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Introduction 

Ballooning modes are pressure driven instabilities that occur in the unfavourable curvature 

region of toroidal magnetic confinement fusion devices [1]. The ballooning instability can lead 

to either a soft or hard limit. A soft limit occurs when, say, the pressure profile is held at a 

critical limit. If the limit is exceeded due to a fluctuation, then the instability is instantly 

triggered, and the transport caused by the instability brings the profile back to the critical 

gradient. This process is likely to produce the critical pressure gradient in the pedestal region 

of H-mode for example. Ballooning modes can also cause hard limits, which are an explosive 

loss of a significant amount of energy. Hard limits take the profiles very much below the 

stability limit. Examples of such hard limits are certain types of disruptions [2], possibly the 

core density collapse in the LHD stellarator [3] and edge localised modes (ELMs) [4]. An 

improved understanding of what causes these hard limits and how to control them may well 

improve the economics of fusion energy. We will discuss our theory of nonlinear flux tubes in 

a general axisymmetric equilibrium and results from a large aspect ratio `s-α’ model of a 

tokamak (where s is the magnetic shear and α is the normalized pressure gradient), where we 

saw metastable flux tubes [5]. We will then show first results using a numerically calculated 

equilibrium from VMEC. Finally, we will give our 

conclusions.    

Flux tubes in a general axisymmetric equilibrium 

We consider the dynamics of an isolated flux tube 

with an ideal MHD model. The derivation here 

follows Ham et al. [5]. We will assume that the flux 

tube moves more slowly than the sound speed, 

because we are interested in the saturated states near 

marginal stability. We assume that there is a magnetic 

field inside the flux tube Bin and the ambient field 

outside which we will denote Bout. The flux tube is 

 
Figure 1: Elliptical (orange) flux tube 

sliding along (blue) surface S parting 

surrounding (black) field lines. The tube’s 

displacement is larger on the outboard side 

of the flux surfaces – the tube balloons. 

The magnetic shear (s = rq′/q) causes the 

twist and narrowing of the tube on the 

inside. 
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field aligned. The flux tube is restricted to move on a surface that is parallel to the ambient 

magnetic field lines at each location. This surface twists with radius as the magnetic field is 

sheared, see figure 1. We call this surface S and note that we can write the magnetic field using 

S as a Clebsch potential  

B = ∇ψ × ∇S with S = ϕ − q(r)(θ − θ0)  (1) 

The flux tube is assumed to have an elliptic cross section. This shape minimises the field line 

bending of the ambient magnetic field but it is also 

indicated by the weak nonlinear theory [7]. We 

emphasize that the flux tube shape does not come out 

of the theory presented here; it is a justified assumption. 

The flux tube will be assumed to have dimensions δ1 

and δ2 where δ2 >> δ1 , see figure 2. 

The flux tube will be assumed to have a trajectory 

r(θ,r0,t) on a surface, S=constant. The displacement 

decays along the field line to the original flux surface 

i.e. r(|θ|→∞ ,r0,t) → r0 where θ measures the distance 

along the field line. 

We use the ideal MHD force, F = J × B − ∇p , to calculate the forces on the flux tube, 

F = −
1

μ0
∇ [

B2

2
+ μ0p] +

1

μ0
B ⋅ ∇B  (2) 

We resolve the forces in the S direction and in the direction along S (the force is formally 

large in the S direction and must cancel) which gives the following formulae 

μ0pin +
𝐵𝑖𝑛

2

2
= μ0pout +

𝐵𝑜𝑢𝑡
2

2
   and   F⊥ =

1

μ0

[𝐵𝑖𝑛 ⋅ ∇𝐵𝑖𝑛 − 𝐵0 ⋅ ∇𝐵0] ⋅ 𝑒⊥  (3𝑎, 𝑏) 

where e⊥ =
1

𝐵0
∇𝑆 × 𝐵0. The perpendicular force is calculated from equations (3). The rest is 

geometry. If we linearize this equation we get the ballooning equation of Connor [1].  

Nonlinear flux tubes in large aspect ratio toroidal geometry 

We have evaluated the perpendicular force equation for the `s-α’ large aspect ratio toroidal 

expansion in recent publications [5,6]. The key result from this work is that there are flux tubes 

that are linearly stable, and in fact the whole equilibrium can be linearly stable, yet there are 

flux tubes that have energetically favourable saturated states that have finite ballooned 

displacements. These displacements can be as large as the transport barrier width within the `s-

α’ model. Investigations from the `s-α’ model showed that flux tubes could be categorised into 

 
Figure 2: The flux tube is elliptical in 

shape with δ1, in the binormal direction, 

much smaller that δ2, in the radial 

direction. 
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one of four states. The flux tube can be stable and have no 

saturated states available. Alternatively, it can be linearly stable 

but have either a higher or lower energy displaced state available. 

Finally, the flux tube can be unstable and have two displaced 

states available (one moving in and one out). 

Nonlinear flux tubes in realistic toroidal geometry 

We can also evaluate the required geometry from a numerical 

equilibrium, we use VMEC here [8]. This allows us to calculate 

the states in realistic geometry. The equilibrium from VMEC is 

translated to Boozer coordinates. We can then derive the 

elements of the metric tensor which allows us to calculate the 

required quantities for the nonlinear ballooning equation. We 

have successfully tested the results from our numerical calculation against the `s-α’ model. 

These first results are restricted to up-down symmetric cases for computational convenience, 

this will be relaxed in future work.  

The flux tube saturated states are calculated here by assuming a viscous drag will act in 

opposition to the MHD perpendicular force. This allows the saturated flux tubes to be found by 

allowing the system to saturate. The flux tube is given an initial perturbation and the simulations 

run until the flux tubes reach a saturated state. We can demonstrate the calculation in a realistic 

tokamak geometry by looking at an aspect ratio 4 shaped cross section tokamak, cross section 

and displaced flux tube shown in figure 3. Figure 4 shows the evolution of a perturbed flux tube 

to its saturated state for the equilibrium shown in figure 3. This case is for an unstable flux tube.  

The results from the numerical equilibrium are in qualitative agreement with the ‘s-α’ model. 

In particular the `s-α’ geometry showed that the metastable fluxtubes were more likely to occur 

at low shear. We have calculated a VMEC 

equilibrium which has linearly stable flux tubes 

but these flux tubes also have nonlinearly 

saturated states. This shows that metastability is 

not just an artefact of the ̀ s-α’ geometry but that 

we must expect to see it in real tokamak 

plasmas. 

The evolution of the flux tube to a displaced 

saturated state is unlikely to be the end point of 

the evolution of the flux tube. We would expect 

 
Figure 4: The evolution of a flux tube with time 

under viscous drag. Horizontal axis is distance 

along the field line. Vertical axis is the minor 

radius. The displacement is localized around the 

outboard midplane. The unstable flux 

displacement saturates. 

 
Figure 3: Tokamak geometry 

showing the saturated 

fluxtube, in green. The blue 

line denote the flux surfaces 

in the plasma 
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that other - non-ideal – processes will occur. There will be an angle between the magnetic field 

inside the flux tube and the ambient field around it. This will produce a current sheet around 

the flux tube and the magnitude of this current sheet will be proportional to the angle between 

the field lines. We may well expect magnetic reconnection to occur where this current sheet is 

at its greatest.  We can calculate the angle using cos(θ)  =  (𝐵𝑖𝑛 ⋅ 𝐵𝑜𝑢𝑡 )/(|𝐵𝑖𝑛||𝐵𝑜𝑢𝑡 |). The 

angle at which this is greatest is around 75˚ for the flux tube in figure 4. This angle may well 

reduce for higher magnetic shear or increased shaping.  

Conclusions and future work 

We have demonstrated that we can calculate nonlinear ballooning filaments, not only in a large 

aspect ratio analytic geometry, but also in realistic up-down symmetric tokamak geometry. (We 

expect to find them in up-down asymmetric plasmas in future work.) We have also shown that 

we can find metastable flux tubes in these realistic geometries. This gives us cause to believe 

that these states will exist in tokamak plasmas. We will examine equilibria reconstructed from 

experimental data in future work. The region of low magnetic shear, due to the bootstrap 

current, and high-pressure gradient, which we see in the pedestal region of H-mode tokamak 

plasmas, must be an important area for future investigation.   

We have discussed the possible magnetic reconnection due to the current sheet that would 

surround the flux tube however other non-ideal processes may occur and we will investigate 

these in future work.  
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