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Introduction

Ballooning modes are pressure driven instabilities that occur in the unfavourable curvature
region of toroidal magnetic confinement fusion devices [1]. The ballooning instability can lead
to either a soft or hard limit. A soft limit occurs when, say, the pressure profile is held at a
critical limit. If the limit is exceeded due to a fluctuation, then the instability is instantly
triggered, and the transport caused by the instability brings the profile back to the critical
gradient. This process is likely to produce the critical pressure gradient in the pedestal region
of H-mode for example. Ballooning modes can also cause hard limits, which are an explosive
loss of a significant amount of energy. Hard limits take the profiles very much below the
stability limit. Examples of such hard limits are certain types of disruptions [2], possibly the
core density collapse in the LHD stellarator [3] and edge localised modes (ELMs) [4]. An
improved understanding of what causes these hard limits and how to control them may well
improve the economics of fusion energy. We will discuss our theory of nonlinear flux tubes in
a general axisymmetric equilibrium and results from a large aspect ratio "s-a” model of a
tokamak (where s is the magnetic shear and a is the normalized pressure gradient), where we

saw metastable flux tubes [5]. We will then show first results using a numerically calculated

equilibrium from VMEC. Finally, we will give our
conclusions.

Flux tubes in a general axisymmetric equilibrium
We consider the dynamics of an isolated flux tube

with an ideal MHD model. The derivation here

follows Ham et al. [5]. We will assume that the flux

tube moves more slowly than the sound speed, | Figure 1: Elliptical (orange) flux tube
sliding along (blue) surface S parting
because we are interested in the saturated states near | surrounding (black) field lines. The tube’s
. . . . displacement is larger on the outboard side
marginal stability. We assume that there is a magnetic | of the flux surfaces — the tube balloons.
The magnetic shear (s = rq'/q) causes the
twist and narrowing of the tube on the

outside which we will denote Bow. The flux tube is | inside

field inside the flux tube Bin and the ambient field
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field aligned. The flux tube is restricted to move on a surface that is parallel to the ambient
magnetic field lines at each location. This surface twists with radius as the magnetic field is
sheared, see figure 1. We call this surface S and note that we can write the magnetic field using
S as a Clebsch potential

B=VyxVS with S=¢—q(r)(6—6,) (1)

The flux tube is assumed to have an elliptic cross section. This shape minimises the field line

bending of the ambient magnetic field but it is also
indicated by the weak nonlinear theory [7]. We
emphasize that the flux tube shape does not come out
of the theory presented here; it is a justified assumption.
The flux tube will be assumed to have dimensions 6

and 62 where 82 >> 31, see figure 2.

The flux tube will be assumed to have a trajectory

r(0,r0,t) on a surface, S=constant. The displacement | Figure 2: The flux tube is elliptical in

. L shape with 6, in the binormal direction,
decays along the field line to the original flux surface | pyuch smaller that 5, in the radial

direction.

i.e. r(|8]—0o0 ,ro,t) — r0 where 6 measures the distance

along the field line.

We use the ideal MHD force, F =] X B — Vp, to calculate the forces on the flux tube,
BZ

1 1
F=—-——V|—=—+pn l+—B~VB (2)
Ho [2 oP Ho

We resolve the forces in the V'S direction and in the direction along S (the force is formally

large in the VS direction and must cancel) which gives the following formulae

2 2
£ 1
t
HoPin + Zm = UoPout T ;u and F, = m [Bin *VBin — By - vBO] Cal (3a,b)
0

where e, = BLVS X By. The perpendicular force is calculated from equations (3). The rest is
0

geometry. If we linearize this equation we get the ballooning equation of Connor [1].
Nonlinear flux tubes in large aspect ratio toroidal geometry

We have evaluated the perpendicular force equation for the 's-o’ large aspect ratio toroidal
expansion in recent publications [5,6]. The key result from this work is that there are flux tubes
that are linearly stable, and in fact the whole equilibrium can be linearly stable, yet there are
flux tubes that have energetically favourable saturated states that have finite ballooned
displacements. These displacements can be as large as the transport barrier width within the s-

o’ model. Investigations from the “s-a’ model showed that flux tubes could be categorised into
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one of four states. The flux tube can be stable and have no
saturated states available. Alternatively, it can be linearly stable
but have either a higher or lower energy displaced state available.
Finally, the flux tube can be unstable and have two displaced
states available (one moving in and one out).

Nonlinear flux tubes in realistic toroidal geometry

We can also evaluate the required geometry from a numerical
equilibrium, we use VMEC here [8]. This allows us to calculate
the states in realistic geometry. The equilibrium from VMEC is
translated to Boozer coordinates. We can then derive the
elements of the metric tensor which allows us to calculate the

required quantities for the nonlinear ballooning equation. We

35 4 45 5

Figure 3: Tokamak geometry
showing the saturated
fluxtube, in green. The blue
line denote the flux surfaces
in the plasma

have successfully tested the results from our numerical calculation against the “s-o’ model.

These first results are restricted to up-down symmetric cases for computational convenience,

this will be relaxed in future work.

The flux tube saturated states are calculated here by assuming a viscous drag will act in

opposition to the MHD perpendicular force. This allows the saturated flux tubes to be found by

allowing the system to saturate. The flux tube is given an initial perturbation and the simulations

run until the flux tubes reach a saturated state. We can demonstrate the calculation in a realistic

tokamak geometry by looking at an aspect ratio 4 shaped cross section tokamak, cross section

and displaced flux tube shown in figure 3. Figure 4 shows the evolution of a perturbed flux tube

to its saturated state for the equilibrium shown in figure 3. This case is for an unstable flux tube.

The results from the numerical equilibrium are in qualitative agreement with the ‘s-a’ model.

In particular the “s-a’ geometry showed that the metastable fluxtubes were more likely to occur

at low shear. We have calculated a VMEC
equilibrium which has linearly stable flux tubes
but these flux tubes also have nonlinearly
saturated states. This shows that metastability is

not just an artefact of the 's-a’ geometry but that

we must expect to see it in real tokamak s

plasmas. Figure 4 The evolution pf a flux t}lbf: With time
under viscous drag. Horizontal axis is distance
The evolution of the flux tube to a displaced along the field line. Vertical axis is the minor
radius. The displacement is localized around the
saturated state is unlikely to be the end point of | outboard midplane. The unstable flux

displacement saturates.

the evolution of the flux tube. We would expect
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that other - non-ideal — processes will occur. There will be an angle between the magnetic field
inside the flux tube and the ambient field around it. This will produce a current sheet around
the flux tube and the magnitude of this current sheet will be proportional to the angle between
the field lines. We may well expect magnetic reconnection to occur where this current sheet is
at its greatest. We can calculate the angle using cos(8) = (Bin - Bout )/(|Binl|Bout |).- The
angle at which this is greatest is around 75° for the flux tube in figure 4. This angle may well
reduce for higher magnetic shear or increased shaping.

Conclusions and future work

We have demonstrated that we can calculate nonlinear ballooning filaments, not only in a large
aspect ratio analytic geometry, but also in realistic up-down symmetric tokamak geometry. (We
expect to find them in up-down asymmetric plasmas in future work.) We have also shown that
we can find metastable flux tubes in these realistic geometries. This gives us cause to believe
that these states will exist in tokamak plasmas. We will examine equilibria reconstructed from
experimental data in future work. The region of low magnetic shear, due to the bootstrap
current, and high-pressure gradient, which we see in the pedestal region of H-mode tokamak
plasmas, must be an important area for future investigation.

We have discussed the possible magnetic reconnection due to the current sheet that would
surround the flux tube however other non-ideal processes may occur and we will investigate

these in future work.
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