple approach would be to calculate λq from the Eich scaling
[22], as done in [12, 13], then assume that the operationally-
limiting flux tube lies at a distance ∼λq from the separatrix,
as was found in section 2.2. In addition, in the absence of drift

5
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simulations for the machine being predicted, the in/out power
asymmetry must also be assumed. Unfortunately, the valid-
ity of the Eich scaling may break down on future machines,
and (as has already been mentioned) the position of the
operationally-limiting flux tube found here is dependent
on the particular anomalous diffusivities chosen for these
simulations.

2.3.2. cNe. The neon concentration cNe was taken as the total
number of neon particles (all charge states including neutral
neon) divided by the total number of electrons, in the outer
divertor portion of the third SOL ring (highlighted in magenta
in figure 1)(c). We label this quantity 〈cNe〉div. In the constant
〈cNe〉sep, variable Pin simulations (horizontal ticks in table 1),
the simulated 〈cNe〉div was held approximately constant (at
least at rollover, where we are most interested in the compar-
ison to the Lengyel models; see figure 2)(b). In those cases,
the simulated 〈cNe〉div was an input to the Lengyel models.
Meanwhile, in the constant Pin, variable 〈cNe〉sep simulations
(vertical ticks in table 1), the simulated 〈cNe〉div varied signif-
icantly and was compared to the output of the Lengyel mod-
els. Since in these cases 〈cNe〉div was regarded as an output of
the Lengyel models rather than an input, we do not plot it in
figure 2; the simulated 〈cNe〉div are plotted in figure 4(a) and
will be discussed in section 3.

Again, this choice to use the average neon concentration
in the outer divertor third SOL ring was made to allow a
fair comparison between the Lengyel models and the sim-
ulations; the Lengyel models predict the impurity concen-
tration in the region where impurities are acting, which is
inside the divertor in these simulations (see the lower plots in
figure 9). However, the more operationally relevant quantity
will be the upstream 〈cNe〉sep, since that measures the concen-
tration of neon next to closed flux surfaces10. In the simula-
tions, there do exist significant parallel gradients in cNe (see
figure 15). However, for now, to allow a fair assessment of
the Lengyel models, we use the simulated divertor concen-
tration 〈cNe〉div for our comparisons. This important issue will
be revisited in section 6, where we will also repeat the com-
parison presented in this section, but using more operationally
relevant quantities for the neon concentration and electron
density.

2.3.3. neu. In the comparisons that follow, neu was used as
an input to the Lengyel models and was set equal to the sim-
ulated electron density at the outer divertor entrance for the
third SOL ring, ne,div.ent.ring3. As above, we chose this position
for neu because it is the most relevant one for a fair comparison
to the Lengyel model in the third SOL ring. The most opera-
tionally relevant upstream densities, however, will be values on
the first SOL ring. Here, we consider: (i) the average ne in the
first SOL ring above the x-point, 〈ne〉sep; (ii) the maximum ne

anywhere above the x-point on the first SOL ring, max
(
ne,sep

)
(note that this maximum always occurs in one of the two cells

10 Note that by an ‘operationally relevant’ quantity we do not mean to imply
that the quantity will be directly controllable during operations. We just mean
that the quantity plays an important role in setting the tokamak’s operational
range.

Figure 3. Linear dependence between operationally relevant
upstream electron densities on the first SOL ring and nediv.ent.ring3.
The latter was chosen as the fairest position for comparison to the
Lengyel models. The entire database is shown, with equations for
the lines of best fit given at the top of the figure. The y = x line is
also given for reference.

closest to the x-point, usually on the inboard side); (iii) ne at the
outer mid-plane first SOL ring, ne,sep,OMP. These quantities are
plotted in figure 3, as a function of ne,div.ent.ring3. The impor-
tant thing to note is that each of these operationally relevant
upstream densities has a linear relationship with ne,div.ent.ring3

(the equations for the lines of best fit are given at the top of
the figure). Thus, scaling comparisons to the Lengyel mod-
els will be minimally affected by a more operationally rel-
evant choice of neu, although absolute comparisons will be
slightly affected.

2.3.4. Other input parameters. In addition to neu, q‖u and cNe,
the remaining inputs to the Lengyel models were defined as
follows:

• κe‖0,FL. The Lengyel model input κe‖0,FL was set to the
parallel-averaged,flux-limited value in the third SOL ring,
〈κe‖0,FL〉div. Figure 2(c) shows 〈κe‖0,FL〉div for the entire
database (blue dots), as well as the non-flux-limited val-
ues, 〈κe‖0〉div (red dots). Except for the two most impure
cases, there is a variation of 30% in 〈κe‖0,FL〉div. Other
users of the Lengyel model might justifiably choose alter-
native schemes to account for the impact of kinetic effects
and impurities on κe‖0, different to those used in these
simulations11. Our interest here is not in discrepancies
between the code and the Lengyel model which arise
because of changes in 〈κe‖0,FL〉div. We therefore use the

11 With the settings used for these simulations (no longer the defaults in the
more recent SOLPS-ITER code), κe‖0 = 2597/Zeff was used. As recognised
in [23] this is a ‘simplification of the complete multispecies transport theory’.
An electron heat flux limiter of αe = 0.2 was also chosen.
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Figure 4. Comparison between SOLPS and the Lengyel model (‘LM’ in this figure) predictions, for the third SOL flux ring. (a) Comparison
of the predicted and simulated neon concentrations in the outer divertor, for the six puff scans between which 〈cNe〉sep is varied and Pin is
held constant. (b) Comparison of the predicted and simulated parallel plasma energy flux density entering the outer divertor, for the four puff
scans between which Pin is varied and 〈cNe〉sep is held constant. All simulations leading up to, at, and after outer target flux rollover for this
ring are shown (see legends).

〈κe‖0,FL〉div value for each simulation as input to its corre-
sponding Lengyel model calculation.

• Lneτ
Ne . To calculate Lneτ

Ne , we took the same ionisation
and recombination rates for neon that were used in
these SOLPS-4.3 simulations (again from the STRAHL
database). Those rates, along with a fixed neτ value, were
used as inputs to an ionisation balance calculation (imple-
mented with code from the ADAS library and based on the
original work by [17]). Based on the analysis that will be
presented in section 5, we chose neτ = 0.5 × 1020 m−3

ms. The resulting fractional abundances Fneτ
Nez

were then

used to calculate Lneτ
Ne =

∑10
z=0 Fneτ

Nez
ηSTRAHL

Nez
. In this way,

the Lneτ
Ne functions used in the Lengyel model calculations

were consistent with the neon rates used in the SOLPS-4.3
simulations. Thus, any discrepancies between LSOLPS

Ne and
Lneτ

Ne can be attributed to a more physical description of
the neon transport in SOLPS-4.3, rather than differences
in the rates (see section 5 for more details).

• L‖. We took L‖ = 20.0 m from the simulation grid as the
parallel distance from outer divertor entrance to target in
the third SOL ring.

• Tet and γ. For the full Lengyel model, Tet = 1.8 eV was
used as an input, based on the outer target rollover temper-
ature for SOL flux ring 3 (this was the mean rollover tem-
perature in the last numerical cell before the guard cell;
the standard deviation was 0.4 eV). Note that, at most,
the calculated full Lengyel model values were altered by
only 5% when the actual Tet in the SOLPS simulation was

used instead of 1.8 eV. For the sheath heat transmission
coefficient, these simulations assumed a value of 5.1 for
the electrons12 and 3.5 for the ions. On this basis we set
γ = 8.6 as input to the full Lengyel model. For the simpli-
fied Lengyel model, no input was required for either Tet

or γ because q‖t = Tet = 0 is assumed.

3. The comparison

Let us now compare the Lengyel model predictions of the(
cNe, q‖u, neu

)
detachment points to the SOLPS-4.3 simula-

tions. Figure 4(a) compares predictions of cNe as a function
of neu for simulations in which q‖u was held approximately
constant by fixing Pin; third column in table 1. Figure 4(b)
compares predictions of q‖u as a function of neu for simulations
in which 〈cNe〉div was held approximately constant (at least for
the outer target rollover points) by fixing 〈cNe〉sep; second row
in table 1.

Different colours in figure 4 represent different puff scans,
as labelled. Data is plotted throughout the entirety of each
puff scan, rather than just at the rollover points where we
expect the Lengyel model predictions to best match the sim-
ulations. Simulations before rollover in the outer target D+

12 In actual fact, the code takes as input an additional contribution to the elec-
tron energy transmission coefficient, specified here as 2.0, in addition to the
sheath potential. The sheath potential does depend on T i/Te, but in practice
this dependence is sufficiently weak that, to a good approximation, the electron
sheath energy transmission coefficient was 5.1 for all simulations.
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flux of the third SOL ring are shown as dots, simulations at
rollover are shown as diamonds and simulations after rollover
are shown as open circles. For comparison, the simplified
and full Lengyel model predictions are given by the solid
and dashed black lines, respectively. We only calculate the
Lengyel model predictions for simulations at or after rollover.
See appendix B for a discussion of the pre-rollover phase, in
which we introduce the dissipated power fraction as an addi-
tional parameter to the simplified Lengyel model. Note that in
figure 4(a) we have multiplied the SOLPS-simulated 〈cNe〉div

values by a factor 4.3, while for consistency in figure 4(b) we
have used the simulated 〈cNe〉div × 4.3 as input to the Lengyel
model calculations. The reasons why this factor 4.3 is nec-
essary to achieve good agreement between the simulations
and the Lengyel model predictions will be discussed in detail
in section 4.

Three observations can be made regarding figure 4:

• For simulations at rollover, the Lengyel models do a
remarkably good job of predicting the simulated varia-
tion of both 〈cNe〉div and q‖u with ne,div.ent.ring3, once the
SOLPS-4.3 〈cNe〉div is multiplied by a factor 4.3.

• Even beyond rollover, the Lengyel models continue to
predict the required 〈cNe〉div vs ne,div.ent.ring3 with the same
overprediction factor. The decrease in upstream density
after detachment is consistent with the increase in 〈cNe〉div,
such that the Lengyel model scaling is still met. It remains
to be seen at what degree of detachment the Lengyel
model scaling breaks down; more strongly-puffed cases
are in progress to assess this.

• The simplified and full Lengyel models predict very sim-
ilar values of cNe and q‖. In fact, the cNe prediction is
consistently a factor 1.14 ± 0.01 larger in the full model,
while the q‖u prediction is a factor 1.14 ± 0.05 lower. This
agrees with the small difference between the full and sim-
plified Lengyel models previously found in [12], and is
a result of a slightly higher Teu prediction from the two-
point model compared to the full Lengyel model. Given
this small discrepancy, and the fact that the simplified
Lengyel model is easier to analyse, we focus our analysis
below on the comparison to the simplified Lengyel model.

4. Analysis of the comparison

In the following analysis, unless otherwise stated, we focus
on the comparison between SOLPS-4.3 and the simplified
Lengyel model at outer target ion flux rollover in the third SOL
ring (diamonds in figure 4).

4.1. Overview of the extra physics in SOLPS-4.3 leading to
a 4.3 times lower required impurity concentration for rollover

Our goal in this section is to broadly evaluate which additional
physics in SOLPS-4.3 leads to the approximately constant fac-
tor ∼4.3 reduction in the simulated divertor neon concentra-
tion required for rollover, compared to that predicted by the
simplified Lengyel model.

Figure 5. Justification for setting cNe = 〈cNe〉div in our analysis.
(a) The integral in (10) (x-axis) is compared to its value when cNe is
set equal to 〈cNe〉div (y-axis), for the third SOL ring at flux rollover
for all nine D2 puff scans in the database. (b) The cNe(Te) profiles in
the highest and lowest seeded simulations (as highlighted in (a)),
compared to the average 〈cNe〉div value. Profiles are shown up to the
outer divertor entrance.

It is useful for our analysis (as well as for the Lengyel mod-
els) to assume that cNe in the outer divertor is constant along
the flux ring of interest, i.e. cNe = 〈cNe〉div.13 The justification
for this is shown in figure 5(a), where we demonstrate that
bringing cNe outside of the integral in (10) and setting it to
〈cNe〉div (y-axis) has only a small effect on the integral itself
(x-axis). We therefore draw the important conclusion that the
Lengyel model assumption of poloidally constant cNe within
the outer divertor is not responsible for the difference between
Lengyel model concentrations and the simulated 〈cNe〉div. For
completeness, in figure 5(b) we show the actual cNe(Te) pro-
files for the rollover points in the lowest and highest neon con-
centration scans (as highlighted in the appropriate colour in
figure 5(a)). These profiles are plotted alongside the 〈cNe〉div

value for that simulation, in the outer divertor third SOL ring
up to the outer divertor entrance. Note that, as discussed in
section 6, the neon concentration does increase in the main
SOL. We see from this analysis, however, that it is sufficiently
constant within the outer divertor third SOL ring to assume
cNe = 〈cNe〉div.

13 recall from section 2.3.2 that 〈cNe〉div is defined as the total number of neon
particles (all charge states including neutral neon) divided by the total number
of electrons, in the outer divertor portion of the third SOL ring.
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Figure 6. The importance of the assumptions that are made in the simplified Lengyel model but are not made in SOLPS-4.3, with regard to
the divertor neon concentrations that they predict. The calculated neon concentrations are shown as a function of ne,div.ent.ring3, for (a) the
fixed Pin simulations and (b) the fixed 〈cNe〉sep simulations. The simplified Lengyel model assumptions are gradually imposed on the
SOLPS-4.3 equation (19) (top right box), until it becomes the simplified Lengyel model equation (17) (bottom right box). Only simulations
at ion target flux rollover are considered.

Setting cNe = 〈cNe〉div, equation (10) can now be rearranged
to give

〈cNe〉div ≈
q2
‖u/2 − q2

‖t/2 + tB − tother∫ u
t κe‖0,FLT5/2

e n2
eLSOLPS

Ne dTe

, (19)

where the limits of the integral are taken directly from the
code, at the target and at the outer divertor entrance. By pro-
gressively moving from the SOLPS-4.3 equation (19) to the
simplified Lengyel model equation (17), we can better under-
stand which assumptions in the Lengyel model cause it to pre-
dict a factor ∼4.3 higher divertor neon concentration. Figure 6
shows just such a progression for (a) the fixed Pin, variable
〈cNe〉sep scans at rollover and (b) the fixed 〈cNe〉sep, variable
Pin scans at rollover. The blue diamonds show the actual
〈cNe〉div values calculated from the simulations, which com-
pare well to equation (19), plotted as red diamonds (within a
factor ∼1.1).

Next, we remove the tother term from equation (19) and
plot the resulting concentration as purple diamonds. Recall
that this term accounts for other heat flux mechanisms besides
electron conduction, as well as other heat loss mechanisms
besides neon cooling. Removing it significantly increases
the calculated concentration (i.e. these mechanisms act to
reduce the required concentration in the simulations), by a
factor ∼2. This term will be investigated in more detail in
section 4.2.

Next, we remove the tB term as well and recalculate
the concentrations (yellow diamonds). Recall that this term,
given by equation (11), accounts for variation in the mag-
netic field strength along the divertor leg. As expected for
the ITER divertor, with only a ∼10% increase in the outer
target strike point major radius compared to the x-point
major radius, removing the tB term has little effect (a factor
∼1.1 increase in the calculated concentration). Note that a
proper consideration of this term would be necessary for

‘Super-X’ divertors with strong variation in B along the diver-
tor leg [24].

Next, plotted as green diamonds, we bring the n2
eT2

e term
outside the integral in the denominator of (19) and assume
electron pressure conservation. So now the denominator is
n2

euT2
eu

∫ u
t κe‖0,FLT1/2

e LSOLPS
Ne dTe. The upstream electron tem-

perature (outer divertor entrance) is still taken from the code
output at this stage. This assumption also moves the calculated
concentration up significantly towards the simplified Lengyel
model result (by a factor ∼1.5), suggesting that the electron
pressure increases in the simulation from its upstream value to
the radiating region. This effect will be investigated further in
section 4.3.

Next, we replace the code-calculated neon cooling func-
tion LSOLPS

Ne with Lneτ
Ne at neτ = 0.5 × 1020 m−3 ms. The result-

ing concentrations are plotted as cyan diamonds. We see that
this has only a small effect on the calculated concentrations
for the fixed 〈cNe〉 = 0.4%, variable Pin scans, but a more
significant effect on the scaling of the calculated concentra-
tions for the fixed Pin = 100 MW, variable 〈cNe〉 scans. In
particular, the lower density concentration calculations are
pushed higher while the high density concentration calcula-
tions remain approximately where they were. This will be
investigated further in section 5. Note that the overall scal-
ing comparison to the Lengyel model is still good, because
the other assumptions (poloidally constant neon concentra-
tion and electron pressure, tother = tB = 0) combine to can-
cel out the change in scaling brought about by assuming
LSOLPS

Ne = Lneτ
Ne .

In the final step (black diamonds), we combine a number
of simplifications (none of which have a significant impact on
the calculated concentration), as follows. We remove the q2

‖t/2
term, but this is small because at rollover most of the incom-
ing q‖u is either radiated, transported radially, consumed by
ionisation, or transferred to neutrals. We take κe‖0,FL outside
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Figure 7. Accuracy of the two point model formula for Teu (y-axis)
compared to the simulated value at the outer divertor entrance, 3rd
SOL ring (x-axis). All 72 simulations are shown before, at and after
rollover, as labelled.

the integral and replace it with its parallel average. But the
effect of this is small because κe‖0 is a function only of Zeff

in the code, and Zeff does not vary significantly in the paral-
lel direction. We also switch the limits of the integral from the
code-calculated limits to the simplified Lengyel model limits
(recall that the simplified Lengyel model limits go from zero
to the two-point model formula for the divertor entrance tem-
perature T2PM

eu ). But, because T2PM
eu is a good approximation to

Teu in the simulations (figure 7), and because neon cooling is
negligible between zero and the simulated Tet, the effect of this
is small14.

After this final step, we are back to the simplified Lengyel
model, repeated for convenience in the bottom right box of
figure 6. We now consider in more detail the important simpli-
fications highlighted above.

4.2. Effect of other heat flux and heat loss mechanisms

Consider again the term tother, which acts via alternative heat
flux and loss mechanisms to reduce the required 〈cNe〉div in
the simulations (larger tother leads to lower 〈cNe〉div). Using
equation (1) we have

tother =

∫ u

t
Bq‖other d

(q‖
B

)
+

∫ u

t
κe‖0T5/2

e SQother dTe

=

∫ u

t
q‖otherSQNe ds +

∫ u

t
q‖otherSQother ds

+

∫ u

t
κe‖0T5/2

e SQother dTe, (20)

where we recall that

14 Note that the only significant deviation from the two-point model occurs
for the most dense, highest impurity concentration cases, in which there is
significant radiation upstream.

Figure 8. Decomposition of the tother term in equation (19),
normalised to q2

‖u/2. The heat balance along the outer divertor third
ring for simulations (a)–(c) are shown in figure 9.

q‖other = q‖e,conv + q‖i,cond + q‖i,conv,

SQNe = n2
ecNeLSOLPS

Ne ,

SQother = SQneut + SQRT.

Before analysing the composition of tother in the simula-
tions, it is worth noting that q‖other and SQother have the potential
to act not only through tother but also indirectly via the lim-
its of the integral in the denominator of (19), in particular by
changing Teu. For the case where q‖other or SQother are signif-
icant upstream, this effect can outweigh the tother term. For
the simulations considered here, however, the upstream q‖other
and SQother are sufficiently small so as not to push Teu too far
from the two-point model value (recall figure 7). In these cases,
therefore, the effects of alternative heat flux and loss mecha-
nisms are mostly captured in tother. Note that drift effects may
change this picture significantly, but are not considered here.

Figure 8 shows a bar chart of tother/
(

q2
‖u/2

)
in the simu-

lations at rollover for the third SOL ring in the outer divertor.
Normalising to q2

‖u/2 allows us to see the importance of tother

relative to the numerator in the simplified Lengyel model for

cNe. We see that the total tother/
(

q2
‖u/2

)
is around ∼0.4–0.5,

consistent with the factor ∼2 increase in calculated concen-
tration when tother was removed in figure 6 (red to purple
diamonds).

Figure 8 also gives the components of tother due to neu-
tral losses (dark and light blue), neon cooling in non-electron-
conductive regions (red), and radial transport losses (yellow).
As an aid to explain these components, figure 9 shows the
heat balance along the third SOL ring, for the three simu-
lations labelled ‘(a)’, ‘(b)’ and ‘(c)’ in figure 8. Among the
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Figure 9. Heat balance along the third SOL ring at ion flux rollover, for the three simulations labelled ‘(a)’, ‘(b)’ and ‘(c)’ in figure 8. Upper
plots show the decomposition of the heat flux, while lower plots show the decomposition of the heat losses. These heat losses are plotted as
cumulative fractions of the total heat flux entering the outer divertor (increasing away from the target). The sum of the blue, red and yellow
lines at their rightmost positions gives the total power loss fraction for the entire outer divertor flux third SOL ring.

simulations at target flux rollover, these three were selected
for a more detailed analysis because they exhibit the largest
variation in their heat balance components. Figure 9 will be
discussed in conjunction with figure 8.

The deuterium neutral loss contribution plotted in figure 8
is given by

tother, neut =

∫ u

t
q‖convSQneut ds +

∫ u

t
q‖icondSQneut ds

+

∫ u

t
κe‖0T5/2

e SQneut dTe, (21)

where q‖conv = q‖e,conv + q‖i,conv is the total (electron plus ion)
parallel convective energy flux density. The first term in (21)
is plotted in dark blue and the sum of the second and third
terms is plotted in light blue in figure 8. We see that the first
term is dominant, i.e. neutrals reduce the required 〈cNe〉div by
reducing the total heat flux in convective regions. As shown in
figure 9, the neutral losses are almost entirely localised to near-
target regions below 10 eV, while significant target-directed
convective flows can contribute to q‖other further upstream as
well, up to ∼40 eV for the highest seeded case (b) and for
the lowest power case (c). These convective flows upstream of
the neutral interaction region are linked to strong anomalous
transport of parallel momentum from the second flux tube15.

It is worth noting that, even for case (a) where deuterium
neutrals remove 1.4 times more power from this flux tube than

15 Note that the negative q‖conv values seen in figure 9 are a result of main ion
flow reversal, apparently due to ‘overionisation’ in the near-SOL flux tubes.
See chapter 15 of [18] and references therein.

neon, the neutral loss only contributes ∼0.1q2
‖u to tother, corre-

sponding to just a ∼1.25 times increase in the calculated neon
concentration when neutral losses are excluded. Note also that
in figure 8 the magnitude of the neutral loss term is reduced
at higher impurity concentrations, because more of the work
to reduce q‖t is being done by impurity radiation. However,
in these simulations, the reduced neutral loss term is com-
pensated by neon cooling in non-electron-conductive regions
upstream. This term, shown in red in figure 8, is given by

tother,Ne =

∫ u

t
q‖convSQNe ds +

∫ u

t
q‖icondSQNe ds. (22)

Both components of tother,Ne become significant at high 〈cNe〉sep

[in particular for the highest seeded case (b)] because there
are regions of convection (as noted above) and also strong ion
conduction (due to the reduced density and therefore reduced
electron-ion equipartition) in the neon-radiating regions. Both
of these features can be seen in figure 9(b).

Consider now the radial transport loss contribution, shown
in yellow in figure 8 and given by

tother,RT =

∫ u

t
q‖convSQRT ds +

∫ u

t
κe‖0T5/2

e SQRT dTe

+

∫ u

t
q‖icondSQRT ds. (23)

The third term in (23) is always negligible for these simulations
and in this flux tube, because radial transport occurs at lower
temperatures than ion conduction. Typically, the second term
in (23) is dominant (although for the cases labelled ‘(b)’ and
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‘(c)’ in figure 8, there is also a significant contribution from
the first term due to radial transport in the extended convective
region).

Overall, the effect of radial transport is fairly constant
across the puffing scans at rollover for this flux tube. It is
not possible, however, to offer any guidance regarding radial
transport due to its prescribed and diffusive nature in the sim-
ulations; predictive (turbulent) transport simulations will be
required for that. We can only state that in the simulations pre-
sented here, with the anomalous diffusivities chosen here, the
effect of radial transport on the simulated 〈cNe〉div at rollover
is of similar order to the effect of deuterium neutrals at low
seeding levels, and more important than deuterium neutrals at
high seeding levels.

It is worth discussing here the importance of deuterium neu-
tral effects on the values of

(
cNe, q‖u, neu

)
at which the target

ion flux rolls over (the ‘rollover point’). We know on cur-
rent machines that increased deuterium neutral trapping in the
divertor can aid detachment onset; see as examples [25] and
references therein, as well as the more recent analysis on TCV
[26] and DIII-D [27–29]. However, the Lengyel models out-
lined in section 1 have no way of capturing this physics, imply-
ing that extensions are necessary to capture neutral effects
on current machines. Fortunately, from the point of view of
applying the Lengyel models to ITER, the simulations anal-
ysed here suggest that the neutral loss fraction is sufficiently
small on ITER that neutrals have a relatively weak effect on the
required

(
cNe, q‖u, neu

)
for rollover, i.e. extensions to capture

neutral physics are not critical when applying Lengyel models
to ITER.

It may seem counterintuitive that deuterium neutrals result
in only a small change to the upstream

(
cNe, q‖u, neu

)
rollover

point while still exhausting a significant fraction of the input
power to a flux ring (recall that in some simulations the neutral
loss fraction even exceeds the neon cooling fraction, figure 9).
To understand this further, consider the case where neutrals
remove the entire second half of the input q‖u in an entirely
convective region near the target, where the impurity cooling

is negligible. In that case,
∫ u

t q‖convSQneut ds =
∫ q‖u/2

0 q‖ dq‖ =
q2
‖u/8, resulting in only a 25% reduction in the required cNe,

or equivalently a 13% reduction in the required neu. We con-
clude from this analysis that, for the current machines which
are strongly influenced by changes in neutral trapping, the
neutral loss fraction must be significantly higher than in the
ITER simulations analysed here. Indeed, one can see a gen-
eral trend in figure 8 whereby the impact of neutrals increases
as neon concentration decreases and the neutral loss frac-
tion increases. This suggests that for even lower neon con-
centrations than explored here, neutral losses would start to
play an important role in setting the upstream

(
cNe, q‖u, neu

)
rollover point. However, such low concentrations are likely to
require inaccessible upstream densities due to the Greenwald
density limit.

None of this is to suggest that deuterium neutral losses are
not generally important. If the neutral loss fraction can be
raised significantly above ITER’s on some other reactor, for
example by use of a small-angled slot divertor [30–33], the
rollover point will likely be affected by neutral losses. In such

Figure 10. The importance of including ion temperature when
assuming static pressure conservation along the outer divertor leg.
(a) Blue diamonds: the denominator of (19) divided by the same
quantity with n2

eT2
e brought outside the integral and set to n2

euT2
eu.

Red diamonds: the denominator of (19) divided by the same
quantity with n2

eT2
e brought outside the integral and set to n2

euT2
eu,

and with the function (1 + θu)2/(1 + θ)2 left inside the integral.
Here, θ = T i/Te. (b) Blue line: electron plus ion static pressure
along the outer divertor third SOL ring at rollover. Red line: the
function (1 + θu)2/(1 + θ)2. Green line: the integrand in the
denominator of (19). All plots in (b) are for the 〈cNe〉sep = 0.3%,
Pin = 100 MW case at rollover.

cases, extensions to the Lengyel models to include deuterium
neutral losses will be necessary. We also note the critical role
of deuterium neutrals in removing any residual heat flux not
removed by impurity radiation, which can still be sufficient to
exceed tolerable target loads.

4.3. Effect of poloidally-varying electron pressure

We saw in figure 6 that making the Lengyel model assumption
of constant electron pressure along the outer divertor ring, so
that n2

eT2
e can be brought outside the integral in the denom-

inator of (19), results in a ∼1.5 times increase in the calcu-
lated neon concentration. In fact, this increase is quite constant
across all of the simulations. This is shown in figure 10(a) (blue
diamonds), where we plot the denominator of (19) divided by
the same quantity with n2

eT2
e brought outside the integral and

set to n2
euT2

eu.
It should be noted that, although the electron static pres-

sure neTe is not well conserved along the leg, the total static
pressure (1 + θ) neTe (where θ = T i/Te) is well conserved
at target ion flux rollover, right up to the near target region
(at which point it drops to approximately half its upstream
value, as expected for total pressure conservation). This is
shown in figure 10(b) (blue line) for the 〈cNe〉sep = 0.3%,
Pin = 100 MW case. All other simulations show a similar
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degree of flatness in the total static pressure at rollover; sig-
nificant momentum loss fractions are not observed until after
target ion flux rollover.

Thus, when bringing n2
eT2

e outside of the integral and replac-
ing it with n2

euT2
eu, a function (1 + θu)2/(1 + θ)2 should be left

inside. This function is shown in figure 10(b) (red line) for
the same 〈cNe〉sep = 0.3%, Pin = 100 MW case. Note that this
function is not poloidally constant, because θ is not poloidally
constant. In particular, its value at the divertor entrance
(=1) is ∼1.5 times lower than its value in the region where
the integrand in the denominator of (19) (shown in green in
figure 10(b)) is maximum. This corresponds to a value of
θ = 0.9 at the peak of the integrand, compared to θu = 1.4
at the divertor entrance, i.e. the electrons and ions become
more equilibrated towards the radiating region than they were
upstream, where T i > Te.

From figure 10(a) we see that the effect of poloidally
varying θ is approximately constant across the simulations at
rollover in this database. On this basis, we can recommend an
additional factor 1.5 in front of the integral in the denomina-
tor of (17). However, it is likely that for tokamaks sufficiently
far from ITER in collisionality, this factor will be significantly
different.

5. Fixed neτ approximations to the SOLPS
electron cooling function

5.1. Basis for choosing neτ = 0.5 × 1020 m−3 ms

As stated in the introduction, one of the key assump-
tions in the Lengyel model is that the effect of impu-
rity transport on the electron cooling function can be
accounted for by assuming a fixed neτ approximation [17],
so that LSOLPS

Ne ≈ Lneτ
Ne =

∑10
z=0 Fneτ

Nez
ηSTRAHL

Nez
. In fact, in terms

of agreement with the Lengyel model, it is primarily the
extent to which

∫ u
t LSOLPS

Ne

√
Te dTe ≈

∫ u
t Lneτ

Ne

√
Te dTe that

matters.
Figure 11(a) shows, as coloured lines, LSOLPS

Ne

√
Te for the

simulations in which Pin = 100 MW was fixed and 〈cNe〉sep

was varied, as labelled. As usual, values are shown for the outer
divertor third SOL ring at target ion flux rollover. For com-
parison, we show Lneτ

Ne

√
Te in black for neτ = {0.1, 0.5, 1} ×

1020 m−3 ms. The zero transport approximation to LNe is also
shown. Figure 11(b) shows the same thing for the simula-
tions in which 〈cNe〉sep = 0.4% was fixed and Pin was varied.
Figure 11(c) compares the integrals of the curves in (a) and
(b). It is on the basis of this plot that we chose neτ = 0.5 ×
1020 m−3 ms as input to the Lengyel model for the comparison
presented in figure 4.

5.2. Observation of broadening of the electron cooling
function at high 〈cNe〉sep

An interesting trend is observed in figure 11(a), where LSOLPS
Ne

broadens to higher Te with increasing 〈cNe〉sep. As a result,∫ u
t LSOLPS

Ne

√
Te dTe increases by a factor 1.5 over the explored

range of 〈cNe〉sep (left side of figure 11(c)). Compare this to∫ u
t Lneτ

Ne

√
Te dTe, which remains approximately constant for

each neτ (the small variations in
∫ u

t Lneτ
Ne

√
Te dTe occur because

the temperature limits vary slightly). This is consistent with
the change in scaling from the green to cyan diamonds in
figure 6(a). We now consider the physical origin of this broad-
ening of the cooling function.

5.3. Physical origin of the broadening

Figure 12 shows how LSOLPS
Ne =

∑10
z=0 FSOLPS

Nez
ηSTRAHL

Nez
is com-

posed for the fixed Pin, variable 〈cNe〉sep simulations shown in
figure 11(a). Figure 12(a) shows the electron cooling coeffi-
cients ηSTRAHL

Nez
for the main cooling charge states in the third

SOL ring of the outer divertor (Ne3+ to Ne7+). These are code
inputs and, for the STRAHL rates used here, are indepen-
dent of density. Figures 12(b)–( f ) show the fractional abun-
dances FSOLPS

Nez
for those same charge states, for the simulations

shown in figure 11(a), and also for the fixed residence time
calculations, as labelled.

Note that all of the cooling charge states have similar elec-
tron cooling coefficients, with the exception of Ne7+, which
radiates less efficiently since it has only one electron in its outer
shell. In this region of interest then,

LSOLPS
Ne ≈ 〈ηSTRAHL

Ne 〉3−6 −
(
〈ηSTRAHL

Ne 〉3−6 − ηSTRAHL
Ne7+

)
× FSOLPS

Ne7+ , (24)

where 〈ηSTRAHL
Ne 〉3−6 is the electron cooling coefficient aver-

aged over charge states Ne3+ to Ne6+, and the second term is
positive. Thus, reducing the fractional abundance of Ne7+ by
pushing it upstream from the outer divertor acts to maximise∫ u

t LSOLPS
Ne

√
Te dTe. As can be seen in figures 12(b)–( f ), this is

exactly what happens to higher charge states with increasing
〈cNe〉sep.

To understand why higher charge states are pushed fur-
ther upstream with increasing 〈cNe〉sep, in figures 13(a) and
(c) we plot (as solid lines) the parallel velocity for Ne7+ ions,
u‖Ne7+ (positive away from the target). Velocities are plotted
as a function of s in the third SOL ring of the outer divertor,
for the 〈cNe〉sep scan and for the Pin scan. Clearly, at higher
〈cNe〉sep, Ne7+ ions have an increased parallel velocity away
from the target. This is consistent with the broadening of the
electron cooling functions shown in figure 11(a). By contrast,
within the Pin scan at constant 〈cNe〉sep, there is relatively lit-
tle variation in the u‖Ne7+ profiles. This is also consistent with
the lack of broadening in figure 11(b). Both of these observa-
tions can be explained by using the same analysis as [34] for
ASDEX-upgrade simulations, as follows.

We assume that the ion temperature gradient force pushing
impurity ions away from the target is balanced by the friction
force between main ions and impurities (acting in the opposite
direction). For a general impurity charge state αz this gives

u‖αz ≈ u‖D+ +
1

mα

FGαz

ναz→D+
, (25)

where

ναz→D+ =
e5/2 ln Λ

6
√

2π3/2ε2
0

nD+z2

(mα/
√

mr)T
3/2
i

(26)

is the Coulomb collision frequency of charge state αz on the
main D+ ions. Here, mr =

mαmD+

mα+mD+
is the reduced mass, T i
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Figure 11. (a) and (b) The SOLPS electron cooling function due to neon (multiplied by
√

Te; coloured lines) compared to fixed neτ
calculations in black (labelled with their corresponding residence time τ , assuming ne = 1 × 1020 m−3). SOLPS values are plotted for the
third SOL ring in the outer divertor at target ion flux rollover, for different values of 〈cNe〉sep and Pin, as labelled. (c) The integrals of the
curves in (a) and (b).

has units of eV, and FGαz is the sum of the ion and electron
temperature gradient forces, given in [35]:

FGαz = e

(
z

Zeff
− 1

)
z

(
2.2

∂Ti

∂s
+ 0.71

∂Te

∂s

)
(27)

(the coefficient 2.2 here comes from applying equation (20) in
[36] to the specific case of neon). That is, aside from the main
ion velocity, the parallel impurity ion velocity away from the
target is set by a competition between the temperature gradient
force (acting to increase u‖αz) and Coulomb collisions with the
main ions (acting to decrease u‖αz).

The dashed lines in figure 13 show the right side of
equation (25), demonstrating this approximation to be well
met in these simulations for Ne7+. In fact, this balance is also
well met for the other main cooling charge states, which also
have very similar parallel velocity profiles due to the weak z
dependence in equation (25) for z � 1: u‖αz ∝ 1/Zeff − 1/z (at
rollover, in the outer divertor third SOL ring, Zeff varies weakly
between 1.08 and 1.27 over the explored neon concentration
range, so that u‖αz ∝ 1/Zeff − 1/z ∼ 1 − 1/z).

Furthermore, in these simulations the change (or lack of
change) in impurity velocity is primarily a result of changes
in the second term in equation (25), as plotted in figures 13(b)
and (d) for Ne7+. We can now understand why Ne7+ ions move
to higher temperatures at higher 〈cNe〉sep: at higher 〈cNe〉sep the
rollover density is lower (recall figure 4(a)), so that the speed
of Ne7+ ions away from the target is increased due to reduced
collisions with D+ ions (assuming relatively constant main ion
velocity profiles, as is the case here). In contrast, for the Pin

scan, the reduced rollover density at lower Pin does not cause
an increase in u‖Ne7+ because it is offset by a concomitant
reduction in the ion temperature.

Note finally that it is also now clear why the spreading
out of the fractional abundances in figure 12 was most pro-
nounced for the higher charge states: the largest differences in

u‖αz between the simulations occur in regions where the higher
charge states are more abundant.

5.4. A predictive physics model for neτ

What value of neτ should go into predictive calculations using
the Lengyel model? For the comparison in figure 4 we used a
constant fitted value of neτ = 0.5 × 1020 m−3 ms, but can our
choice be based on a physics model, thus improving the pre-
dictive capability of the Lengyel model? One might argue from
figure 6 that a more physical model for neτ (where neτ can
vary) would not greatly improve the predictive capability of the
Lengyel model beyond the neτ = constant = 0.5 × 1020 m−3

ms ‘model’ used here. Indeed, for these ITER cases, where
there is only a factor ∼6 change in neτ , this is a fair argument.
However, when comparing cases with a larger variation in neτ
it would be important (and more satisfactory from the perspec-
tive of physics understanding) to have a model for neτ . Such a
model is now considered.

In order to make progress, we assume that the electron den-
sity seen by the cooling impurities moving upstream can be
approximated by the electron density at the divertor entrance.
We then have

neτ ≈ ne,div.ent.ring3
L‖

〈u‖αz,cool〉
(28)

where τ represents the time required for a cooling impurity to
travel across an ion temperature gradient scale length, assumed
here to be given by the parallel distance from target to outer
divertor entrance L‖, and

〈u‖αz,cool〉 =
1.68 × 108

√
mr ln Λ

T5/2
iu

L‖ne,div.ent.ring3
, (29)

is the average velocity of the main cooling charge states up the
leg (away from the target). In (29), we have used equation (25)
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Figure 12. Composition of the SOLPS electron cooling functions shown in figure 11(a). (a) The electron loss coefficients from STRAHL
for the main cooling charge states. (b)–( f ) The simulated fractional abundances for those charge states [coloured according to the legend in
(b)], compared to the three fixed residence time calculations in black, as labelled.

with several simplifying assumptions: (i) the main ion veloc-
ity u‖D+ is assumed to be small; (ii) T i = Te; (iii) ∂T i/∂s =
T iu/L‖; (iv) the cooling charge states have sufficiently high
z that the z dependence in u‖αz can be dropped; (v) Zeff is
close to unity. Assuming further sufficient equipartition that
T iu scales like the standard two point model prediction for Teu,
and inserting (29) into (28), we obtain

neτ ≈ αfit

√
mr ln Λ〈κe‖0,FL〉5/7

4.11 × 108
L9/7
‖

n2
e,div.ent.ring3

q5/7
‖u

, (30)

where αfit is a fitting coefficient (expected to be of order
unity) to account for the significant approximations made in
the model.

In figure 14, we have plotted on the y-axis the values of neτ
that give the best match between LSOLPS

Ne

√
Te (from the sim-

ulations, solving for impurity transport of each charge state)
and Lneτ

Ne

√
Te (from the ADAS ionisation balance calculations

assuming a single fitted neτ parameter). Note that the values
for all simulations, not just at rollover, are shown. These fit-
ted neτ values are plotted as a function of the physical model
given by equation (30). Simulations within the 〈cNe〉sep scan
are shown as black dots, while simulations within the Pin scan
are shown as open circles. The best fit value for αfit was found
to be 0.90. It is quite striking that such a simple model as
equation (30) can fit the simulation data so well. We now have
a physics-based model for neτ and recommend the application

of equation (30) when using the Lengyel model for predic-
tive purposes (at least in cases where the assumptions outlined
above are reasonable).

We also have a physics reason why, as shown in figure 14,
the range in fitted neτ is a factor ∼2 larger for the 〈cNe〉sep scan
than for the Pin scan. With increasing 〈cNe〉sep, the upstream
density decreases by a factor∼2.5, while the upstream temper-
ature remains similar. This reduced density means fewer colli-
sions between impurity ions and D+ ions (slowing the impurity
ions) as well as fewer collisions between impurity ions and
electrons (ionising them). This allows the temperature gradi-
ent forces (which remain similar) to push the impurity ions
further upstream, reducing neτ . A similar drop in upstream
density also occurs as Pin is reduced in the Pin scan. How-
ever, this drop in upstream density is now concomitant with
a drop in the upstream temperature, so that the temperature
gradient forces are reduced. This opposes the drop in density
so that neτ does not decrease by as much as in the 〈cNe〉sep

scan.
There is an important caveat to note from this analysis.

As already stated, these simulations used neon rates from the
STRAHL database. These rates are calculated under the coro-
nal approximation, where the electron density is assumed to
be low enough that excited states decay radiatively before
electron impact de-excitation can take place. At the densi-
ties of interest, more accurate rates such as those from ADAS
96 (derived from a collisional-radiative model) do not give
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Figure 13. (a) Parallel velocities of Ne7+ for the fixed Pin, variable
〈cNe〉sep simulations. Also shown as dashed lines are the parallel
velocities assuming that friction and thermal forces balance (right
side of equation (25)). (b) The component of u‖αz due to the
competition between the temperature gradient force (increasing
u‖αz ) and Coulomb collisions with main ions (decreasing u‖αz ). (c)
and (d) Same plots for the fixed 〈cNe〉sep, variable Pin simulations.

such a pronounced drop in the electron cooling coefficients
from Ne6+ to Ne7+, as was seen in figure 12(a). Impor-
tantly, we do not expect the accuracy of equation (30) to be
strongly affected by these more accurate rates, however dif-
ferences in the values of Lneτ

Ne

√
Te for a given neτ can be

significant. These differences motivate us to self-consistently
reconverge these simulations with ADAS 96 neon rates in
future.

6. Neon enrichment

As noted in section 2.1, the Lengyel model predicts the impu-
rity concentration in a particular flux ring in the outer diver-
tor, whereas the relevant quantity for core performance is the
impurity concentration in the upstream portion of the SOL
neighbouring closed field lines. Here, we define the outer
divertor neon enrichment ηNe to be the ratio of these quantities:

ηNe ≡
〈cNe〉div

〈cNe〉sep
. (31)

It is important that 〈cNe〉div be taken in the third and not the
first SOL ring of the outer divertor, so that ηNe expresses our
ability to enhance the neon concentration in regions where we
want it (i.e. in the operationally limiting flux ring of the outer

Figure 14. Comparison between the best fit neτ values from all
SOLPS simulations in the database (y-axis) and the simplified
physics model given by equation (30) (x-axis). Here, αfit = 0.90.

divertor), relative to regions where we do not want it (i.e. next
to closed field lines in the main SOL).

In figure 15 we plot 〈cNe〉sep as a function of 〈cNe〉div, for
the entire database. Each puff scan is shown in its pre-rollover
(dots), rollover (diamonds) and post-rollover (open circles)
phases. A very interesting trend is observed for all puff scans,
whereby the outer divertor neon enrichment increases as a
function of the puff strength, i.e. as the degree of detachment
increases. Note that, as shown in figure 15(b), this is a result
of impurities becoming more compressed in the outer divertor,
rather than electrons becoming more depleted. In figure 15(b)
we plot the average neon density (all charge states) in the first
SOL ring above the x-point, 〈nNe〉sep, as a function of the aver-
age neon density in the third SOL ring of the outer divertor,
〈nNe〉div. A similar trend is observed for the neon compression,
〈nNe〉div/〈nNe〉sep, as for the enrichment, i.e. the compression
increases with increasing puff. Note that, at rollover, both the
enrichment and compression are fairly constant at 0.5(∼ ±0.1)
and 1.3(∼ ±0.25), respectively.

This increasing compression of neon in the outer diver-
tor with puffing can be seen in more detail by considering
poloidal profiles along the entire third SOL ring, from inner
to outer target. These are shown for both the neon concentra-
tion and density in figures 15(c) and (d). We see that there is
a clear movement of neon from the inner to the outer diver-
tor as the puffing rate is increased. Analysis is underway to
try to explain this behaviour on the basis of a balancing of
friction and thermal forces on the neon ions, combined with
qualitative changes in the background ion flow. It is currently
unclear whether the presence of drifts will change the quali-
tative trend shown in figure 15, though individual simulations
do indicate a significant effect of drifts on the neon poloidal
density profile [37]. A simplified consideration of the impact
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Figure 15. Increased enrichment and compression of neon in the outer divertor with increasing puff rate. (a) 〈cNe〉sep as a function of
〈cNe〉div, for the entire database. We define the ratio of these quantities to be the enrichment, ηNe. (b) 〈nNe〉sep as a function of 〈nNe〉div. The
ratio of these is the compression. Note that in (a) and (b) the straight lines indicate that at rollover both the enrichment and the compression
are approximately constant, but as the puffing rate is increased the enrichment in the outer divertor improves. (c), (d) The concentrations and
total density profiles of neon in the entire third SOL ring, from inner to outer targets, with increasing D2 puff rate. These cases correspond to
the Pin = 100 MW, 〈cNe〉sep = 0.8% puffing scan highlighted in magenta in (a) and (b).

of drifts on the Lengyel model prediction is presented in A.
Note also that, for all these simulations the D2 and Ne puffs
were located at the top of the machine; it remains to be seen
whether the behaviour shown in figure 15 is affected by these
puffing locations.

What does all of this mean for the Lengyel model’s ability
to predict operationally relevant concentrations on the sepa-
ratrix, as a function of operationally relevant electron densi-
ties on the separatrix? Figure 16 shows the simulated 〈cNe〉sep

as a function of 〈ne〉sep. Also plotted in red are the simpli-
fied Lengyel model calculations using the same inputs as in
section 2.3, except that now neu = 〈ne〉sep (note that we keep
the q‖u input to the Lengyel model as the value at the third SOL
ring outer divertor entrance). Figure 16 should be compared to
figure 4(a), which showed 〈cNe〉div in the third SOL ring as a
function of nediv.ent.ring3.

Recall from figure 3 the relationship 〈ne〉sep ≈
0.80nediv.ent.ring3 for all simulations in the database. This,

combined with 〈cNe〉sep ≈ 〈cNe〉div at rollover (figure 15),
means that the agreement with the simplified Lengyel model
scaling at rollover is similar to before, but with a slightly
improved factor ∼4.3/0.82/2 = 3.4 difference in the absolute
predicted and simulated concentrations.

Importantly, however, the simulated behaviour after
rollover is not captured by the model. In the simulations,
〈ne〉sep decreases with increased puffing after rollover, while
〈cNe〉sep is kept constant. The Lengyel model would predict an
increased concentration for this decreased upstream density
and indeed, as was seen in figure 4(a), this is the case for the
〈cNe〉div. However, because the enrichment is also improv-
ing, this increased 〈cNe〉div does not come at the expense
of an increased 〈cNe〉sep. This potentially has important
consequences for power handling, since more operationally
favourable conditions that are still tolerable from an exhaust
point of view might be accessed by simply puffing more
to improve impurity enrichment in the outer divertor. Note,
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Figure 16. Ability of the simplified Lengyel model to predict
operationally relevant upstream impurity concentrations 〈cNe〉sep as
a function of operationally relevant upstream densities 〈ne〉sep. This
figure should be compared to figure 4(a). The simplified Lengyel
model calculations are also shown, using 〈ne〉sep as input.

however, that it is unlikely this trend can continue forever.
At some point either an MARFE will form risking H-mode
access, or the inner divertor will be so starved of neon that
it becomes the operationally limiting divertor. Future work
will explore more strongly detached simulations than those
available within this database.

7. Conclusions

Before drawing conclusions from this work, it is important
to be clear about the conclusions we cannot draw. We can-
not conclude much regarding the general applicability of the
Lengyel models (except for the prediction of neτ for impuri-
ties, discussed below). This is because of potentially important
physics that we know to be missing from the simulations (for
example drifts and turbulence), as well as the limited param-
eter space which they cover (relative to all tokamaks, past,
present, and future). Such generality can only be assessed
through further simulations including more physics, as well
as experimental measurement. Regarding the assessment via
simulation, an important outcome of this work is the analysis
procedure, i.e. the progressive simplification of equation (19),
that we have used to understand the dominant physics caus-
ing variation from the simplified Lengyel model. This proce-
dure should be generally transferrable to other codes applied
to other machines.

Despite this strong proviso, we can still draw important and
useful conclusions regarding the application of the Lengyel
models to ITER, assuming the SOLPS-4.3 physics model.
These are as follows:

• For SOLPS-4.3 simulations of ITER baseline neon seeded
plasmas, in a divertor flux tube that is operationally lim-
iting, the ‘simplified’ Lengyel model tends to overpre-
dict the simulated impurity concentration at target ion

flux rollover by a factor 4.3 (both ‘simplified’ and ‘full’
Lengyel models, as described in section 1, give very
similar results, within ∼14% of each other).

• Despite this factor ∼4.3 overprediction of the required
divertor neon concentration, the Lengyel models pre-
dict remarkably well the scaling of the interdependencies
between upstream density, outer divertor impurity con-
centration and upstream parallel energy flux density, at
target ion flux rollover. Interestingly, even after target ion
flux rollover, the Lengyel model continues to predict the
increased divertor impurity concentration as the upstream
density decreases (though not the upstream impurity con-
centration since the impurity enrichment increases in the
outer divertor as the puffing is increased). The outer diver-
tor impurity compression increases in a way that is con-
sistent with the decreased upstream density and with the
Lengyel models.

• Approximately half of the observed factor ∼4.3 differ-
ence can be explained by additional energy losses besides
neon cooling and additional energy fluxes besides elec-
tron conduction, neither of which are accounted for in
the Lengyel models. Radial transport losses from the con-
sidered flux tube are at least as important in these sim-
ulations as deuterium neutral losses (the latter decrease
in importance at higher neon concentrations). We expect
deuterium neutral losses to become more important at
lower impurity concentrations and/or with increased neu-
tral trapping.

• A further factor ∼1.5 difference is accounted for by the
incorrect assumption in the Lengyel models that electron
static pressure is constant from the divertor entrance to the
radiating region. Although total (electron plus ion) static
pressure is approximately constant in the simulations, the
ratio T i/Te changes significantly, so that a factor ∼1.5
increase in the calculated concentration is incurred by the
assumption of constant electron static pressure.

• Of all the Lengyel model assumptions, the one that most
affects the predicted scaling of divertor neon concen-
tration with upstream density, compared to the simula-
tions, is the assumption of constant neτ for the calcu-
lation of the electron cooling function due to neon. In
the simulations, the impurity residence time is not con-
stant. It increases with increasing upstream density (due
to increased friction with main ions) and with decreas-
ing upstream ion temperature (due to decreased ion tem-
perature gradient force). At low density this acts to push
upstream the inefficiently-radiating, high charge state
impurities, thus reducing the required impurity concen-
tration. A physics-based model has been derived for neτ ,
given by equation (30).

• In these simulations, this effect of changing neτ does not
worsen the overall scaling of divertor impurity concen-
tration with upstream density compared to the Lengyel
model. It is cancelled out by an accumulation of other
physics included in the simulations: the aforementioned
energy loss and flux channels, the poloidally non-constant
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electron pressure and neon concentration, and the non-
constant magnetic field strength. On their own, none of
these cause a significant deviation from the simplified
Lengyel model, but when combined they are sufficient to
cancel the effect of changing neτ .

• Neon is found to migrate from the inner divertor to the
outer divertor as the puffing rate, and thereby the degree
of detachment, is increased. As a result, the outer divertor
neon enrichment increases in these drift-free simulations.
Future work will aim to understand this behaviour and
whether it is still observed in the presence of drifts.

• Although the outer divertor neon enrichment increases
with puffing, it is approximately constant at target ion
flux rollover, with a value of ∼0.5 for all upstream con-
centrations. In addition, the average separatrix electron
density increases approximately linearly with the elec-
tron density at the divertor entrance in the operationally-
limiting flux tube. As a result, the Lengyel model still
accurately predicts the scaling dependency between the
operationally relevant upstream 〈cNe〉sep and 〈ne〉sep at
rollover.

• As a result of improved neon enrichment beyond rollover,
more operationally advantageous upstream conditions
with lower electron density can be accessed in these
strongly detached simulations, without adversely affect-
ing plasma exhaust. Even more strongly detached simula-
tions are required in order to assess how far this advantage
can be pushed.
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Appendix A. A simplified consideration of drifts

Here, we consider a simple modification of the Lengyel model
to allow a rough estimate of how convective drifts might affect
the required impurity concentration for detachment onset.
Consider the strongly simplified case where a constant fraction
fconv of the parallel energy flux density is carried by convection
due to drifts, i.e.

q‖conv = fconvq‖, (32)

throughout the SOL. We substitute (31) into (2) and use
Teu = (1 − fconv)2/7T2PM

eu , while keeping all other assumptions
the same. We find that

cα = (1 − fconv)(3−2β)/7cLM,simp
α , (33)

where cLM,simp
α is the original simplified Lengyel model

expression for the required impurity concentration given by

equation (17). In equation (32), β represents the degree to
which the integral LINT =

∫ u
0 Lneτ

α

√
Te dTe depends on Teu:

LINT ∝ Tβ
eu. (34)

This dependence is given in figures 2 and 3 of [12]. Depend-
ing on neτ and on the seeded impurity, β lies approximately
between 0 and 1. We conclude from equation (32) that, in this
very specific case where drifts are assumed to result in a con-
stant convective fraction, their effect on the required impurity
concentration is small.

There are several provisos to the weak dependence between
cα and fconv given by equation (32):

• Even this weak dependence can become important if fconv

is sufficiently close to one. Indeed, this appears to be
the case for the recently published simulations of DIII-D
[38]. The authors report values of fconv ≈ 0.995 at detach-
ment in the presence of drifts, moving the SOL profiles
significantly away from those predicted by the Lengyel
model. However, recent simulations of ITER equivalent
to those reported here, but with drifts turned on, do not
have such large values of fconv [37]. As can be seen from
figure 11 of that publication, for cases near the ion tar-
get flux rollover, the poloidal energy flow towards the
outer target is weakly affected by the presence of drifts,
implying a relatively small fconv for ITER, compared to
DIII-D16.

• Equation (32) does not consider how drifts might affect
the total q‖u entering the divertor. Here, we treat q‖u as
an input parameter to the Lengyel model, but it must be
borne in mind that the relationship between the ‘true’
input parameter Pin and the Lengyel model input parame-
ter q‖u will be affected by drifts; for a given Pin, drifts will
alter the proportion of power entering the outer divertor
compared to the inner.

• Changes in the impurity compression in the divertor due
to drifts are not considered here.

• Finally, we note that a stronger dependence on the con-
vective fraction could be found for instances where that
fraction is not assumed constant.

A proper understanding of how drifts might affect the
Lengyel scalings reported in this paper will therefore require
a similarly sized database to the one assessed here, but with
drifts turned on.

Appendix B. The pre-rollover phase

The primary focus of this paper has been on how well the
simplified Lengyel model predicts the

(
cNe, q‖u, neu

)
values

required for the target ion flux density to roll over. This focus
was motivated by the expectation that rollover will be required
to manage heat loads in the ITER Q = 10 baseline scenario, as
well as in future reactors. Nevertheless, for current machines,
as well as for ITER’s pre-fusion power operation phase, it is

16 Additional indications of the importance of drifts on TCV and DIII-D were
recently reported in [39, 40].
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Figure 17. (a) Identical to figure 4(a), but now comparing the simulation results to the pre-rollover phase as well, using equation (34).
(b)

(
1 − fpwr

)2
as a function of the simulated 〈cNe〉div × 4.3, for the same simulations in (a). Black lines show the predictions from

equation (34) for the pre-rollover phase, using the simulated 〈cNe〉div × 4.3 as input.

interesting to consider how such a simple model performs in
the lead up to rollover.

To assess this, we must introduce an extra parameter
to the simplified Lengyel model given by equation (17).
Before rollover, q‖t = 0 is no longer a valid assumption.
We therefore include the dissipated power fraction in the
flux ring of interest, fpwr = 1 − q‖t/q‖u. Keeping all of the
other simplified Lengyel model assumptions, equation (17)
becomes

cα =
q2
‖u

(
1 −

(
1 − fpwr

)2
)

2κe‖0,FLn2
eu(T2PM

eu )2
∫ T2PM

eu
0 Lneτ

α

√
Te dTe

. (36)

Note that we are still integrating from Te = 0 in equation (34),
i.e. the actual Tet is assumed to remain sufficiently small so

that
∫ T2PM

eu
Tet

Lneτ
α

√
Te dTe ≈

∫ T2PM
eu

0 Lneτ
α

√
Te dTe.

Figure 17(a) shows the same plot as figure 4(a), but now
with the solid black lines given by equation (34), rather
than equation (17). In this case, we used the simulated
values of fpwr as additional inputs and compared to the
entire simulated puff scan at each 〈cNe〉sep, including the pre-
rollover phase (shown as dots). As previously, the simulated
〈cNe〉div were multiplied by a factor 4.3 to obtain a good
comparison.

For simulations at (and beyond) rollover, we have that
fpwr ≈ 1. The concentrations predicted by equations (17)
and (34) are therefore very similar in this phase, giv-
ing the same agreement with SOLPS-4.3 shown previ-
ously in figure 4(a). Now, with the addition of the fpwr
parameter taken from the simulations, we find an excellent

agreement in the pre-rollover phase as well. That is, by speci-
fying q‖u and ne,div.ent.ring3 from the simulations, equation (34)
predicts well the neon concentration required in the diver-
tor to achieve a given fpwr, after multiplication by a constant
factor 1/4.3, in attached and detached phases. This implies
that equation (34) can also be used to predict the simulated
fpwr for a given

(
〈cNe〉div, q‖u, ne,div.ent.ring3

)
, once the simu-

lated 〈cNe〉div has been multiplied by 4.3. Indeed, this is shown
to be the case in figure 17(b), where we compare the simu-
lated (coloured) and predicted (black) values of

(
1 − fpwr

)2

in the pre-rollover phase. Values are plotted as a function of
the simulated 〈cNe〉div × 4.3 for the same simulations shown in
figure 17(a).
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