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Abstract
Alfvén eigenmodes (AEs) driven by energetic alpha particles can lead to enhanced fast ion
transport and losses, thereby degrading the plasma performance in ITER and future magnetic
confinement fusion reactors. Unexpectedly, AEs with negative toroidal mode numbers, which
are currently not considered for ITER, were observed in dedicated experiments with
fusion-born alpha particles on the tokamak Joint European Torus (JET). The paper provides
evidence for a complex interplay between fast ions, monster sawtooth crashes and AEs. Our
results highlight the need for an improved description of the synergies between different fast
ion phenomena in future burning plasmas.
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(Some figures may appear in colour only in the online journal)

In a thermonuclear magnetic fusion reactor, the reaction
between deuterium (D) and tritium (T) ions, resulting in a fast
alpha-particle (4He) and a neutron, will be the main source of
energy: D + T → α (3.5 MeV) + n (14.1 MeV). In future
large-scale fusion devices, such as ITER, fusion-born alpha-
particles will provide the dominant source of plasma heating
and largely govern the plasma performance [1, 2]. The physics
of alpha particle heating is highly non-linear and its extrap-
olation to future devices is not straightforward. This is partly
due to fast-ion driven Alfvén instabilities that alphas can excite
over a broad range of frequencies. In turn, the excited modes
may cause enhanced radial transport and losses of alpha par-
ticles, thereby degrading the plasma confinement and fusion
power output [3–5]. Furthermore, ITER can only tolerate fast
particle losses of a few percent. Thus, it is crucial to have a
solid understanding of AE modes that can be excited by alpha
particles. Alfvénic instabilities are usually driven by the free
energy from the spatial gradient of the fast-ion distribution
function (δγ ∼−n∂ f /∂r, where n is the toroidal mode number
and r the radial coordinate) [6, 7]. Since peaked pressure pro-
files are expected for alpha particles in burning D–T plasmas,
only modes in the ion-diamagnetic direction, i.e. modes with
n > 0, are currently considered for ITER [5].

In fact, a rich variety of other phenomena is associated with
the presence of alpha particles. One of the most important con-
sequences of their presence in ITER are very long sawtooth
cycles and monster sawtooth crashes [8–10]. These crashes
lead to a periodic reorganization of the plasma core, together
with an abrupt drop of the central electron temperature and
redistribution of energetic ions.

Present-day discussions on energetic ions in ITER do not
usually address synergistic effects triggered by the simultane-
ous occurrence of various fast-ion phenomena [5]. This paper
reports on sawtooth-induced AEs with toroidal mode num-
bers n < 0 (i.e. opposite to the ion-diamagnetic direction) and
n = 0 (i.e. an axisymmetric mode), which were unexpect-
edly observed in recent experiments in D-3He plasmas with
fusion-born alpha particles on the world-largest magnetic con-
finement fusion device, the tokamak JET (major radius R0 ≈
3.0 m, minor radius a ≈ 0.9 m). None of these observed modes
are currently under consideration for ITER.

1. Experimental results

Dedicated fast-ion experiments in mixed D-3He plasmas with
n(3He)/ne ≈ 20%–25% were recently performed on JET [11].
In these studies, deuterium ions from neutral beam injection
(NBI) with characteristic pitch, λ = v||/v ≈ +0.62 (v|| is the
ion velocity along the confining magnetic field B) and ENBI ≈
100 keV were accelerated to high energies with waves in the
ion cyclotron range of frequencies (ICRF), using the three-ion

D-(DNBI)-3He scenario [12–14]. Co-passing NBI-injected fast
ions with v|| > 0 reached energies up to ∼2 MeV, as confirmed
by several fast-ion diagnostics, including gamma-ray and neu-
tron measurements. As a result, a relatively high D–D neu-
tron rate ∼1 × 1016 s−1 was reached in those D-3He L-mode
plasmas at moderate input heating power. Simultaneously with
the enhanced neutron production, the population of energetic
deuterons gave rise to fusion-born alpha particles, originat-
ing from the aneutronic reaction D + 3He → α (3.6 MeV) +
p (14.7 MeV). The production rate of D-3He alpha particles
was ∼2 × 1016 s−1 (based on interpretive TRANSP model-
ing [15]), which is about twice as large as the D–D neutron
rate. The toroidal magnetic field on the magnetic axis B0 =
3.7 T, plasma current Ip = 2.5 MA (Ip and B are oriented
in the same direction in JET), ICRF settings (RF frequency
32.2–33.0 MHz, dipole antenna phasing), the 3He concen-
tration, and the central electron density ne0 ≈ 6 × 1019 m−3

were chosen for efficient generation and good confinement of
energetic deuterons and alpha particles in the JET plasma core.

Figure 1(a) shows an overview of JET pulse #95679
(PNBI ≈ 6.9 MW, PRF ≈ 5.8 MW, n(3He)/ne ≈ 22%). ICRF
generates a centrally peaked large population of energetic
deuterons that results in a strong increase of the central elec-
tron temperature and in the D–D neutron rate, raising from
Te0 ≈ 3.6 keV and ∼5 × 1014 s−1 during the NBI-only phase
to Te0 ≈ 7.6 keV and ∼1 × 1016 s−1 in the combined ICRF +
NBI phase. During this phase, fusion-born alpha particles were
produced at a rate ∼2 × 1016 s−1, as follows from TRANSP.
This corresponds to ∼60 kW D-3He fusion power, which
is four times larger than the maximum D-3He fusion power
(∼15 kW) reached in JET-ILW ICRF + NBI experiments with
3rd harmonic ICRF heating of D-NBI ions [16]. The saw-
tooth dynamics in this pulse was rather complex and the dura-
tion of the sawtooth-free phases Δtsaw varied between 210 ms
and 730 ms. A rich family of Alfvén eigenmodes (AEs) was
destabilized by fast ions, including the toroidicity- (TAEs,
f ≈ 200–260 kHz) and the ellipticity-induced modes (EAEs,
f ≈ 540–600 kHz), as well as the reversed-shear Alfvén eigen-
modes (RSAEs) during the long-period sawtooth-free phases
(see figure 4(b) in [11]). Note that the injected fast NBI ions
were sub-Alfvénic (vNBI/vA ≈ 0.4; v||,NBI/vA ≈ 0.25) and no
AEs were destabilized in the NBI-only phase of #95679.

In this paper, we consider specifically Alfvén instabilities
in the EAE frequency range and focus on the modes observed
after the monster sawtooth crash at t ≈ 11.035 s (Δtsaw =
730 ms). Figure 1(b) illustrates the destabilization of modes
in the ion-diamagnetic direction (n > 0, starting from t ≈
11.08 s), typical for plasmas with a radially peaked popula-
tion of fast ions such as the ICRF-accelerated deuterons in
this experiment. Similar to earlier experiments with ICRF on
JT-60U [17], EAEs are located at the q = 1 surface (q is
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Figure 1. (a) Overview of JET pulse #95679 (3.7 T/2.5 MA) in D-3He plasmas with energetic D-ions and fusion-born alpha particles. (b)
Dynamics of Alfvén activities in the EAE frequency range after the monster sawtooth crash at t ≈ 11.035 s.

the magnetic safety factor). This was inferred from correla-
tion reflectometer measurements (providing the radial mode
localization, R � 3.25 m) and sawtooth inversion radius (Rinv)
analysis. In this pulse, we find that Rinv varied between 3.16 m
and 3.25 m, when Δtsaw increased from 250 ms to 730 ms.
Thus, shortly after a sawtooth crash favorable conditions for
the destabilization of EAEs with n > 0 are present: the
q = 1 surface is located close to the plasma core, where cen-
trally peaked population of energetic D ions is generated by
ICRF. The q-profile evolves during the sawtooth cycle, impact-
ing the evolution of different types of AEs: in particular, the
disappearance of EAEs nearly coincides with the appearance
of RSAEs. Note that the efficient destabilization of EAEs in
this series of fast-ion experiments in D-3He plasmas was also
due to the high magnetic field chosen for this experiment
(B0 = 3.7 T). Indeed, under these conditions the parallel veloc-
ity of the injected fast NBI ions was smaller than vA/2, thereby
leading to a negligible EAE damping.

Surprisingly, simultaneously with n > 0 EAEs, the n = −1
EAE was observed starting at t ≈ 11.14 s (see figure 1(b)).
This was unexpected as the radial-gradient mechanism asso-
ciated with a radially peaked fast-D population can effectively
destabilize modes with n > 0, but provides damping for modes
with n < 0. Furthermore, the global AE (GAE) with n = 0
was also destabilized after the monster sawtooth crash. As nei-
ther of these two modes are currently considered for ITER, it
is important to gain insight in the physics behind these JET
observations.

2. Sawtooth-induced redistribution of fast ions

The redistribution of fast ions during the sawtooth crash in
tokamaks is complex. Present-day insights indicate that the
fast-ion redistribution is pitch-angle or energy dependent, or
both, e.g. [18–20]. Yet a widely accepted theoretical model

that is consistent with all experimental observations is so far
eluding [21].

Energetic D-ions give birth to both D–D neutrons and D-
3He alpha particles. A significant sawtooth-induced redistri-
bution of both energetic deuterons and alphas was observed.
The dynamics of fast deuterons during the sawtooth crash
was monitored by the neutron camera at JET, which has a
temporal resolution of ∼10 ms. This diagnostic has 19 lines-
of-sight, allowing to reconstruct the 2D spatial profile of the
neutrons and thus energetic D-ions. Figures 2(a)–(c) show the
reconstructed neutron emission profile shortly before and after
the monster crash at t ≈ 11.035 s, illustrating the substan-
tial redistribution of fast-D ions. Figure 2(d) further corrob-
orates this observation: a reduced neutron emissivity in the
central channel #5 of the neutron camera and an increased
emissivity in channel #6 further off-axis after the crash.
By the time the n = −1 EAE mode is destabilized, ener-
getic deuterons recover their spatially peaked distribution (cf
figure 2(c)) and their radial gradient provides damping for
the n = −1 mode.

The presence of high-energy alpha particles was indepen-
dently confirmed by the gamma-ray and fast-ion loss detec-
tor (FILD) measurements. The tomographic reconstruction of
the 17 MeV gamma-ray emission (from a weak secondary
channel of the D-3He fusion reaction [11, 22]) shows that
alpha particles were also localized in the central region of the
plasma (see figure 5 in [23]), where EAEs were generated.
However, this diagnostic has insufficient temporal resolution
to follow the details of the alpha dynamics during the sawtooth
crash. In contrast, the FILD system at JET provides fast sig-
nals (Δt ≈ 0.5 μs) of energetic ions escaping the plasma [24].
Figure 3(a) shows a snapshot of lost energetic ions with a Lar-
mor radiusρL � 10 cm (Eα� 4.0 MeV) and a pitch-angle in the
range ∼55◦–60◦ shortly after the sawtooth crash (t =
11.042 s). The reconstructed orbits shown in figure 3(b) cor-
respond to lost alphas originating from the plasma core. As
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Figure 2. (a)–(c) The reconstructed neutron emission profile in JET pulse #95679 shortly before and after the monster crash at t ≈ 11.035 s.
The dotted lines indicate the lines-of-sight of the neutron camera at JET. (d) Time evolution of the neutron counts during the sawtooth crash,
as measured by the channels #5 and #6 of the neutron camera.

Figure 3. (a) A snapshot of lost energetic ions with Larmor radius ρL = 10–13 cm (Eα = 4.0–6.4 MeV) and pitch-angle in the range
∼55◦–60◦, measured by FILD shortly after the sawtooth crash (t = 11.042 s). (b) The reconstructed orbits of energetic alphas detected by
FILD. (c) Time evolution of the lost alpha-particle FILD signal (ρL � 11 cm, Eα � 4.8 MeV).

shown in figure 3(c), after the sawtooth crash the loss rate of
alpha-particles is increased by ∼60% with a relaxation time of
∼200 ms.

Note that alphas are not only redistributed by the sawtooth
crash, but also their birth profile is affected by the sawtooth-
modified distribution of D-ions. Together with the different
dependence of the D–D and D-3He reaction cross-sections
on the energy of fast deuterons [25], this can lead to alpha
distributions with rather non-standard features.

3. Alpha particles and the n = −1 mode

Figures 4(a) and (b) show the computed absolute values of
the strength of various resonances for the observed n = −1
EAE at f ≈ 555 kHz, assuming fast D-ions and alpha parti-
cles as driver of the mode. The plotted quantity is the standard
deviation of the particle energy, interacting with the EAE with
typical fixed mode amplitude δB/B = 1 × 10−5 over 400 wave

periods, as computed with the HAGIS code [26]. A uniform
pitch-distribution of test particles (from λ = −1 to λ = +1)
was used. As expected, the wave-particle interaction occurs
along the resonance lines ω = nωϕ − pωθ, where ω and n
are the AE frequency and the toroidal mode number; ωϕ and
ωθ are the toroidal and poloidal orbital frequencies; p is an
integer [7].

The spatial structure of the n = −1 EAE was computed by
the MISHKA code [27] and is shown in figure 4(c). The rele-
vant EAE gap is produced at the crossing between the poloidal
mode numbers m = 0 and m = 2. The error bars are mainly
determined by uncertainties in the safety factor in the cen-
tral region of the plasma. A monotonic q-profile with a vari-
able value of q0 was considered in this calculation. With q0

≈ 0.95, both the computed mode frequency and mode local-
ization matched well with the measurements. Figure 4(c) also
shows the reconstructed FILD orbits, clearly illustrating the
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Figure 4. (a) and (b) The computed strength of the resonant wave-particle interaction for the n = −1 EAE at f = 555 kHz for D ions and
alpha-particles. The plotted quantity is the standard deviation of the particle energy (in keV) interacting with the EAE of the amplitude
δB/B = 1 × 10−5 over 400 wave periods. (c) The computed mode structure (electrostatic potential) of the n = −1 EAE together with the
reconstructed orbits of lost alphas detected by FILD (see figure 3(b)).

significant overlap between the n = −1 EAE mode struc-
ture and the region where alpha particles are generated in
the plasma.

The resonance maps displayed in figures 4(a) and (b)
allow to identify the characteristics of fast ions that resonantly
exchange energy with the mode, but they do not distinguish
resonances contributing to the mode drive and mode damp-
ing. The sign of the resulting energy exchange depends on
the details of the fast-ion distribution and the integrals over
the distribution function gradients along the resonance lines.
As discussed above, the centrally peaked fast-D population
provides damping for n < 0 modes. Furthermore, as follows
from figure 4(a), the resonant exchange of energy for the mode
is only possible for energetic deuterons with λ|| < 0, which
are virtually absent in this fast-ion experiment, where ICRF
accelerates co-passing NBI-injected ions. These two argu-
ments imply that the generated fast deuterons are inefficient
to destabilize the n = −1 EAE.

In contrast, the distribution function of alpha particles nat-
urally spans the full range of pitch values, thus fulfilling a
necessary condition for the destabilization of the n = −1
EAE (figure 4(b)). Yet the presence of such ions alone is not
sufficient for the existence of modes with negative toroidal
mode numbers. Having a self-consistent modeling of the mode
growth rate would be ideal, but it requires a detailed knowl-
edge of the alpha distribution function f α = f α(E, λ, r)
and its modification during the sawtooth crash, which is par-
ticularly complex in these JET experiments. In the absence
of a realistic alpha distribution when the n = −1 EAE
was observed, we cannot provide credible simulations of the
mode stability. Instead, in what follows we present conjec-
tures for the origin of the modes, consistent with experimental
observations.

Note that non-standard distributions of energetic alpha par-
ticles induced by sawtooth crashes were earlier reported in
NBI-only D–T experiments on the tokamak TFTR. As dis-
cussed in [28], sawtooth crashes resulted in a large drop
in the core alpha density and the appearance of radially

hollow alpha profiles (note that n < 0 AEs were not reported
in [24]). A similar depletion of alphas in the plasma core
could also play a role in these JET experiments, as hinted
at by the reconstructed FILD orbits (figure 3(b)). Indeed, the
orbit-modelling shows that the detected alphas have energies
Eα > 4.0 MeV and pitch between λ ≈ −0.5 and λ ≈ −0.36
in the plasma core, thereby fulfilling a necessary resonance
condition for the n = −1 mode, shown in figure 4(b). Alphas
with lower energies that resonate with the n = −1 EAE
are also redistributed during the sawtooth crash. However,
as these particles have smaller orbits, they do not reach
the FILD detector.

Anisotropy of the pitch-angle distribution of fast ions is
another source of free energy that can potentially destabilize
modes with n < 0 [29]. The fast-ion anisotropy term, con-
tributing to the energy transfer, can be expressed as δγ ∝
(1 − λ2)/(2λE)∂ f /∂λ. Thus, this mechanism can contribute
to the mode drive by energetic ions with λ < 0, if their distri-
bution fulfills the condition ∂ f /∂λ < 0. Note the anisotropy
drive was reported to be significant only when the mode fre-
quency is close to one of the critical frequencies, ωnl (see the
definitions in [30]). The computed frequencies ωnl (l = 1–3)
are significantly below the experimentally measured n = −1
EAE frequency.

A population of fast ions with the inverted energy distribu-
tion ∂ f /∂E > 0, often referred to as a bump-on-tail, can also
contribute to the destabilization of Alfvénic instabilities. This
mechanism cannot be at work for the steady-state slowing-
down distribution of alphas as it decreases monotonically with
energy. Generating a bump-on-tail and thereby impacting the
AE stability is possible by modulating the fast-ion source on
a time scale shorter than the characteristic fast-ion slowing-
down time. This has been successfully demonstrated in recent
DIII-D experiments using NBI modulation [31]. In the JET
experiments reported here the sawtooth-induced redistribution
of fast D-ions provides an intrinsic mechanism for the modi-
fication and modulation of the D-3He fusion source of alphas.
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The importance of this novel mechanism has not yet been
assessed for ITER.

Another unexpected interesting observation is the destabi-
lization of the n = 0 GAE in the EAE frequency range at
t ≈ 11.13 s, cf figure 1(b). This mode consists of two domi-
nant poloidal harmonics (m = ±1) and is also localized in the
central region of the plasma. For n = 0 modes, the spatial fast-
ion gradient does not contribute to the mode drive/damping.
Thus, either the anisotropy of the distribution function with
respect to the pitch angle [31] or the presence of a positive
energy gradient [32], or a combination of both drives these
modes unstable. Further detailed mode drive analysis requires
a realistic alpha distribution produced by the sawtooth crash.
Note that both n = −1 and n = 0 modes were observed in
other pulses of this series of experiments, as well as in previous
JET experiments with 3rd harmonic ICRF heating of D ions in
D-3He plasmas [33].

4. Importance for ITER and burning D–T plasmas

The reported JET experiments in D-3He plasmas with ener-
getic deuterons and alpha particles clearly demonstrate the
non-linear interplay between fast-ion plasma heating, saw-
tooth stabilization and crashes, and fast-ion-driven AEs. Such
synergies will become increasingly more important in ITER
and future burning plasma experiments with a large popula-
tion of fusion-born alpha particles. While the stability of AE
modes has been quite extensively analyzed late in the saw-
tooth cycle [5], a detailed analysis of AEs shortly after the
crash has received much less attention. These JET results show
that non-standard fast-ion distributions can be generated dur-
ing the sawtooth crash, in turn, leading to the destabilization
of AE modes that are currently not considered for ITER. As
AE instabilities are potentially detrimental for the performance
and stable operation of ITER, the mere observation of these
unexpected modes on JET is an important message for the
plasma physics community. We also note a close link between
the sawtooth period and the intensity of EAEs in these JET
experiments. In particular, EAEs were prominently present in
JET pulses with short-period sawteeth.

Our results highlight the need for dedicated modelling
activities to further improve knowledge on the complex inter-
play between the sawtooth-induced redistribution of fast ions
and AEs in fusion plasmas. The paper also underlines the par-
ticular merit of D-3He plasmas for fusion research, allowing a
better understanding of several important aspects for burning
reactor plasmas, prior and complementary to future full-scale
D–T experiments.
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