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Abstract
There exists a large body of previous work using reduced two-dimensional models of the
scrape-off layer (SOL), which model fluctuations in the drift-plane but approximate parallel
transport with effective loss terms. Full size three-dimensional simulations of SOL turbulence in
experimental geometries are now possible, but are far more computationally expensive than 2D
models. We therefore use a flux-tube geometry model of the SOL to compare the results of 2D
simulations to 3D simulations with a similar setup, looking for systematic differences. Our
setup mimics the outer SOL of a double-null plasma, with no neutrals and no shear, and is
therefore likely more favourable to agreement. Overall, we do find good agreement in the basic
radial profiles, probability distribution functions, and power spectra of fluctuations. However,
the average temperature is over-predicted in 2D relative to 3D, and we explain the difference in
terms of the effect of geometrical simplifications of devices at low power. Varying geometric
parameters, we find that supersonic flow in the divertor leg, which occurs because our
simulations do not include neutrals and so represent low-recycling conditions, means that the
divertor leg length only has a weak effect on the output. Finally, we examine the effect of
altering the magnitude of source and sink terms in 2D, concluding that they cannot easily be
used to recreate both the density and temperature profiles observed in 3D simultaneously.

Keywords: scrape off layer, exhaust, simulation, BOUT++, mcf, turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

Management of the heat flux to the divertor targets is a
major challenge for developing a full-power tokamak fusion
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reactor, and especially so for a commercial power plant. The
exhaust power is fixed for a given design—dictated by the
reactor’s rated power output and energy gain factor Q—but
the radial profile of heat deposition sets the total area over
which that heat is distributed. These radial profiles are in turn
set by the level of cross-field energy transport in the scrape-off
layer (SOL), compared with the rate of parallel heat transport
towards the targets.

Cross-field transport in the SOL cannot be modelled as
purely advective or diffusive, and instead requires resolving
and then averaging turbulent fluctuations and short-lived
structures [1].
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Drift-fluid turbulence modelling is computationally
expensive, and drastically more so in three dimensions due
to the need to resolve fast parallel timescales. Therefore
many reduced two-dimensional drift-plane models have been
employed by the community, including ESEL [2, 3], SOLT
[4, 5], STORM-2D [6, 7], and TOKAM2D [8]. These models
evolve variables in the drift-plane, but simplify the parallel
transport along the magnetic fields lines as overall loss terms.

It is now possible to perform full 3D scrape-off-layer turbu-
lence simulations, which explicitly resolve fluctuations along
the parallel direction. Codes with 3D capability include GBS
[9], SOLT3D [10], TOKAM3X [11], GRILLIX [12], and
HERMES [13]. Recently, this was even demonstrated for full-
scale simulations of the turbulent SOL in the medium-sized
tokamakMAST [14], using STORM-3D [15]. Several of these
codes have been benchmarked against one another through
simulations of the ISTTOK device [16].

However, there exists a large catalogue of previous work
done with the various 2Dmodels (e.g. [8, 17–19], as presented
in the comprehensive review by D’Ippolito [20]), which suc-
cessfully reproduce key experimental results, such as the uni-
versality of fluctuation statistics [21]. These codes continue to
possess some advantages over the 3D models, such as compu-
tational speed, model simplicity, and physical interpretability.

We present a systematic comparison of 2D models with
their closest 3D analogues, providing a basis to evaluate the
systematic errors of the approximations used to truncate the
models to 2D.

In section 2 we describe the systems of equations solved,
before describing the parameters chosen and the domain geo-
metry in section 3. Our results begin with a comparison of 2D
and 3D simulations (section 4.1), before studying the effect of
varying the divertor leg length (section 4.2), and the sensitivity
to some of the overall simulation parameters (section 4.3).

2. Physical model

The model and code we will use is STORM, a SOL physics
module built using the BOUT++ framework for plasma fluid
simulations [22–24]. STORM has two related models: a 3D
version [15, 25, 26], and a 2D version [6]. Because of the mod-
ular way that BOUT++ is designed, these two versions of the
STORM code use mostly the same methods to solve the per-
pendicular dynamics.

STORM has previously been used to model individual fil-
aments [6, 27], finite electron temperature effects [28], fila-
ment interactions [29], electromagnetic effects [30], neutral
background [31, 32], divertor turbulence [25], and full 3D
geometries [15].

2.1. Three-dimensional STORM model

We use a drift-reduced, fluid, cold-ion, electrostatic model,
which evolves density n, E×B vorticity Ω, temperature T,
electrostatic potential ϕ, parallel electron velocity V, and par-
allel ion velocity U. The equations are ultimately derived
from the well-known Braginskii equations [33], where the

Boussinesq approximation has been employed in deriving the
vorticity equation (4).

∂n
∂t

=−{ϕ,n}−V∇∥n− n∇∥V+ C(p)

− nC(ϕ)+Dn∇2
⊥n+ S. (1)

∂U
∂t

=−{ϕ,U}−U∇∥U−∇∥ϕ

−
ν∥

µ
(U−V)+ 0.71 ∇∥T−U

S
n

(2)

∂V
∂t

=−{ϕ,V}−V∇∥V−µ∇∥ϕ− µ

n
∇∥p

+ ν∥(U−V)− 0.71 µ∇∥T−V
S
n

(3)

∂Ω

∂t
=−{ϕ,Ω}−U∇∥Ω

+ n[∇∥(U−V)+ (U−V)∇∥ log(n)]

+ C(p)+µΩ∇2
⊥Ω (4)

∂T
∂t

=−{ϕ,T}− 2
3
TC(ϕ)−V∇∥T−

2
3
T∇∥V

− 2
3n

∇∥q∥ −
2
3
0.71(U−V)∇∥T+

2
3n

ν∥

µn
J2∥

+
5
3
TC(T)+ 2T

3n
C(p)+ 2

3n
κ⊥,0∇2

⊥T

+
2
3n
SE+

2
3n

1
2µ
V2 S− 2

3n
V2

2µ
C(p)− T

n
S. (5)

Ω=∇·
(
∇⊥ϕ

B2

)
. (6)

Here we have used the quantities electron pressure p= nT,
parallel current J∥ = n(U−V), and parallel heat flux q∥ =
−κ∥,0T5/2∇∥T− 0.71 TJ∥; as well as various operators such

as the total derivative df
dt =

∂f
∂t + {ϕ, f}, the Poisson bracket

{ϕ, f}= b× (∇ϕ ·∇f)/B, parallel gradient ∇∥ f= b ·∇f,
perpendicular gradient∇⊥ f=∇f−b∇∥ f, and perpendicular
Laplacian∇2

⊥f=∇· (∇⊥f). µ is the electron to ion mass ratio
me/mi.

Also, within the simplified geometry described in section 3
the curvature operator acting on a scalar field C( f) takes the
form [7]

C( f)≡∇×
(
b
B

)
·∇f≈− 2

R0B0

∂f
∂z

. (7)

A Bohm normalisation scheme has been used for these
equations (defined for STORM in [7] and [25]), in which
lengths and times are normalised to the hybrid Larmor radius
and the ion gyrofrequency

x
ρs

→ x, Ωit→ t,
L∥
ρs

→ L∥. (8)
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Table 1. Reference normalisation values of density and
temperature, used for all simulations.

n0 (10−19m−3) Te,0 (eV) Ti,0 (eV) B0 (T)

0.5 15 30 0.24

Table 2. Normalised values of various dissipation coefficients used
in all simulations. Calculated using the standard classical
expressions from the parameters given in table 1.

Dn µΩ κ⊥ κ∥ η∥(Te = Te,0)

2.1× 10−4 1.6× 10−3 3.3× 10−4 4.4× 104 3.6× 10−5

Variables are normalised to characteristic values (for which the
numerical values used are given in table 1) or combinations of
them. The dimensionless forms of the evolved fluid variables
are obtained from the dimensional forms through

n≡ ne
ne,0

, T≡ Te
Te,0

, ϕ≡ eφ
Te,0

,

V≡
u∥,e
cs

, U≡
u∥,i
cs

, Ω≡ ω

Ωi
,

(9)

meaning currents and sources are normalised through

J∥ ≡
j∥

ene,0cs
, Sn ≡

S(n)

ne,0Ωi
, SE ≡

W
ne,0Te,0Ωi

, (10)

and the normalised parallel resistivity given by

ν∥ ≡
0.51 νei

Ωi
. (11)

Diffusion coefficients are normalised to the Bohm diffusion
(DBohm ≡ ρ2s Ωi)

Dn ≡
D

DBohm
, µΩ ≡ µω

DBohm
, κ≡ κ

DBohm
, (12)

and numerical values are given in table 2. For more details
see [7].

The system (1)–(5) requires a corresponding set of bound-
ary conditions. To model the interaction with the divertor tar-
get plates, we describe the plasma dynamics at the magnetic
pre-sheath entrance by imposing Bohm sheath boundary con-
ditions for the parallel velocities U and V, and computing the
corresponding parallel electron power flux Q∥ by following
[34]. Therefore at each target plate we require

U∥|target ⩾
√
T

V∥|target =

{√
Texp(−Vfl − ϕ

T ), if ϕ > 0,
√
Texp(−Vfl), otherwise

Q∥|target = γnTV,

(13)

with the signs reversed if B is directed away from the wall.
Here Vfl is the plasma floating potential, defined as

Vfl =
1
2
log

(
2π
µ
(1+ 1/µ)

)
, (14)

where γ = 2+Vfl is the sheath transmission coefficient. The
parallel electron heat flux q∥ is determined from the power flux
by

q∥|target = Q∥|target −
5
2
nTV− 1

2µ
nV3. (15)

The binormal boundary is periodic in both 2D and 3D, mean-
ing that the domain is periodic in the direction perpendicular to
the radial direction (and also perpendicular to the parallel dir-
ection in 3D). This periodic boundary condition is motivated
by the toroidal periodicity of a tokamak, but is also the simplest
choice to use that does not introduce more arbitrary assump-
tions about boundary conditions. Finally the radial boundary
conditions are described in appendix A.

2.2. Two-dimensional STORM model

The 2D model system is a simplification of the 3D system.
Grouping all terms with parallel dependence into loss terms, in
the perpendicular drift-plane equations (1), (4) and (5) become

∂n
∂t

=
1
B
{ϕ,n}+ C(p)− nC(ϕ)+ Sn+Dn∇2

⊥ n− nloss (16)

∂Ω

∂t
=

1
B
{ϕ,Ω}+ C(p)

n
+µΩ∇2

⊥ Ω−Ωloss (17)

∂T
∂t

=
1
B
{ϕ,T}− 2

3
TC(ϕ)+ 2T

3n
C(p)+ 5

3
TC(T)

+
2
3n
SE−

TS
n

+
2
3n

κ⊥0∇2
⊥ T−Tloss (18)

with the Laplacian inversion for the electrostatic potential (6)
unchanged.

We use the so-called sheath-dissipation closure [7, 18], in
which density and temperature are assumed to be constant
along the parallel direction, and we treat the parallel velocities
as linearly varying between the Bohm sheath values, so that
∇∥U∼ U/L∥.

This gives the loss rate of density and vorticity as

nloss =
1
L∥
nVsh(ϕ,T) (19)

Ωloss =
1
L∥

(Vsh(ϕ,T)−
√
T), (20)

where

Vsh(ϕ,T) = Vsh0

√
Te−ϕ/T, (21)

and

Vsh0 = e−Vfl . (22)

However, we linearize the exponential sheath factor around the
floating potential (as is done for example in [7]), giving

Vsh(ϕ,T) =
√
T

[
1−

(
Vfl +

ϕ

T

)]
. (23)
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We choose the sheath-dissipation closure over the
vorticity-advection closure (also described in [7]) because we
found that the vorticity advection closure was not adequate for
turbulence simulations, providing too little damping at large
scales, which lead to the domain filling with unphysically-
large structures [6].

To model parallel loss of thermal energy we interpolate
between two limits, following the approach of Myra [5]. The
loss rates in the two regimes (sheath-limited and conduction-
limited [34]) are

q∥SL
=

(
γe−

3
2

)
nTVsh(ϕ,T) (24)

q∥CL
=

2
7
1
L∥

κ∥,0T
7/2, (25)

where we have again linearized the potential dependence of
the sheath velocity. The transition between the two regimes is
a function of collisionality ν∗, and occurs at roughly ν∗ = 30
for a flow with mach number M= 1 (see the discussion in
section 4.1.4). These loss rates are incorporated into (18)
through

Tloss =
2
3 n

1
L∥
q∥. (26)

(As an aside, dropping Myra’s qFL term for the flux-
limited regime [5] is equivalent to using Fundamenski’s free-
streaming expression [35] when the collisionality is high, as
we will see it is in these simulations.)

Harmonically averaging these loss rates through

1
q∥

=
1
q∥SL

+
1
q∥CL

, (27)

effectively means that the loss is limited to the smaller of
the two rates, with a smooth switchover controlled by the
collisionality. This ‘heuristic’ parallel closure that we use is
therefore equivalent to a linearized version of the ‘sheath-
dissipation’ closure, but which interpolates between two dif-
ferent regimes of parallel heat transport.

Of particular note is how the assumption of k∥ = 0 excludes
any drift-wave modes from the system, in contrast to the 3D
case.

3. Numerical setup

The STORM code numerically solves (1)–(5) in 3D, and
(16)–(18) in 2D. The dissipative parameters (µn, µΩ, κ⊥, and
κ∥) were kept constant in time and space, and calculated using
the classical expressions from [35], evaluated using the refer-
ence normalisation values of density and temperature (given
in table 1). These are the same values used to simulate the
MAST SOL in [3], and are similar to those used for the
full 3D MAST-U geometry STORM simulations performed
in [15]. Ion temperature is set to zero in the derivation of
the main model equations for simplicity, but is included in
table 1 because a finite value is still required for some of
the dissipative expressions from [35]. We choose a value of

Figure 1. Schematic diagram of the relationship between the
simplified 3D simulation domain and the full experimental device
geometry. The 2D simulation domain here corresponds to a plane
into the page located at the mid-plane. The basis set of vectors
(R,Z,ϕ) denote the radial, vertical and toroidal directions in the
experimental domain, but are aligned along the radial, parallel and
binormal directions in the simplified simulation domain. In reality
the simulation domain corresponds to a flux tube which is closer to
horizontal than vertical (tilted into the page), because typically
Btor > Bpol at the edge. In this paper the simulation domain only
models the region outside of the separatrix, marked by the dashed
line.

Ti,0 = 2Te,0 as a representative value observed experimentally
in the MAST SOL [36]. The resistivity η∥ was allowed to
vary, following the T−3/2 dependence that follows from the
definition

η∥ = 0.51
νei0

T3/2Ωe0
. (28)

The equations were solved on a simplified cuboid domain
(rectangular in 2D), which maps onto a schematic representa-
tion of the real SOL (figure 1). Vertically extending from tar-
get to target, the simplified domain can be interpreted as a
straightened SOL flux tube, and has periodicity only in one
direction. The pitch of the field lines at the edge means that
our periodic direction perpendicular to both the major radius
and the magnetic field in our simulations is angled relative to
the real toroidal direction in experiments, and sowill hereon be
referred to as the binormal direction instead. The domain con-
tains no magnetic shear, though this is a choice which could
be relaxed in future work with STORM.

The numerical domain for the baseline 3D simulation spans
140.625 ρs in the radial (x) direction, 4000.0 ρs in the par-
allel (y) direction, and 150.0 ρs in the binormal (z) direction
(i.e. Lx = 140.625, Ly = 4000.0 and Lz = 150 in normalized
units). The 3D domain is resolved with 240× 32× 256 grid
points, meaning that the grid cells were square in the perpen-
dicular plane. In 2D the domain covers the same (x,z) extent in
normalized units, but a larger resolution is used of 960× 1024
grid points, and (by definition) only a single grid point in the
y direction. Convergence tests were performed to assess the

4
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impact of the perpendicular grid resolution, which showed
that the grid used for 3D simulations is well resolved (see
appendix B).

The simulations are source-driven, meaning that a volumet-
ric density and energy source are present near the inner bound-
ary of the domain (see figure 1). The source-driven simula-
tions represent a SOL constantly fed with particles and power
coming from the core plasma, and were chosen over fixing
either the incoming flux or the pressure at the inner boundary
so as to most directly compare the 2D and 3D models. This
choice was made to impose as few constraints as possible on
the resultant variable and flux profiles, and separate the self-
consistently generated profiles as much as possible from the
inner boundary conditions.

The magnitude of the source terms was chosen so that the
densities and temperatures in the 2D simulation were repres-
entative of the MAST SOL in L-mode near the ‘separatrix’,
i.e. around 1.0× 10−19 m−3 and 10 eV. This represents a rel-
atively low-power L-mode shot. The sources in the 3D simu-
lations were then set such that the total particles and energy
injected per second was the same as in the 2D simulations
(i.e. S2DLS =

´
S3Ddy).

The sources (both temperature and density) are constant in
the binormal direction, but have a Gaussian profile in the radial
direction, centred upon a point located at Lx/10, and with a
radial width of Lx/120. They are therefore extremely local-
ized, and present only at one location on the inner side of the
domain. In 3D the sources also have parallel extent. A top-
hat function is used, so that the source extends from the mid-
plane half-way to the target in both directions (so LS = 0.5 L∥
in figure 1). The point in the parallel direction at which the
source ends is intended to roughly represent the position of
X-point. The baseline 3D simulation therefore represents an
experimental regime in which the main source of particles and
power is from the core, crossing over the separatrix between
the two X-points. The inner part of the domain is therefore
not considered to be physical, meaning that profiles should be
compared to one another only from the radial position of the
sources outwards.

The sources create gradients, which display growing
instabilities, which eventually non-linearly couple to produce
turbulence, which drives transport in the radial direction.
Throughout the domain particles, momentum, and energy are
lost—in 3D by fluxes through the targets at either end, and in
2D by heuristic loss terms approximating those same parallel
processes.

A statistical steady-state was required to represent a satur-
ated L-mode turbulence regime. To obtain data from this state,
each simulation was run with an initial ‘spin-up’ phase which
was then discarded, and only the following phase of statistical
steady state was used for analysis. The spin-up phase lasted
typically around 5 ms, while the saturated phase was typic-
ally of the order of several milliseconds, which corresponds to
thousands of turbulence correlation times.

A typical output of the code, which shows a snapshot of
the density fluctuations at the mid-plane of a 2D simulation, is
shown in figure 2.

Figure 2. Snapshot of the typical spatial variation of the density
during the saturated phase of a simulation using the
two-dimensional STORM model.

4. Results and discussion

4.1. Comparison between 2D and 3D

There are multiple different metrics on which we can com-
pare 2D and 3D simulations. Each of these metrics will help
us assess the suitability of the simplified 2D model for captur-
ing some aspect of the more complex 3D physics, or for pre-
dicting some physical result of interest. As a baseline we first
compare a single 3D simulation with a single 2D simulation,
set up so as to have the same sources and parallel connection
length.

4.1.1. Radial profiles. The time-averaged radial profiles
of quantities represent the balance achieved in steady-state
between perpendicular transport and parallel loss. In our
model, which has hot electrons but cold ions, the fluid vari-
ables of interest that exist in both the 2D and 3D models are
density, electron temperature, and potential.

We see in figure 3 that the density profile is well-captured
by the 2D simulation. The exponential falloff length is repro-
duced as fitting a decaying exponential to x> Lx/10 (so the
entire region to the right of the dotted line in figure 3) gives
λn = 6.5 cm for the 2D line and λn = 5.4 cm for the 3D
average line. In addition the absolute value matches that of
the parallel-averaged value of the 3D domain. However, the
choice of which 3D average we compare to matters—there is
a factor of 2 difference between the mid-plane value or the
parallel-averaged value.

The temperature is less well reproduced, being overestim-
ated at all radial positions in 2D relative to 3D (λT = 15.3 cm
for the 2D line and λT = 8.2 cm for the 3D average line).
This implies that the parallel heat loss is weaker (for the
same upstream temperature) in 2D than in 3D, as discussed
in section 4.1.4. In the SOL the sheath causes characteristic
potential fluctuations to be set by the temperature (eϕ∼ T), so
a similar difference is seen in the potential.

5



Plasma Phys. Control. Fusion 64 (2022) 095001 T E G Nicholas et al

Figure 3. Average radial profiles of density. Averages are
performed over the saturated time periods, over the binormal
direction, and in the case of the line labelled ‘3D average’, also
over the parallel domain. The radial location of the density and
temperature sources is shown by the black dotted line.

Figure 4. Average radial profiles of the standard deviation of
normalized density fluctuations away from the time-averaged mean
local density. Averages are performed over the saturated time
periods, over the binormal direction, and in the case of the line
labelled ‘3D average’, also over the parallel domain. The radial
location of the density and temperature sources is shown by the
black dotted line.

4.1.2. Statistical properties. Whilst the profiles tell us about
the overall balance of fluxes, the statistical properties of the
timeseries capture some of the dynamics of the turbulent fluc-
tuations themselves.

Figure 4 shows that the comparison of the standard devi-
ation of the fluctuations between 3D and 2D is very similar
to that of the average profiles. The standard deviation of the
parallel-average from the 3D simulations is comparable every-
where to the 2D case. The standard deviation at the X-point is
very similar to the average, while at the mid-plane it is slightly
higher, deviating further from the 2D case; the standard devi-
ation at the target is significantly smaller than for the average
and the 2D.

Figure 5. Average radial profiles of the skewness of the normalized
density fluctuations. Averages are performed over the saturated time
periods, over the binormal direction, and in the case of the line
labelled ‘3D average’, also over the parallel domain. The radial
location of the density and temperature sources is shown by the
black dotted line.

Figure 6. Average radial profiles of the kurtosis of normalized
density fluctuations. Averages are performed over the saturated
time periods, over the binormal direction, and in the case of the
line labelled ‘3D average’, also over the parallel domain. The
radial location of the density and temperature sources is shown by
the black dotted line.

Focusing on the parallel-averaged 3D fluctuations, figures 5
and 6 show that the skewness, and kurtosis are comparable
to the 2D fluctuations, out to 0.2 m. In the very far SOL
the skewness is moderately higher and kurtosis substantially
higher in 3D—indicating that the 3D simulation allows a
greater fraction of unusually high-density structures to persist
out to the very far SOL.

The correspondence of the statistics between 3D and 2D
appears to hold for the whole distribution, not just for the first
few moments—the probability distribution functions of the
fluctuations in the potential showing little difference between
2D and 3D in the SOL (figure 7).

This similarity is potentially encouraging for the purposes
of comparison: it may indicate that the dominant perpendicu-
lar dynamics is largely unchanged by the addition of parallel
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Figure 7. Probability distribution functions of the fluctuations of
the potential away from its mean value, plotted for different radial
positions. The distributions are averaged over the binormal
direction, and the statistics for the 3D case are are taken at the
mid-plane. There is no significant systematic difference in the
fluctuation distribution between the 2D and 3D simulations.

Figure 8. Power spectrum of density fluctuations at different spatial
scales, calculated as an average over the region from 0.05 to 0.1 m.
In 2D the energy cascades to smaller scales before being dissipated.

physics, and hence captured by the 2Dmodel. This would then
mean it is not important to capture the parallel modes, which
are present in 3D but not in 2D—for example the possibility
of drift-waves in the 3D simulations.

However, it is also possible that the dynamics needed to
recreate the ‘universality’ of fluctuation spectra observed both
here and in experiment are relatively common [37], and that
just because a similar distribution is formed a similar underly-
ing mechanism is not implied.

4.1.3. Power spectra. The power spectra can reveal cross-
scale energy transfer, as well as forcing and dissipation scales
(at least in cases where the scales are not very broad).

Figure 8 shows turbulent activity being greater at small
scales in 2D, indicating that dissipative mechanisms remove
power from the fluctuations at a larger scale in the 3D

Figure 9. Average radial profiles of collisionality. Whilst the 2D
simulations have ν∗ ∼ 35 everywhere, the 3D simulations are much
more collisional.

simulation than in the 2D simulation. This observation motiv-
ated the choice to use substantially higher resolution in the 2D
simulations, to verify that the cascade region was not distor-
ted by the dissipation region. Nevertheless, appendix B shows
that the choice of resolution in 3D does not significantly affect
the overall results, implying that the location of the diffusion
scale plays only a minor role. The temporal Fourier spectra
(not shown) exhibit a similar trend: in 2D the activity extends
down to smaller temporal scales.

It is not clear what causes this effect, or whether it is
physically relevant. As Garcia et al pointed out [18], a Four-
ier decomposition of the perpendicular scales in the vorticity
equation (equation (30) Garcia et al [18]) shows that the form
of the parallel loss term affects the scales that are preferen-
tially damped. Another potential explanation is the difference
in the small-scale instabilities present in each case, as the 3D
case supports drift-waves whilst the 2D case does not.

4.1.4. Parallel heat fluxes. The biggest systematic difference
between the radial profiles in 2D and 3D is in the temperature
profiles, so we now look at the cause of these differences in
the form of the parallel heat fluxes.

The collisionality is defined as the ratio of parallel length
scale (in this case connection length) to the particle mean free
path

ν∗=
L∥
λmfp

, (29)

and can be estimated through equation (4.105) from
Stangeby’s textbook [34]

ν∗ = 1.0× 10−16 nL∥
T2

, (30)

where n is in m−3, L∥ in m and T in eV. Figure 9 shows that
in 2D the collisionality is high everywhere, in the sense it is
comparable to or higher than the transition crossover point of
ν∗ ∼ 30. This is due to the low temperature. The 2D parallel
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Figure 10. Average radial profiles of parallel heat flux in 2D. The
harmonic averaging procedure in (27) means the total parallel heat
flux in 2D, q∥, is limited by the smaller value. Here qCL is by
far the smaller value, meaning this 2D simulation is in the
conduction-limited regime. The radial location of the density and
temperature sources is shown by the black dotted line.

Figure 11. Average radial profiles of parallel heat flux in 3D,
through a single target. The parallel transport is in a convective
regime.

heat transfer is therefore very much in the conduction-limited
regime (figure 10).

As an aside, because the collisionality is high, we do not
need the flux-limiting term in 2D that is included by Myra [5]
in the harmonic average (27) and by Fundamenski et al [35]
in an adjusted definition of parallel thermal conductivity.

In the 3D models the average parallel heat flux is evaluated
near the target in figure 11. The peak loss at a single target
is ~40% larger than in 2D, which indicates the difference in
radial temperature profiles in figure 12 is due to increased par-
allel heat transport at the same temperature rather than due to
decreased radial transport. Decomposing the parallel transport
into conductive and convective terms, again the conductive
loss is smaller, which in 3D means the total loss is dominated
by the convection. Therefore, whilst in 2D the conduction is
the limiting quantity, in 3D we have found that the convection
is more significant instead.

Figure 12. Average radial profiles of electron temperature.
Averages are performed over the saturated time periods, over the
binormal direction, and in the case of the line labelled ‘3D average’,
also over the parallel domain. The radial location of the density and
temperature sources is shown by the black dotted line.

The condition for the dominance of conduction over con-
vection (and hence also for the validity of the standard two-
point model [34]) can be estimated as

κ∥
Tup
L∥

≫ nTu∥. (31)

Rewriting in terms of the parallel electron mean free path λmfp,
the Mach number M, the sounds speed cs, and the electron
thermal velocity vth,e this becomes

vth,e
λmfp

L∥
≫Mcs. (32)

Therefore in conjunction with the requirement to be in the col-
lisional fluid limit (ν∗ ≫ 1), the regime of validity of the two-
point model (which assumes conduction dominates over con-
vection) is a function of the local collisionality ν∗ through

1 ≪ ν∗ ≪M−1
√
mi

me
. (33)

In (33) the left-hand inequality is necessary to be in the fluid
limit, and the right-hand inequality expresses convection being
smaller than conduction.

In 3D, despite having the same total sources as in 2D, the
lower temperature profile which emerges leads to a very high
value of collisionality, shown in figure 9. Figure 9 shows that
ν∗ > 100 everywhere in 3D, completely violating the right-
hand inequality in (33). This explains the presence of signific-
ant convective as well as conductive heat loss in the 3D simu-
lations.

Conventionally the dependence on Mach number M is
removed from (33), because at the target the Bohm conditions
normally imply M= 1. Howeverin this case, the supersonic
flow near the target allows M∼ 2 (see section 4.2), making
the value of collisionality where convection becomes compar-
able to conduction a factor of two lower again than it would
be otherwise.
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Figure 13. Parallel profiles of density for 3D simulations with
differing divertor leg lengths, averaged over time at radial position
of 6 cm (close to the particle source). The length of the leg does not
significantly affect the density at the mid-plane, or the overall
profile.

Overall this means that despite choosing sources to be
consistent between simulations, and values representative of
the MAST SOL, the results are not in the regime of valid-
ity usually assumed: in 2D the conduction dominates but the
conventional assumption of negligible convection is not well-
justified, and in 3D convection dominates significantly.

4.2. Varying divertor leg length

The parallel connection length is a key parameter in SOL phys-
ics, which sets the size of the 2D parallel loss terms, and sets
the domain size in 3D. However it is not always obvious what
numerical value to use for the parallel connection length in
2D—some models use the physical length of the field-line
from mid-plane to target, whilst others instead use a value
intended to represent the characteristic parallel length of field-
aligned structures [38]. We therefore treat this as a sensitivity
parameter, to assess whether the agreement between 2D and
3D is robust to assumptions about parallel connection length.

In 3D we compare three simulations with the same sources
but different length divertor legs, the intention being to determ-
ine which lengths agree or disagree with 2D simulations with
the same connection length. The length of the leg beyond
the X-point is alternatively doubled and halved relative to the
baseline simulation, creating three domains with a respective
L∥/LS ratio of {3,2,1.5}, where the size of the source region
LS is fixed.

The average radial profiles at the mid-plane are affected:
figures 13–16 show that the mid-plane density and tem-
perature values are similar at the position of the sources,
but separated in the far SOL. Decay lengths of λn =
{4.3,5.4,7.6} cm and λT = {6.8,8.2,11.2} cm are measured
for L∥ = {1.13,2.25,4.50}m respectively. This dependence is
weaker than linear with leg length, and a change of a factor
of 2 is not sufficient to bring the temperature profile to match
that observed in 2D (which had λT = 15.3 cm). This implies
the profiles have limited sensitivity to the leg length in 3D, so

Figure 14. Parallel profiles of density for 3D simulations with
differing divertor leg lengths, averaged over time at radial position of
15 cm (in the far SOL). The length of the leg does not significantly
affect the overall profile, but the densities are separated due to the
different overall radial decay lengths. Therefore the shorter leg is
allowing higher particle flux into the target and out of the domain.

Figure 15. Parallel profiles of temperature for 3D simulations with
differing divertor leg lengths, averaged over time at radial position
of 6 cm (close to the energy source). Whilst the temperature is
peaked at mid-plane, most of the temperature loss occurs in the last
1 m before the target, regardless of leg length.

the agreement with the 2D model is relatively robust in that
sense.

Looking specifically at the parallel variation not present
in 2D, figure 13 also shows that the parallel density profile
at the mid-plane is not significantly affected by changing the
divertor leg length, but figure 14 shows that the densities in
the far SOL are separated due to a slight difference in the dif-
ferent overall radial decay lengths. Therefore, the shorter leg
allows a slightly higher particle flux into the target and out of
the domain. The continued drop of density towards the target
within the leg is due to the lack of localised divertor sources
or recycling in these simulations.

Figure 15 shows that while the temperature is peaked at
mid-plane, most of the temperature loss occurs in the last
1 m before the target, regardless of leg length. In the far SOL
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Figure 16. Parallel profiles of temperature for 3D simulations with
differing divertor leg lengths, averaged over time at radial position
of 15 cm (in the far SOL). The temperature is mostly constant along
parallel direction (figure 16)—the drop occurs in a small region in
front of the target.

Figure 17. Parallel profiles of mach number for 3D simulations with
differing divertor leg lengths, averaged over time at radial position
of 6 cm (close to the particle source). The length of the leg does not
significantly affect the overall profile. A transition to supersonic
flow can be seen in all simulations, which occurs in the divertor leg
beyond the ‘X-point’ (marked by the vertical dotted lines).

the temperature is mostly constant along the parallel direction
(figure 16)—the drop still occurs in a small region in front of
the target. Like figure 14, the profiles have separated showing
a difference in overall parallel loss rate.

Figures 17 and 18 show that the parallel velocity reaches
sonic speeds before the target in all cases. Standard nozzle the-
ory derives the parallel gradient of the plasma Mach number
to be (as shown in section (1.8.2.3) of [34])

dM
ds∥

=
Sn
ncs

(1+M2)

(1−M2)
, (34)

where here Sn is an effective particle sink, which is in gen-
eral non-zero due to cross-field transport between flux tubes
(Sn = 0 anywhere past the ‘X-point’ by assumption in our geo-
metric setup, but this Sn is the imposed particle source in 3D,
not the effective net source in a 1D model of this system).

Figure 18. Parallel profiles of mach number for 3D simulations
with differing divertor leg lengths, averaged over time at radial
position of 15 cm (in the far SOL). The length of the leg does not
significantly affect the overall profile. A transition to supersonic
flow can be seen in all simulations, which occurs in the divertor leg
beyond the ‘X-point’.

The fact that M= 1 does not correspond to a singularity
in the Mach gradient in our results implies that we must also
have Sn = 0 at the same location. (The model used to derive
(34) is isothermal, unlike our model, but figure 15 shows that
the temperature only drops by ~25% from the mid-plane to the
sonic region.)

Supersonic flow is expected in the system being stud-
ied here. The parallel conduction of heat causes a temperat-
ure drop along the parallel direction, which lowers the local
sound speed. Meanwhile, the density also drops away from
the mid-plane density source. Therefore, an increasingly rar-
efied and cold plasma accelerates away from the mid-plane.
Thismodel includes nomomentum exchange terms to stop this
flow from accelerating to supersonic speeds. That the inclu-
sion of momentum exchange terms is necessary to avoid cold
supersonic flow is expected given that the plasma fluid has no
way to exchange parallel momentum because parallel viscos-
ity is neglected, there are no neutral collisions, and no charge
exchange. This been noted before in 1D modelling of detach-
ment onset, such as with SD1D [39].

Another valid interpretation of this phenomenon is that the
effective Sn becomes negative, so that even withM > 1 past the
X-point the plasma continues to accelerate supersonically. As
Ghendrih et al [40] describe, ‘when this particle sink prevails
from the X-point region towards the target plate, one finds that
transitions to supersonic flows will occur, the bifurcation point
being in the vicinity of the X-point’.

This phenomenon then takes the dynamics further into a
high collisionality regime, by increasing M in (33), making
the assumption that parallel thermal transport is only through
conduction increasingly invalid.

This indicates a clear avenue for future work: a similar
domain setup but with a density source in the divertor should
prevent supersonic parallel flows, whilst imitating a high-
recycling regime. It would therefore be closer to an experi-
mental reactor-relevant regime, and also include more of the
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Figure 19. Alternately doubling or halving the magnitude of the
parallel loss terms (nloss, Ωloss, Tloss in (16)–(18)) scaled the density
profiles proportionally everywhere as expected (not shown), but
changed the decay length of the temperature profiles without
altering their maximum value. Therefore scaling the loss terms by a
overall constant factor cannot create agreement with the 3D profiles
in both density and temperature.

key neutral effects identified as being important in 1D studies
(such as [39]). The challenge of this model experiment would
be in either (1) deciding what shape & size the sources should
be without introducing too many arbitrary assumptions, or (2)
choosing the simplest possible neutrals model that can satis-
factorily model the recycling in the divertor. A starting point
for (1) might use a divertor source with a radial exponential
decay length set to the typical mean-free path of ions before
neutralisation (similar to the approach used by Walkden et al
in their divertor simulations [25]).

4.3. Sensitivity to parameters in 2D

We also tested the sensitivity of the 2D results with a simple
parameter scan, alternately doubling or halving (a) the mag-
nitude of all the parallel loss terms, (b) the magnitude of
the particle source term, and (c) the magnitude of the energy
source term. The aim was to assess whether the effect on the
profiles was linear with changing parameters, and to see if a
regime of closer agreement with the 3D models existed. For
each change ((a),(b), or (c)), we looked at the effect on the
time-averaged radial density and temperature profiles, for both
the absolute value and the shape (by normalising to the max-
imum value). Whilst we will now describe the results for all
these cases, we will only show the profiles for the cases that
displayed some form of non-trivial or unexpected result. Our
choice to vary the size of the overall loss terms here is similar
to varying the L∥ parameter directly—we verified this equi-
valence through additional simulations (not shown here for
brevity).

Doubling or halving the magnitude of all parallel loss terms
in 2D decreases or increases the average density profiles at
all radial locations, as expected. It also changes the temper-
ature profiles, but in a way which leaves the maximum value
fixed, whilst altering the decay lengths (figure 19). Therefore

Figure 20. Altering the density source Sn by a factor of 2 scaled the
density profiles linearly at all locations (not shown), but also altered
the shape of the normalised temperature profiles relative to their
maximum value.

the magnitude of the loss terms cannot be used on its own to
tune the 2D simulations to match the 3D results in both dens-
ity and temperature because increasing the losses (equivalent
to a shorter L∥) will depress the density profiles as well as the
temperature decay lengths, and the temperature profiles do not
change their absolute value so will not match either.

Altering the magnitude of the density source terms has a
larger effect on the density profiles than changing the size of
the loss terms does, with the absolute height of the profiles
varying almost linearly with the density sources. When nor-
malised, the profiles are coincident, so there is no change the
the decay length, as expected. The temperature profile scales
inversely with the size of the density source, which is expected
because the same energy has been distributed amongst twice
asmany particles in the same time period. However, increasing
the density sources also broadens the normalised temperature
profile, shown in figure 20.

Scaling the energy source terms causes the absolute value
of the temperature profile to vary linearly as expected, but
changes the normalised shape of the profiles (figure 21), with
smaller energy input creating broader profiles. Therefore, as
the 2D temperature profile is broader than the 3D one, and
scaling the energy sources does not change the shape, the dis-
crepancy between the 2D and 3D temperature profiles cannot
be resolved by simply scaling the energy sources in 2D. The
density profile scales inversely with energy source (figure 22),
but with no change to the normalised shape.

Since decreasing the energy source brings the absolute tem-
perature closer to the 3D profile but makes the 2D density
increase, we also tried decreasing both the density and the
energy source terms (again by a factor of 2). We found that
whilst the temperature profiles now matched 3D, the density
profile was everywhere lower.

We conclude that over a range of a factor of 4 changing the
magnitude of the loss and source terms in the 2D simulation is
not sufficient to easily recreate the average 3D profiles of both
density and temperature simultaneously.
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Figure 21. Scaling the energy source SE by a factor of 2 scales the
absolute value of the temperature profiles linearly as expected
(not shown), but also has the effect of broadening the temperature
profiles.

Figure 22. Scaling the energy source SE by a factor of 2 scales the
absolute value of the density profiles inversely.

5. Conclusions

There is extensive literature on two-dimensional simulations
of SOL drift-plane turbulence, including experimental valid-
ation. We have taken a first-principles approach to evaluating
the approximations used to truncate the models to 2D, com-
paring the 2D case with 3D simulations set up so as to form
the closest possible analogues of the 2D models.

However it must be said that the situation for whichwe have
chosen to compare the 2D and 3D simulations is one where
we probably have particularly large hopes to find reasonable
agreement: the domain mimics the outer SOL of a double-
null plasma, so there is no good-curvature-side to include in
the 3D model; there are no neutrals (which might possibly
have a strong poloidal variation); and there is also no magnetic
shear assumed (so there is no poloidally localized, strong shear
region near an X-point).

Nevertheless, the 2D model successfully replicates the
mean density profile of the 3D models with matched sources

and no parameter tuning. The 2D model also reproduces most
of the basic trends in the fluctuation statistics of the 3D model,
and the results are robust to changing the length of the divertor
leg in 3D or the source and sink sizes in 2D.

One systematic difference was a broadening of the mean
temperature profile in 2D compared to in 3D. The reason
for this difference is an interplay of issues caused by two
reasonable-seeming assumptions in the model setup. In par-
ticular, in very high collisionality conditions, the assumptions
used to close 2D models are not valid, because high enough
collisionality suppresses thermal conduction so that convec-
tion becomes important. Further, the source setup used in the
parallel direction for the 3D simulations causes supersonic
flows beyond the X-point, which make the thermal convection
compete with conduction at lower collisionality than would
otherwise be the case. Since this highly supersonic flow is not
typically observed in experiments, we suggest that future work
always include particle sources in the divertor leg.

Overall whilst the 2Dmodel is useful in some limited cases,
our results indicate that we perhaps should instead attempt to
deal with the 3D problem in situations where we need higher-
order fluctuation statistics (e.g. skewness and kurtosis), where
our system has low convection, or our system does not con-
form to all of the favourable assumptions made here (e.g. a
double-null with no magnetic shear).

The good qualitative agreement between these two types
of reduced models provides a basis for interpreting 2D and 3D
models relative to one another, our results also motivate future
work. Our results open up avenues for future work moving
the 3D models step by step towards more detailed representa-
tions of tokamak divertors, in particular using a larger power
source (to obtain a higher temperature and hence lower col-
lisionality) and a divertor density source (to keep the parallel
flows subsonic), would provide a more consistently analogous
system.

Other future work could attempt to identify specific
instabilities causing the observed differences, for example by
using sources extended from target to target to examine the
effect of parallel velocity gradient instabilities. Another sug-
gestion would be to try to identify instabilities present in the
3D simulations but not 2D that could be causing the different
turbulent spectra, for example using the method in Walkden
et al [25], where by artificially removing some terms from
the equations, certain instabilities can be eliminated from the
system.
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Appendix A. Boundary conditions

At the target plates the first-principles Bohm boundary con-
ditions set U, V and q∥ through (13)–(15). For the other vari-
ables (i.e. ϕ, n, T, Ω), free boundary conditions are used at the
targets.

Unfortunately there is no first-principles theory describing
how a fluid plasma model interacts with the vessel wall at the
radial boundaries available in the literature, and we also wish
to represent the core-SOL interaction with as few assumptions
as possible. For the fluid variables n, T, Ω, U and V Neumann
boundary conditions are used in order to allow the variables to
‘float’ and hence be determined by the balance of radial turbu-
lent transport and parallel loss.

However, the electric potential must still be constrained in
order to satisfy Laplace’s equation (6), so we employ the same
ad hoc approach used in [15]. We employ ‘evolving boundary
conditions’ in which the potential everywhere on the boundary
is set to the mean value of the potential on that boundary aver-
aged over the preceding time period τ . Formally this means
we set ϕ on the inner and outer radial boundaries xi and xo
through

ϕ(x= xi) = ⟨ϕ(x= xi+∆xi/2)⟩z,t∈[( j−1)τ,jτ ]

ϕ(x= x0) = ⟨ϕ(x= x0 −∆xo/2)⟩z,t∈[( j−1)τ,jτ ]

(A1)

for all t ∈ [jτ,( j+ 1)τ ], where j ∈ Z+, and ⟨−⟩z,t∈[( j−1)τ,jτ ]

denotes a binormal- and time-average over the time interval
[( j− 1)τ, jτ ]. τ is an input parameter which sets the length of
preceding time over which the ϕ values are averaged, and all
the simulations presented here used τ = 50/Ωi,0. In 2D the
same conditions are used at the radial boundaries, and the tar-
gets are treated through the closure approximation described in
section 2.2. This approach allows us to constrain fluctuations
in the potential at the boundaries without fixing it at any spe-
cific arbitrary value. In practice the potential at the boundaries
would display an initial transient phase, before converging on
a specific value that depended on the particular simulation. All
analysis was only performed on data obtained after the poten-
tial had converged. Nevertheless, the impact of this choice of
boundary conditions upon the simulations was mitigated fur-
ther by choosing a domain with large radial extent, and by
excluding the regions near the boundary during parts of the
analysis.

Appendix B. Scan in grid resolution

To test the impact of the choice of grid resolution on the 3D
simulations used for results presented in sections 4.1 and 4.2,
additional 3D simulations with different perpendicular grid
resolutions were run.

The baseline simulation used for the main results had
240× 32× 256 grid points along (x,y,z), which was supple-
mented by a lower resolution simulation with 120× 32× 128
grid points, and a higher resolution one with 480× 32× 512
grid points.

Figure 23. Averaged profiles of density for 3D simulations with
three different perpendicular resolutions, showing negligible
changes.

Figure 24. Power spectra of density fluctuations compared across
three 3D simulations with different perpendicular resolutions. There
is some difference for the lower resolutions, but this reduces to only
a small difference when comparing the medium resolution case
(the one used for the main results) to the high resolution one.

Figure 23 shows that the change in resolution has negligible
effect on the average density profile (a similar lack of variation
is seen in all other averaged variables).

There is some difference in the power spectra of the dens-
ity fluctuations (figure 24): the lower resolution simulations
show an small ‘arching’ of the power spectrum at smaller spa-
tial scales, but the difference between the medium resolution
simulation used and the higher resolution one is small.
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