
J. Plasma Phys. (2020), vol. 86, 905860203 c© Cambridge University Press 2020
doi:10.1017/S0022377820000136

1

On energy confinement following the onset of
‘stiff’ transport

J. W. Connor 1,2,†, R. J. Hastie1 and K. Richards1,3

1CCFE, Culham Science Centre, Abingdon, Oxon OX 14 3DB, UK
2Department of Physics, Imperial College of Science and Technology and Medicine,

London SW7 2BZ, UK
3Department of Physics and Astronomy, University College London, Gower Street,

London WC1E 6BT, UK

(Received 27 November 2019; revised 11 February 2020; accepted 12 February 2020)

The dependence of confinement on input power for a tokamak plasma with regions
having a stiff temperature profile is explored. The resilience of the confinement of
the core energy to increasing power loss by core radiation from impurities in such
situations, as it is anticipated will be required in a demonstration fusion reactor
(DEMO) design, is examined.
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1. Introduction

With increasing power input the temperature profiles in a tokamak plasma may
well reach the threshold for the onset of ion or electron temperature gradient
instabilities, predicted to lead to the sudden onset of a high level of energy transport.
This essentially limits the gradient, a situation known as ‘stiff’ transport (Suttrop
et al. 1997; Dimits et al. 2000); i.e. the energy content only grows slowly, with
diminishing returns from further increases in the input power. Indeed, modelling of
energy confinement for the International Tokamak Experimental Reactor (ITER) being
constructed at Cadarache in France anticipates this will be the case (ITER Expert
Groups on Confinement and Confinement Modelling and Database 1999; Doyle et al.
2007) and limits temperature gradients to this threshold value, known as the critical
gradient. The plasma energy content is then simply calculated by assuming the
input power suffices to achieve this threshold temperature profile shape. Because this
criterion is in fact a condition on the logarithmic temperature gradient, the profile
depends critically on the edge temperature. The baseline operational mode planned for
ITER is the high confinement mode (H-mode) and this is given by the temperature
at the top of the edge transport barrier and is known as the ‘pedestal’ temperature.
However, as the input power increases towards the value needed for the fully stiff
situation, only limited parts of the temperature profile will achieve the threshold
value and the saturation of confinement with power is more gradual. A purpose of
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the present work is to explore this behaviour taking account of situations where
different parts of the profile first experience the onset of stiffness.

A remarkable experimental result reported by ASDEX Upgrade is that the energy
content of a discharge appears unchanged as the radiative losses increase (Ochoukov
et al. 2015). It has been proposed that this is a consequence of core transport being
stiff as the radiative power increases, which has been supported by some transport
modelling of burning plasma (Fable, Wenniger & Kemp 2017). This is of importance
for future fusion power plant designs (Kotschenreuther et al. 2007; Ward 2010; Lux
et al. 2015, 2016; Zohm et al. 2017; Zohm 2019a,b), where it appears necessary
to introduce impurities to deliberately radiate a fraction of the lost power to limit
damage from excessive heat fluxes on the surrounding structures. We also investigate
this further within the framework of our modelling above.

In general, determining the radial extent of the stiff profiles, using a transport code,
as the heating increases is a subtle calculation, the results depending on details of the
heating profile and the transport model. In this work we use a simple model for the
heating profile and consider several forms of the thermal diffusivity in the ‘non-stiff’
regions. In the stiff region we take the idealised limit of infinite thermal conductivity,
so that the temperature gradient is held at the critical value. This allows us to develop
analytic solutions, leading to an energy confinement scaling law that takes account of
stiff transport and impurity radiative losses and, furthermore, can be used to quantify
how much impurity radiation is permitted before the energy content starts to diminish.

As a first example, we assume that there is a net heating profile, P(r), that is
a constant, P, within a radius r0 and zero beyond that (thus the total net power
is given by PTot = 2π2Pr2

0R). The background thermal diffusivity, χ , is taken to be
a constant in radius, χ0. An edge boundary condition, T = Ta, on the temperature
representing an edge pedestal value is invoked. The effect on the power dependence
of the energy confinement of including impurity radiative losses, PRad is accounted
for by considering the effect PRad has on reducing the input power for a given value
of the latter.

The effect of the onset of regions of stiff transport, characterised by a normalised
critical temperature gradient parameter, ĉ = ca/R (where the critical gradient is
given by d ln T/dr = −c/R), on the energy content of the plasma as a function of
a normalised net heating power parameter λ = PTot/nχ0Ta is then calculated. Here,
n is the plasma density (taken to be constant in radius), R the major radius of the
tokamak and a the minor radius, which allows us to introduce a normalised minor
radius, ρ = r/a. This model is described in § 2.

As mentioned above, the appearance of regions of stiff temperature profiles can
become quite complicated, even for the simple model described above. We shall
discover below that there are then two main cases to address: (i) ĉρ0 > 1 (i.e. the
heating profile is not too peaked) and (ii) ĉρ0 < 1 (i.e. a more peaked heating
profile), although this case actually splits into two sub-cases, (a) and (b), depending
on whether ρ0 > ρ∗ or ρ0 < ρ∗, respectively. Here, ρ∗ is a critical radius dependent
on ĉ that controls whether stiffness sets in first at the plasma edge (case (a)), or an
interior point (case (b)). These various situations are analysed in § 3. In § 4 we extend
this model by assuming the thermal diffusivity is gyro-Bohm in nature, χ ∝ T3/2. A
refinement, in which an additional, radially increasing factor is inserted into χ in
order to be more realistic, is considered in appendix A.

This approach is reminiscent of earlier work exploring the impact on energy
confinement of the onset of ideal ballooning modes (Connor, Taylor & Turner 1984).

Using the results for the energy content as calculated for the various cases above,
we can obtain the energy confinement as a function of input power and infer the
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On energy confinement following the onset of ‘stiff’ transport 3

impact of radiative losses on the performance of the device. These results are
presented in § 5.

Finally, in § 6 we summarise and discuss our results. Especially, we consider the
implications of our results for describing the variation of tokamak confinement with
heating power. Assessments of tokamak performance, particularly that of ITER, are
often based on simple power-like scaling laws for energy confinement as a function
of plasma and machine parameters, particularly input heating power, which do not
recognise the possible appearance of a different regime associated with the onset
of stiff behaviour. We propose a more complicated algebraic form for the energy
confinement that fits our numerical calculations.

2. A simple transport model

We describe the temperature profile by a simple transport equation

1
r

d
dr

(
rnχ

dT
dr

)
=−PH + PRad ≡−P, (2.1)

where PH is the input power density and PRad the radiative loss power density, so that
P is the net heating power density. We first consider n and χ to be constant in r,
while P is taken to be constant within a radius r0 and zero outside

P= P0, r< r0; P= 0, r> r0. (2.2a,b)

Thus
dT
dr
=−

1
rnχ0

∫ r

0
Pr′ dr′, (2.3)

becomes increasingly negative as one moves radially through the heating zone, though
that trend reverses beyond r0. Should the temperature profile reach a point where the
critical gradient condition

1
T

dT
dr
=−

c
R
, (2.4)

with the number c in the range 4 to 6 (Dimits et al. 2000), is satisfied, the temperature
profile then becomes ‘stiff’ and (2.3) is replaced by (2.4). As we shall see below, this
equation may apply in two distinct radial regions.

To calculate the plasma energy content and confinement time, τE, we define

W =
3
2

n
∫ a

0
Tr dr, τE =WTot/PTot =

3
2

n
∫ a

0
Tr dr

/∫ a

0
P(r)r dr. (2.5a,b)

The total plasma energy and pedestal energy are given by

WTot = 4π2RW; WPed = 3π2a2RnTa, (2.6a,b)

respectively.
We normalise T to Ta, the edge temperature at r= a, introducing

τ =
T
Ta
, ρ =

r
a
, λ=

Pr2
0

nχ0Ta
≡ λH

(
1−

PRad

PH

)
, (2.7a−c)
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so that (2.1) becomes
1
ρ

d
dρ

(
ρ

dτ
dρ

)
=−

λ

ρ2
0
. (2.8)

Condition (2.3) implies
1
τ

dτ
dρ
=−ĉ, ĉ=

ca
R

(2.9a,b)

and
WTot =

WPed

2
F(ρ0, λ, ĉ); τE =

nTa

4PHr2
0

F(ρ0, λ, ĉ). (2.10a,b)

Here, F(ρ0, λ, ĉ) characterises the energy content as λ varies, but can also be used
to yield the effects of varying the fraction of radiated power, γ = PRad/PH, since the
effect of radiative losses appears through the definition for λ in (2.7)

λ= λH(1− γ ), λH =
PHr2

0

nχ0Ta
. (2.11a,b)

Thus, a change in the function F(ρ0, λ, ĉ) as λ reduces can be interpreted as
representing the effect of increasing radiative losses on τE. Interestingly, the
effective stiffness parameter, ĉ, depends on aspect ratio, R/a, discriminating between
conventional aspect ratio devices and spherical tokamaks (STs).

3. Solutions for peaked heating profiles

To understand the significance of the various scenarios for the heating profile we
consider the condition on λ for the onset of stiffness. Before the onset of stiffness,
the solution of the transport equation for the temperature profile is

τ = τ0 −
λ

4
ρ2

ρ2
0
, 0<ρ < ρ0 (3.1)

and
τ = 1−

λ

2
ln ρ, ρ0 <ρ < 1. (3.2)

Matching results (3.1) and (3.2) at ρ = %0, we obtain

τ0 =
λ

4
+ 1−

λ

2
ln ρ0. (3.3)

The onset condition for stiffness is given by (2.9). Substituting for τ from (3.1) and
(3.2) and solving for λ, we find

λc =
2ĉρ2

0[
ρ +

ĉρ2

2
− ĉρ2

0

(
1
2
− ln ρ0

)] , 0<ρ < ρ0, (3.4)

and

λc =
2ĉρ

(1+ ĉρ ln ρ)
, ρ0 <ρ < 1, (3.5)
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On energy confinement following the onset of ‘stiff’ transport 5

(a) (b) (c)

FIGURE 1. Schematic diagrams showing the values of λ when they reach a critical value
for the onset of a stiff temperature profile, as a function of plasma radius, ρ. (a) case (i);
(b) case (ii); sub-case a; and (c) case (ii) sub-case b. The dashed horizontal lines separate
the different zones of λ used in calculating F, as defined in the text, leading to differing
numbers of intersections as λ increases. The critical radius, ρ∗ is given later in (3.29).

where λc is the critical value of λ for the onset of a stiff temperature profile at a
radius ρ. These match at ρ=ρ0 of course. While solution (3.5) first increases inwards,
it has a maximum at ρ = 1/ĉ < 1, so its lowest value may lie inside ρ = 1/ĉ if
ĉρ0< 1. In fact, this situation gives rise to two possibilities, as will be discussed later.
Both solutions (3.4) and (3.5) suggest infinite values of λc may be needed at some
radii, but since parts of the profile will already be stiff by the time these values are
approached, these are spurious: these two solutions only pertain to the first onset of
stiffness and are only used below to understand where this first happens. Following
the onset of stiffness, the right-hand sides of (3.4) and (3.5) are modified as described
below. As we will see, two main cases emerge: case (i) for ĉρ0 > 1 and case (ii)
for ĉρ0 < 1, with the second dividing into two sub-cases, (iia) and (iib), depending
on where ρ0 lies relative to another critical radius, ρ∗, to be defined below. These
three scenarios are shown in figure 1(a–c), where the values of λc for the onset of
the critical gradients are plotted against ρ.

(i) Case ĉρ0 > 1
In this case stiffness moves steadily inwards from ρ = 1 where the critical gradient

condition is first satisfied. This occurs when

λ= λ(1)c = 2ĉ. (3.6)

Thereafter, the onset of the stiff profile

τ = eĉ(1−ρ) (3.7)

occurs at ρ = ρ1(ĉ, λ), where ρ1 is given by

λ= 2ĉρ1eĉ(1−ρ1) (3.8)

and steadily migrates inward as λ increases, since the condition (3.8) implies

2ĉ(1− ĉ%1)
dρ1

dλ
ρ1eĉ(1−ρ1) = 1, (3.9)

so that dρ1/dλ< 0 for case (i).
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6 J. W. Connor, R. J. Hastie and K. Richards

First considering the situation ρ0 < ρ1, we match the solutions (3.2) and (3.7) at
ρ = ρ1 and (3.1) and (3.2), which is now modified by the stiff region, at ρ = ρ0 to
obtain

τ = eĉ(1−ρ1) +
λ

2

[
ln
(
ρ1

ρ0

)
+

1
2

]
−
λ

4
ρ2

ρ2
0
, ρ < ρ0, (3.10)

τ = eĉ(1−ρ1) +
λ

2
ln
(
ρ1

ρ

)
, ρ0 <ρ < ρ1 (3.11)

and

τ = eĉ(1−ρ)
; ρ1 <ρ < 1. (3.12)

(In general, when we mention matching to the transport solution, equation (3.2), it
may be modified by the imposition of a new outer boundary condition due to the
intervention of a stiff region.)

Next, we consider the case ρ1<ρ0 when matching to (3.1) to (3.7) yields a modified
equation for ρ1

λ
ρ1

ρ0
= 2ĉρ0eĉ(1−ρ1), (3.13)

together with

τ = eĉ(1−ρ1) +
λ

4ρ2
0
(ρ2

1 − ρ
2), 0<ρ < ρ1 (3.14)

and

τ = eĉ(1−ρ), ρ1 <ρ < 1. (3.15)

Equation (3.13) implies

− 2ĉρ1(1+ ĉρ1)
dρ1

dλ
ρ1eĉ(1−ρ1) =

ρ2
1

ρ2
0
, (3.16)

again ensuring dρ1/dλ< 0, so that ρ1 continues to migrate inwards.
The expressions (3.1)–(3.3), (3.10)–(3.12), (3.14) and (3.15) for τ can be used to

calculate the function F(λ, ĉ, ρ0) characterising the plasma energy. It takes different
forms, dependent on λ. It is useful to define several integrals that arise in calculating
the various contributions to the plasma energy

F(ρa, ρb)= 2
∫ ρb

ρa

ρτ dρ. (3.17)

Thus, we have Fj(ρa, ρb), where

F0(ρa, ρb)= 2
∫ ρb

ρa

ρ dρ; F1(ρa, ρb)= 2
∫ ρb

ρa

ρ ln ρ dρ;

F2(ρa, ρb)= 2
∫ ρb

ρa

ρ3

ρ2
0

dρ; F3(ρa, ρb)= 2
∫ ρb

ρa

eĉ(1−ρ)ρ dρ.

 (3.18)
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On energy confinement following the onset of ‘stiff’ transport 7

Specifically,

F0(ρa, ρb)= (ρ
2
b − ρ

2
a),

F1(ρa, ρb)= (ρ
2
b(ln ρb −

1
2)− ρ

2
a(ln ρa −

1
2)),

F2(ρa, ρb)=
1

2%2
0
(ρ4

b − ρ
4
a),

F3(ρa, ρb)=
2
ĉ2
[(1+ ĉρa)eĉ(1−ρa) − (1+ ĉρb)eĉ(1−ρb)].


(3.19)

For λ< λ(1)c = 2ĉ,

F=
(

1+
λ

4
−
λ

2
ln ρ0

)
F0(0, ρ0)−

λ

4
F2(0, ρ0)+ F0(ρ0, 1)−

λ

2
F1(ρ0, 1), (3.20)

so that

F=
(

1+
λ

4

)
−
λρ2

0

8
. (3.21)

For λ(1)c < λ< λ(2)c = 2ĉρ0eĉ(1−ρ0),

F =
{

eĉ(1−ρ1) +
λ

2

[
ln
(
ρ1

ρ0

)
+

1
2

]}
F0(0, ρ0)−

λ

4
F2(0, ρ0)

+

{
eĉ(1−ρ1) +

λ

2
ln(ρ1)

}
F0(ρ0, ρ1)−

λ

2
F1(ρ0, ρ1)+ F3(ρ1, 1), (3.22)

so that

F= 2eĉ(1−ρ1)

[
(1+ ĉρ1)

ĉ2
+
ρ2

1

2

]
−

2(1+ ĉ)
ĉ2

+
λ

4

[
ρ2

1 −
ρ2

0

2

]
, (3.23)

where ρ1 is given by
λ= 2ĉρ1eĉ(1−ρ1). (3.24)

For λ(2)c < λ,

F=
[

eĉ(1−ρ1) +
λρ2

1

4ρ2
0

]
F0(0, ρ1)−

λ

4
F2(0, ρ1)+ F3(ρ1, 1), (3.25)

leading to

F= 2eĉ(1−ρ1)

[
(1+ ĉρ1)

ĉ2
+
ρ2

1

2

]
−

2(1+ ĉ)
ĉ2

+
λ

8
ρ4

1

ρ2
0
, (3.26)

where ρ1 is now given by
λ
ρ1

ρ0
= 2ĉρ0eĉ(1−ρ1). (3.27)

Equation (3.13) implies

− 2ĉ%ρ1(1+ ĉρ1)
dρ1

dλ
=
ρ2

1

ρ2
0
, (3.28)

again ensuring dρ1/dλ< 0, so that ρ1 continues to migrate inwards.
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8 J. W. Connor, R. J. Hastie and K. Richards

FIGURE 2. The variation of ρ∗ with ĉ; it is compared with ρ0 = 0.3 as an example.

(ii) Case ĉρ0 < 1
In this case, for each value of λ the onset of stiffness as given by (3.5), is satisfied

at two separate values of ρ, say ρ1 and ρ2 – provided ρ0 < ρ2, as (3.5) only applies
then. Since the critical value of λ for the appearance of ρ1 inside the plasma is 2ĉ,
equation (3.5) implies that the corresponding value of ρ2, which we denote by ρ∗, is
given by

ρ∗(ĉ)= (1+ ĉρ∗ ln ρ∗). (3.29)

Figure 2 shows ρ∗ as a function of ĉ which can be compared with ρ0 (ρ0 = 0.3 is
shown for comparison, as an example).

Thus, if ρ0 > ρ∗ stiffness first sets in at ρ = 1, while if ρ0 < ρ∗, it begins at an
interior point. We thus define two sub-cases - (a): ρ0 >ρ∗ and (b): ρ0 <ρ∗.

Sub-case (a): ρ0 >ρ∗
As before, stiffness onsets at ρ = 1 when λ = 2ĉ = λ(1)c and solution (3.7) for τ

holds for ρ > %1, where %1 satisfies condition (3.8) for a given λ> λ(1)c . For smaller
values of ρ, τ is given by (3.11). However, for λ > λ(1)c , solution (3.11) will satisfy
the condition for the onset of stiffness at a second point, ρ2, given by

λ=
2ĉρ2eĉ(1−ρ1)

(1+ ĉρ2 ln(ρ2/ρ1))
, (3.30)

provided ρ2>ρ0, of course. (Equation (3.30) is the modified form of (3.5), mentioned
earlier.) Equation (3.8) for ρ1 then implies a relationship between and ρ1 and ρ2

ρ2 = %1

(
1+ ĉρ2 ln

(
ρ2

ρ1

))
. (3.31)

The expression (3.30) has a maximum when ρ = ρ1 = ρ2 = 1/ĉ and differentiation of
relation (3.31) shows that, because ĉρ2 < 1 and ĉρ1 > 1, ρ2 moves outwards towards
ρ = 1/ĉ, as ρ1 moves inwards towards the same point. The condition ρ2 = ρ0 defines
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On energy confinement following the onset of ‘stiff’ transport 9

ρ1, a corresponding value for ρ1, from (3.31) and a critical value λ(3)c for λ from the
relationship (3.19)

λ(3)c = 2ĉρ1eĉ(1−ρ1), (3.32)

where

ρ0 = ρ1

(
1+ ĉρ0 ln

(
ρ0

%1

))
. (3.33)

Thus as λ increases there is a first onset of stiffness at ρ= 1 when λ= 2ĉ=λ(1)c ; when
λ> λ(3)c there is a stiff region between ρ0 and ρ2, with the region ρ2 < ρ < ρ1 being
governed by the transport solution (3.11). The stiff region between ρ0 and ρ2 extends
into the region ρ < ρ0 as far as a radius ρ3, which will be calculated below for each
relevant range of λ.

This situation prevails until λ reaches the value at the maximum of (3.30) at ρ =
ρ1 = ρ2 = 1/ĉ, namely

λ(4)c = 2eĉ−1. (3.34)

Finally, for λ> λ(4)c , the profile is stiff as far in as ρ = ρ3.
Consequently, for λ< 2ĉ= λ(1)c , τ is given by (3.1)–(3.2) again.
For λ(1)c < λ< λ(3)c , we again have τ given by (3.10)–(3.12).
For λ(3)c < λ< λ(4)c ,

τ = eĉ(1−%)
; ρ1 <ρ < 1, (3.35)

as in (3.7), but solution (3.11) now has a restricted range

τ = eĉ(1−ρ1) +
λ

2
ln
(
ρ1

ρ

)
; ρ2 <ρ < ρ1. (3.36)

Matching a stiff solution at %= %2 to solution (3.36) we have

τ = eĉ(1−ρ1+ρ2−ρ) +
λ

2
ln
(
ρ1

ρ2

)
eĉ(ρ2−ρ); ρ3 <ρ < ρ2. (3.37)

The radius ρ3 is set by the onset of stiffness in the region ρ < ρ0. Matching the stiff
solution (3.37) to the transport solution defined by (3.1)–(3.2) leads to an equation for
ρ3

λρ3

ρ0
= 2ĉρ0

[
eĉ(1−ρ1+ρ2−ρ3) +

λ

2
ln
(
ρ1

ρ2

)
eĉ(ρ2−ρ3)

]
(3.38)

and an expression for τ

τ = eĉ(1−ρ1+ρ2−ρ3) +
λ

2
ln
(
ρ1

ρ2

)
eĉ(ρ2−ρ3) +

λ

4
(ρ2

3 − ρ
2)

ρ2
0

, ρ < ρ3. (3.39)

Finally, for λ(4)c < λ, the profile is stiff as far in as ρ = ρ3, with ρ3 now relabelling ρ1
in condition (3.13)

λρ3

ρ0
= 2ĉρ0eĉ(1−ρ3), (3.40)

so that
τ = eĉ(1−ρ), ρ3 <ρ < 1 (3.41)
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10 J. W. Connor, R. J. Hastie and K. Richards

and

τ = eĉ(1−ρ3) +
λ

4
(ρ2

3 − ρ
2)

ρ2
0

, ρ < ρ3. (3.42)

It remains to calculate the corresponding function F.
For λ< λ(1)c = 2ĉ it is again given by expression (3.21);
For λ(1)c < λ< λ(3)c by the result (3.23);
For λ(3)c < λ< λ(4)c , we have, using (3.35)–(3.37) and (3.39) for τ ,

F = F3(ρ1, 1)+ (eĉ(1−ρ1) +
λ

2
ln(ρ1))F0(ρ2, ρ1)−

λ

2
F1(ρ2, ρ1)

+

[
eĉ(ρ2−ρ1) +

λ

2
ln
(
ρ1

ρ2

)
eĉ(ρ2−1)

]
F3(ρ3, ρ2)

+

[
eĉ(1−ρ1+ρ2−ρ3) +

λ

2
ln
(
ρ1

ρ2

)
eĉ(ρ2−ρ3) +

λ

4
ρ2

3

ρ2
0

]
F0(0, ρ3)

−
λ

4
F2(0, ρ3), (3.43)

with λ = 2ĉρ1eĉ(1−ρ1), ρ2 = %1(1 + ĉρ2 ln(ρ2/ρ1)), and λρ3/ρ0 = 2ĉρ0[eĉ(1−ρ1+ρ2−ρ3) +

(λ/2) ln(ρ1/ρ2)eĉ(ρ2−ρ3)], which reduces to

F = 2eĉ(1−ρ1+ρ2−ρ3)

[
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

]
+ 2eĉ(1−ρ1)

[
ρ2

1

2
−
ρ2

2

2
+
(1+ ĉρ1)

ĉ2
−
(1+ ĉρ2)

ĉ2

]
−

2(1+ ĉ)
ĉ2

+
λ

4
(ρ2

1 − ρ
2
2)

+
λρ4

3

8ρ2
0
+ λ ln

(
ρ1

ρ2

) [
eĉ(ρ2−ρ3)

(
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

)
−
(1+ ĉρ2)

ĉ2
−
ρ2

2

2

]
. (3.44)

Finally, for λ(4)c < λ, using (3.41) and (3.42) for τ ,

F= F3(ρ3, 1)+
(

eĉ(1−ρ3) +
λ

4
ρ2

3

ρ2
0

)
F0(0, ρ3)−

λ

4
F2(0, ρ3), (3.45)

with ρ3 now given by λρ3/ρ0 = 2ĉρ0eĉ(1−ρ3), so that

F= 2eĉ(1−ρ3)

[
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

]
−

2(1+ ĉ)
ĉ2

+
λρ4

3

8ρ2
0
. (3.46)

Sub-case (b): ρ0 <ρ∗
In this case the onset of stiffness occurs at the internal point ρ0 and as λ increases

beyond this critical value, a stiff region, ρ1 < ρ < ρ3, opens out around ρ0 before
the onset of stiffness at ρ1 = 1. Further increases in λ lead to a similar evolution to
that in sub-case (a); the transport-controlled region between ρ2 and ρ1 shrinking and
eventually disappearing, with a stiff profile covering the entire region ρ3 <ρ < 1.

According to (3.5) the onset of stiffness at ρ = ρ0 occurs when

λ= λ(5)c =
2ĉρ0

(1+ ĉρ0 ln ρ0)
. (3.47)
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On energy confinement following the onset of ‘stiff’ transport 11

As λ increases beyond λ(5)c , the outer limit of stiffness, ρ2, is determined by matching
a stiff solution to the transport-controlled solution (3.2),

τ = 1−
λ

2
ln ρ, ρ2 <ρ < 1, (3.48)

yielding the equation

λ=
2ĉρ2

(1+ ĉρ2 ln ρ2)
. (3.49)

The form of the stiff solution within ρ3 < ρ < ρ2, is obtained by matching it to the
solution (3.48) at ρ = ρ2

τ =

(
1−
λ

2
ln(ρ2)

)
eĉ(%2−ρ), ρ3 <ρ < ρ2. (3.50)

This can then be matched to solution (3.1) at ρ = ρ3 to determine τ0 and hence the
form of τ , which then provides an equation for ρ3 by imposing the stiffness condition.
We find

τ = eĉ(ρ2−ρ3)

(
1−
λ

2
ln(ρ2)

)
+
λ

4
(ρ2

3 − ρ
2)

ρ2
0

, ρ < ρ3 (3.51)

and that ρ3 is determined by

λρ3

ρ0
= 2ĉρ0eĉ(ρ2−ρ3)

(
1−
λ

2
ln(ρ2)

)
. (3.52)

When λ= λ(1)c there is the onset of stiffness at ρ = 1, so that, as in (3.35) and (3.36),

τ = eĉ(1−ρ)
; ρ1 <ρ < 1, (3.53)

where ρ1 is given by (3.8), and

τ = eĉ(1−ρ1) +
λ

2
ln
(
ρ1

ρ

)
; ρ2 <ρ < ρ1. (3.54)

This modifies (3.49) for %2(λ), which becomes

λ=
2ĉρ2eĉ(1−ρ1)

(1+ ĉρ2 ln(ρ2/ρ1))
. (3.55)

The stiff solution (3.50) is also modified

τ =

[
eĉ(1−ρ1) −

λ

2
ln
(
ρ2

ρ1

)]
eĉ(ρ2−ρ), ρ3 <ρ < ρ2, (3.56)

as are the results (3.51) and (3.52)

τ = eĉ(1−ρ1+ρ2−ρ3) −
λ

2
ln
(
ρ2

ρ1

)
eĉ(ρ2−ρ3) +

λ

4
(ρ2

3 − ρ
2)

ρ2
0

, ρ < ρ3 (3.57)

and
λρ3

ρ0
= 2ĉρ0

[
eĉ(1−ρ1+ρ2−ρ3) −

λ

2
ln
(
ρ2

ρ1

)
eĉ(ρ2−ρ3)

]
. (3.58)
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12 J. W. Connor, R. J. Hastie and K. Richards

Finally, when λ> λ(4)c , the stiff region stretches inwards as far as ρ3

τ = eĉ(1−ρ), ρ3 <ρ < 1, (3.59)

with ρ3 now given by (3.40).
Again matching (3.59) to solution (3.1) determines τ0 and hence τ for the region

ρ < ρ3

τ = eĉ(1−ρ3) +
λ

4
(ρ2

3 − ρ
2)

ρ2
0

, ρ < ρ3. (3.60)

It remains to calculate the corresponding functions F.
For λ< λ(5)c , result (3.21) still holds.
For λ(5)c < λ< λ(1)c we use (3.48), (3.50) and (3.51) to obtain

F = F0(ρ2, 1)−
λ

2
F1(ρ2, 1)+ e−ĉ(1−ρ2)

(
1−
λ

2
ln(ρ2)

)
F3(ρ3, ρ2)

+

[
eĉ(ρ2−ρ3)

(
1−
λ

2
ln(ρ2)

)
+
λ

4
ρ2

3

ρ2
0

]
F0(0, ρ3)−

λ

4
F2(0, ρ3), (3.61)

with λ= 2ĉρ2/(1+ ĉρ2 ln ρ2) and λρ3/ρ0 = 2ĉρ0eĉ(ρ2−ρ3)(1− (λ/2) ln(ρ2)), so that

F =
(

1+
λ

4

)
(1− ρ2

2)+
λρ4

3

8ρ2
0
+ 2

[
eĉ(ρ2−ρ3)

(
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

)
−
(1+ ĉρ2)

ĉ2

]
− λ ln(ρ2)

[
eĉ(ρ2−ρ3)

(
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

)
−

(
(1+ ĉρ2)

ĉ2
+
ρ2

2

2

)]
. (3.62)

For λ(1)c < λ < λ(4)c we have, taking account of results (3.53), (3.54), (3.56) and
(3.57),

F = F3(ρ1, 1)+
[

eĉ(1−ρ1) +
λ

2
ln(ρ1)

]
F0(ρ2, ρ1)−

λ

2
F1(ρ2, ρ1)

+

[
eĉ(1−%1) −

λ

2
ln
(
%2

%1

)]
e−ĉ(1−%2)F3(%3, %2)

+

[
eĉ(1−ρ1+ρ2−ρ3) −

λ

2
ln
(
ρ2

%1

)
eĉ(ρ2−ρ3) +

λ

4
ρ2

3

ρ2
0

]
F0(0, ρ3)

−
λ

4
F2(0, ρ3), (3.63)

with λ= 2ĉρ1eĉ(1−ρ1), λ= 2ĉρ2/(1+ ĉρ2 ln(ρ2/ρ1)) and λρ3/ρ0 = 2ĉρ0[eĉ(1−ρ1+ρ2−ρ3) −

(λ/2) ln(ρ2/ρ1)eĉ(ρ2−ρ3)], which reduces to

F−
2(1+ ĉ)

ĉ2
+
λρ4

3

8ρ2
0
+
λ

4
(ρ2

1 − ρ
2
2)+ 2eĉ(1−ρ1+ρ2−ρ3)

[
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

]
+ 2eĉ(1−ρ1)

[
(1+ ĉρ1)

ĉ2
+
ρ2

1

2
−
(1+ ĉρ2)

ĉ2
−
ρ2

2

2

]
− λ ln

(
ρ2

ρ1

) [
eĉ(ρ2−ρ3)

(
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

)
−

(
(1+ ĉρ2)

ĉ2
+
ρ2

2

2

)]
. (3.64)
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On energy confinement following the onset of ‘stiff’ transport 13

Finally, for λ(4)c < λ, using results (3.59) and (3.60), we obtain

F= F3(ρ3, 1)+
[

eĉ(1−ρ3) +
λ

4
ρ2

3

ρ2
0

]
F0(0, ρ3)−

λ

4
F2(0, ρ3), (3.65)

with λρ3/ρ0 = 2ĉρ0eĉ(1−ρ3), which yields

F= 2eĉ(1−ρ3)

[
(1+ ĉρ3)

ĉ2
+
ρ2

3

2

]
−

2(1+ ĉ)
ĉ2

+
λρ4

3

8ρ2
0
. (3.66)

4. A gyro-Bohm model

A more realistic model for the basic diffusivity is gyro-Bohm, which has a
temperature dependence χ ∼ T3/2. With this form the transport equation (2.1) can still
be readily integrated, but for the function u= τ 5/2, rather than τ itself. The structure
of the results for u are identical to those for τ if we make the replacements

λ→ λ= 5λ/2; ĉ→ c= 5ĉ/2. (4.1a,b)

Here λ is now defined with χ0 → χa = χ(r = a). u satisfies the same stiffness
condition as τ when expressed in terms of c. However, the integrals involved in the
normalised plasma energy function F must be expressed in terms of τ = u2/5, which
is a complication. The fact that c is significantly greater than ĉ means that physically
sensible values for c correspond to cρ0 > 1, i.e. generally we need only consider the
results for case (i).

The expressions for u can be used to construct the normalised plasma energy
content, F, for this gyro-Bohm model:

F(λ, c, ρ0)= 2
∫ 1

0
%u2/5(ρ, c, ρ0) dρ. (4.2)

We define F̂n

F̂1(u0, ρa, b) = 2
∫ ρa

0
%(u0 − bρ2)2/5 dρ

=
5
7b
[u7/5

0 − (u0 − b%2
a)

7/5
], (4.3)

F̂2(ρa, ρb, u1, d) = 2
∫ ρb

ρa

%(u1 − d ln ρ)2/5 dρ (4.4)

=

(
d
2

)2/5

e2u1/d

[
Γ

(
7
5
,

2u1

d
− ln ρ2

a

)
− Γ

(
7
5
,

2u1

d
− ln ρ2

b

)]
(4.5)

and

F̂3(ρa, ρb) = 2
∫ ρb

ρa

eĉ(1−ρ)ρ dρ

=
2
ĉ2
[(1+ ĉρa)eĉ(1−ρa) − (1+ ĉρb)eĉ(1−ρb)]. (4.6)
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14 J. W. Connor, R. J. Hastie and K. Richards

For λ< λ
(1)
c = 2c

F= F̂1

(
1+
λ

4
−
λ

2
ln %0, ρ0,

λ

4ρ2
0

)
+ F̂2

(
ρ0, 1,

λ

2

)
, (4.7)

so that

F =
20ρ2

0

7λ

[(
1+
λ

4
−
λ

2
ln %0

)7/5

−

(
1−
λ

2
ln %0

)7/5
]

+

(
λ

4

)2/5

exp
(

4
λ

) [
Γ

(
7
5
,

4
λ

)
− Γ

(
7
5
,

4
λ
− 2 ln %0

)]
; (4.8)

for λ
(1)
c < λ< λ

(2)
c

F = F̂3(ρ1, 1)+ F̂2

(
ρ0, ρ1,, ec(1−ρ1) +

λ

2
ln %1,

λ

2

)
+ F̂1

(
ec(1−ρ1) +

λ

2

(
ln
(
%1

%0

)
+

1
2

)
, ρ0,

λ

4ρ2
0

)
, (4.9)

leading to

F =
20ρ2

0

7λ

[(
ec(1−ρ1) +

λ

2

(
ln
(
%1

%0

)
+

1
2

))7/5

−

(
ec(1−ρ1) +

λ

2
ln
(
%1

%0

))7/5
]

+

(
λ

4

)2/5

ρ2
1 exp

(
2

c%1

) [
Γ

(
7
5
,

2
c%1

)
− Γ

(
7
5
,

2
c%1
+ 2 ln

(
%1

%0

))]
+ 2eĉ(1−ρ1)

(1+ ĉ%1)

ĉ2
−

2(1+ ĉ)
ĉ2

. (4.10)

Here, we recall ĉ= 2c/5 is to be used in the last term and where ρ1 is given by

λ= 2cρ1ec(1−ρ1). (4.11)

For λ> λ
(2)
c we have

F= F̂3(ρ1, 1)+ F̂1

(
ec(1−ρ1) +

λρ2
1

4ρ2
0
, ρ1,

λ

4ρ2
0

)
, (4.12)

with the result

F =
20ρ2

0

7λ

[(
ec(1−ρ1) +

λρ2
1

4ρ2
0

)7/5

− e(7c/5)(1−ρ1)

]

+ 2eĉ(1−ρ1)
(1+ ĉ%1)

ĉ2
−

2(1+ ĉ)
ĉ2

, (4.13)

where ρ1 is now given by

λ
ρ1

ρ0
= 2cρ0ec(1−ρ1). (4.14)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377820000136
Downloaded from https://www.cambridge.org/core. UKAEA, on 06 Mar 2020 at 10:29:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820000136
https://www.cambridge.org/core


On energy confinement following the onset of ‘stiff’ transport 15

FIGURE 3. The variation of the function F(λ̂, ĉ, ρ0), normalised to the asymptotic value,
F∞, characterising the plasma energy content, for the constant χ case, as a function of
λ/2ĉ, representing the power dependence. ρ0 = 0.33, 0.66 and 1.0, ranging from more
centrally localised heating to being constant in radius. ĉ= 1.375, 2.75 and 4.125 covering
the range of critical gradients and aspect ratios from conventional tokamaks to spherical
tokamaks.

In the above, Γ (a, b)=
∫
∞

b e−tta dt is the incomplete gamma function (Abramowitz &
Stegun 1972).

This simple gyro-Bohm model suffers from having a thermal diffusivity that
decreases radially outwards, whereas experiment suggests otherwise. To remedy this,
we have modified the above analysis by including an additional, radially increasing,
factor so that χ ∼ (1+ α%2)τ 3/2, with α∼ 0(1), a constant. This analysis is described
in appendix A.

5. Confinement results

For both models it is useful to plot the various functions F(λ, ĉ, ρ0) (or F(λ, c, ρ0)),
normalised to the ‘fully stiff’ limit F∞(ĉ) (or F∞(c)), attained as λ→∞, against
λ̂= λ/λ(1)c (or λ̂= λ/λc), i.e. λ normalised to the relevant critical value, λ(1)c = 2ĉ, or
λ
(1)
c = 2c.
The quantity F∞ follows from taking the limit ρ1 (or ρ3, as appropriate) → 0. This

leads to

F∞ =
2eĉ

ĉ2
−

2(1+ ĉ)
ĉ2

, (5.1)

which is a rapidly increasing function of ĉ. The results for the functions F are shown
in figure 3 for the constant χ model and in figure 4 for the gyro-Bohm one, covering
a range of relevant values of ĉ and ρ0. For these we choose ρ0 = 0.33, 0.66 and 1.0,
ranging from a more centrally localised heating profile to one that is constant in radius.
Since we expect c= 4–6 and the inverse aspect ratio, a/R, to typically range from 0.3
for conventional tokamaks to 0.6 for STs, we select ĉ=1.375, 2.75 and 4.125 as being
representative. This corresponds to c = 3.438, 6.875 and 10.313. For the constant χ
model this involves all three cases: (i), (iia) and (iib), while for the gyro-Bohm model
only case (i) is needed for such plausible values of c and ρ0 (although central heating
by ECRH might involve the other two cases).

It is interesting to consider the special case of centrally localised heating, such
as central electron cyclotron heating (ECRH), and investigate the limit of ρ0 → 0.
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16 J. W. Connor, R. J. Hastie and K. Richards

FIGURE 4. As for figure 3, but for the gyro-Bohm model and in terms of λ, with the
corresponding values c= 3.438, 6.875 and 10.313.

FIGURE 5. The convergence of F(λ̂, ĉ, ρ0) to an asymptotic form for a sequence of values
of ρ0 approaching zero (ρ0 = 1.0→ 0.01) for the constant χ model with ĉ= 1.375.

Figure 5 shows the results for a sequence ρ0 = 0.01 to 1.0 for the constant χ case
and c= 1.375.

The impact of the modified gyro-Bohm model described in appendix A on the
function F is presented in figure 6 for ρ0 = 0.45 and c = 6.875, with the χ profile
parameter taking the values α = 1 and 2; the simple gyro-Bohm (α = 0) and the
constant χ (with the same value of c) models are shown for comparison; this also
allows a direct comparison of the two basic models.

It is also illuminating to plot how ρ1, ρ2 and ρ3 (where appropriate) migrate as λ
increases, as shown in figures 7(a) to 7(c) for some typical situations from cases (i),
(iia) and (iib), respectively. These results indicate how the onset of stiffness develops
as the net heating power increases and the stored plasma energy eventually saturates.

To investigate the effect of radiative losses, we have calculated γ , the fractional
reduction in λ, before F falls to 90 % of its value, as a function of λH, corresponding
to the additional heating power, PH, as defined in (2.11). From (2.11) this value of γ
can be interpreted as the fraction of impurity radiative power,PRad, to PH (at constant
PH), that is allowed before the plasma energy is significantly reduced. This is plotted
as a function of the normalised heating power, λH, in figure 8 for the gyro-Bohm
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On energy confinement following the onset of ‘stiff’ transport 17

FIGURE 6. The effect of the χ profile parameter, α, of the improved gyro-Bohm model
on the plasma energy content F for ρ0= 0.45 and c= 6.875 with α= 1, and 2. The simple
gyro-Bohm case (α= 0) and the constant χ case (for the same value of c) are shown for
comparison.

model and representative values of c and ρ0 (c= 3.438, 6.875 and 10.132 with ρ0 =

0.33 and 0.66).
These results indicate how the onset of stiffness develops as the net heating power

increases and rate at which the stored plasma energy eventually saturates. Given the
results for F, one could also infer how a normalised energy confinement time, τ̂E,Rad=

F((λH(1 − γ )))/λH, (or just F((λH(1 − γ )))) varies with λH, indicating the variation
with net heating power, P, and with γ , showing the impact of impurity radiative losses.
In the absence of radiative losses, so that γ = 0, this provides the basic normalised
confinement time of course. However, here, we only illustrate these effects for F itself,
as shown in figure 9 for the gyro-Bohm transport model. The parameters chosen are
c= 6.875 and γ = 0, 0.25, 0.5, 0.75 and 0.9. Figure 9(a) is the case ρ0 = 0.33 and
figure 9(b) is ρ0 = 0.66.

6. Discussion and conclusions

We have explored the effect of the onset of stiff temperature profiles on the plasma
energy and energy confinement time as the net heating power, i.e. the difference
between the applied heating power and the radiated power, increases and deduced
how impurity radiation energy losses affect these results.

Two models for transport in any diffusive regions of the radial profile are
considered: constant χ and gyro-Bohm, though a modified gyro-Bohm model which
incorporates an additional radial profile factor is discussed in appendix A; density
is taken to be constant in radius, r. The net heating profile is ‘box-like’: constant
for r< r0 and zero beyond (%0 = r0/a= 0.33, 0.66, 1.0 are taken as representative of
more or less localised heating, respectively; for the case of central ECRH, it may be
narrower of course, and is investigated separately). An edge pedestal temperature is
taken.

The condition for the onset of stiffness in the temperature profile is given by
d ln T/dr = −c/R, where typically c ∼ 4–6. For the constant χ case this leads to
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(a)

(b)

(c)

FIGURE 7. The evolution of ρ1,2,3(λ̂), the radii where the transitions to ‘stiff’ transport
occur, as functions of the parameter λ̂, representing the net heating power for the case
of a constant thermal diffusivity. (a) ρ0 = 0.6, ĉ= 2.75 represents case (i); (b) ρ0 = 0.25,
ĉ= 2.75 represents case (iia); (c) ρ0 = 0.3, ĉ= 1.75 represents case (iib).
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FIGURE 8. Allowed fraction of impurity radiative power, γ = PRad/PH before plasma
energy content F(λ, c, ρ0) falls to 90 % of its value as a function of λH, which corresponds
to the heating power PH, in the case of the gyro-Bohm model: ρ0 = 0.33 and ρ0 = 0.66,
with c= 3.438, 6.875 and 10.312.

a more useful normalised parameter, ĉ= ca/R; for the gyro-Bohm case this is replaced
by c= 5ca/2R. We can expect ĉ to range from approximately 4/3 to 4 as a/R ranges
from 2/3 for an ST to 1/3 for a more conventional tokamak; correspondingly c ranges
from approximately 10/3 to 10 for the gyro-Bohm model. For a given theoretically
predicted value of c, the normalised ĉ is larger for STs. Thus, the normalised critical
gradient is greater and, provided the pedestal temperature values are similar, we see
STs are more resilient to the onset of stiff profiles than conventional aspect ratio
devices of the same minor radius.

We have considered how the plasma energy content varies as the heating power
increases. We have defined a quantity F, the normalised plasma energy, which is
WTot = 6π2R

∫ a
0 nTr dr relative to the pedestal energy, WPed = 3π2nTaRa2. The net

heating power is parametrised by a quantity λ= Pr2
0/nχ0Ta (or λ= 5nPr2

0/2nχaTa for
the gyro-Bohm case). To interpret this more physically, we can re-write λ in terms of
macroscopic quantities

λ=
3
2

PTotτCond

WPed
, (6.1)

where PTot is the total net heating power (i.e. subtracting the total core radiation loss
power) and τCond= a2/χ0 (or a2/χa for the gyro-Bohm model, where λ is replaced by
λ) is a confinement time corresponding to the thermal conduction mechanism.

We have explored how the function F responds to λ or λ, as appropriate. In fact,
to unify the results on a single plot, it is useful to consider F̂= F/F∞, where F∞ =
2eĉ/ĉ2

− 2(1 + ĉ)/ĉ2, the value of F as λ→∞, as a function of λ̂ = λ/2ĉ; here,
the onset of stiffness at the plasma edge corresponds to λ̂= 1. Note λ̂= λ̂, at given
values of P and c, where λ̂, is the corresponding quantity for the gyro-Bohm model,
so the same scale can be used to compare the dependence on net heating power. The
functions F̂ are parametrised by ρ0 and ĉ (or c, as is appropriate to the gyro-Bohm
model). Furthermore, they take different forms for ρ0ĉ> 1 (case (i)) or ρ0ĉ< 1 (case
(ii)). In fact, case (ii) sub-divides according as to whether ρ0 > ρ∗(ĉ) (sub-case (a))
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(a)

(b)

FIGURE 9. The effect of the impurity radiation fraction, γ = PRad/PH, on the normalised
energy content, F(λ, c, ρ0), with λH, representing the heating power, PH, and λ=λH(1−γ )
representing the net heating allowing for impurity radiation, for the gyro-Bohm model with
c= 6.875 and γ = 0, 0.2, 0.7 and 0.9 for: (a) ρ0 = 0.33 and (b) ρ0 = 0.66.

or ρ0 < ρ∗(ĉ) (sub-case (b)), as explained in figure 1; ρ∗(ĉ) as a function of ĉ is
shown in figure 2. These cases correspond to different regions experiencing the onset
of stiffness. In case (i) this begins at the plasma edge, in case (iia), a second, interior,
region subsequently emerges about ρ0, whereas in case (iib) it appears there first.

Results for F̂(ĉ, ρ0, λ̂) are presented in figure 3 for the constant χ model
and in figure 4 for the gyro-Bohm one (with appropriate re-definitions), for a
physically reasonable range of the parameters. For the constant χ model this involves
encountering all three cases, whereas for the gyro-Bohm model, only case (i) generally
occurs. The result of allowing ρ0� 1, relevant to central ECRH, is shown in figure 5
for the constant χ model. Figure 6 shows the impact of the profile parameter α
of the improved gyro-Bohm model, described in appendix A, on the plasma energy
content (note that this plot is for F/F∞; F itself is proportional to a further factor
(1 + α)). Increasing α (i.e. broadening the χ profile) makes the onset of stiffness
progressively somewhat smoother than the simple gyro-Bohm case; the constant χ
case (for the equivalent value of c) is sharper than the simple gyro-Bohm.

For the constant χ model, we show in figure 7(a–c) how the regions of stiffness
(defined by up to three transition radii, ρ1, ρ2 and ρ3) evolve in relation to ρ0 for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377820000136
Downloaded from https://www.cambridge.org/core. UKAEA, on 06 Mar 2020 at 10:29:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820000136
https://www.cambridge.org/core


On energy confinement following the onset of ‘stiff’ transport 21

representative values of ĉ and ρ0. Here, ρ1 represents the onset of a stiff region at the
edge, while ρ2 and ρ3 define the limits of an interior stiff region. As the input power
increases, i.e. λ increases, ρ1 (or ρ3 if appropriate) approaches zero asymptotically, so
that F→ F∞, corresponding to a completely stiff profile. At low values of λ, before
stiffness sets in, F takes the value unity, corresponding to the pedestal energy value,
plus a linear dependence on λ for the constant χ model, before saturation eventually
sets in, whereas for the gyro-Bohm model, it has a more complex dependence: linear
in λ at first, increasing as λ2/5 at larger λ, before saturation starts to occur. The
stiffness onset, which occurs when λ=2ĉ (or λ=2c) is also more gradual for the gyro-
Bohm model. However, the variation of F with λ at the onset of stiffness becomes
sharper as the heating becomes more localised. This is emphasised by allowing ρ0→

0; figure 5 shows how the onset of stiffness becomes sharper and sharper, approaching
an asymptotic limit.

One can also define a normalised energy confinement time, τ̂E. Since

τE =
WPed

PH,Tot
F(λ, ĉ, %0), (6.2)

where PH,Tot is the total heating power rather than the net total power, equation (6.1)
implies τE(λH) = 3τCondF(λ, ĉ, %0)/2λH, where λH represents just the applied
heating power. (We use the symbol PH,Tot, rather than PTot, to emphasise we are
comparing situations with and without radiative energy losses.) Thus, we define
τ̂E(λH) = F(λ, ĉ, %0)/λH. If no impurity radiation is present, so that λ = λH, τ̂E

represents the normal confinement time. It is in fact clearer to show just F(λ, ĉ, %0);
examples for the more realistic gyro-Bohm transport model are illustrated in figure 9,
where the γ = 0 case (γ = λRad/λH) shows the power dependence of the plasma
energy content predicted by the modelling. For the energy confinement time itself,
this case reflects the effects of diffusive transport at intermediate values of λH leading
to a λ−3/5

H power dependence, as anticipated for gyro-Bohm transport, with a sharper
inverse power dependence as stiffness sets in, eventually varying like 1/λH.

The pedestal energy may also have some power dependence, but we only make
some brief comments on that here. The pedestal energy appears to increase with
higher values of βPol, the poloidal beta (Chapman et al. 2015; Connor, Ham & Hastie
2016); indeed a scaling TPed ∝ β

1/2
Pol was found (Kirk et al. 2009; Maggi et al. 2017).

This would imply W ∝ F2, but the situation may well be more complex.
The results for F(λ, ĉ, %0) can also be used to infer the effect of PRad on the

plasma energy and confinement. For a given level of heating power, PH, introducing
the impurity radiative losses can be expected to diminish the plasma energy. The
amount can be quantified by seeing the effect on F(λ, ĉ, %0) by reducing λ from λH

(defined in terms of just PH) to λH(1 − PRad/PH) at constant λH. To be precise, we
consider what reduction in λ from λH to λ1, say, reduces F(λ, ĉ, %0) by 90 % as a
function of λ= λH. The quantity δλ= λH− λ1 then represents λRad= 3PRadτCond/2WPed,
which determines the acceptable radiative power. Thus, this value of γ = λRad/λH at
fixed λH is equivalent to the ratio of the acceptable level of radiative power relative
to the heating, as a function of the latter. Figure 8 shows the variation of γ (at fixed
λH) with λH for the more realistic gyro-Bohm χ model. Clearly the results are rather
insensitive to the width of the heating profile, but the radiative losses have a much
greater effect on the plasma energy content at the larger values of ĉ. Figure 9 shows
the equivalent impact of various levels of γ on the normalised plasma energy content,
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F, as a function of λH, showing how it moderates at the larger values of the heating
power.

It is useful to fit these numerical results with a simpler analytic form that describes
the effect of heating power on confinement. We construct a form for F that correctly
recovers the linear form of the analytic, small λ expansion of (4.7), merges into the
λ

2/5
form, characteristic of gyro-Bohm transport, at somewhat larger values, before

starting to saturate after the onset of critical gradients at λ= 2c. Eventually, it reaches
the large λ, asymptotic limit in (5.1). A reasonably good fit is

Ffit = 1+

{
cλ̂
10
[1− 2{1− ρ2

0} ln ρ
2
0 ] + b(F∞ − 1)λ̂3/2

}
1+ aλ̂3/5 + bλ̂3/2

, λ̂= λ/2c, (6.3)

where a and b are fitting parameters, dependent on c and %0.
Figure 10 shows a comparison of the fit (6.3) with the form of (4.8), (4.10) and

(4.13) for the parameters of figure 4 for optimised values of a and b. For given values
of c, a and b depend on %0 as shown in figure 11, where the mean square errors
characterising the ‘goodness of fit’ are also shown. Thus, the fit (6.3) for the plasma
energy content includes a dependence on the heating profile. The dependence on the
critical gradient parameter, c, is complicated, but for a given stiff transport mode this
value is well defined.

Since λ= λH(1− γ ), equation (6.3) also shows how impurity radiative losses affect
confinement. The resulting confinement time scaling follows from τ̂E,Rad = F(λH(1 −
γ ))/λH. This expression could be helpful in demonstration fusion reactor (DEMO)
studies (Lux et al. 2015, 2016).

So far, we have emphasised the effect of input power on the scaling of F and τ̂E,
but the dependence on other machine parameters, such as appear in a typical ITER
confinement scaling (Doyle et al. 2007) or ST scaling (Buxton et al. 2019), namely
magnetic field, B, plasma current, I, R, n, R/a, etc., would follow from introducing
such dependencies into the thermal diffusivity at the pedestal top, χa. For the gyro-
Bohm model one would expect

χa ∼
T3/2

a

B2a

(
na
T2

a

)p

f
( a

R
, q . . .

)
, (6.4)

where na/T2
a represents a possible collisionality dependence, p is some power and f

is a function of geometry, such as inverse aspect ratio, a/R, and the safety factor, q
(Connor 1988). Thus, for given values of WPed and Ta, geometry and q,

λ∝
B2a3−p

n1+p
, (6.5)

which can be introduced into (6.3), leading to an additional fitting parameter, p,
but covering a range of B, a and n. The results of such extensions could then be
compared with global confinement databases (Doyle et al. 2007), optimising the
choice of the parameters a and b, or relating them to the experimental values of
the heating profiles and critical gradients. However, the issue of the pedestal energy
remains to be resolved.

To briefly summarise, our principal findings are:
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FIGURE 10. Comparisons of the fit function (6.3) for F(λ/2c, c, ρ0) with the numerical
results for the gyro-Bohm mode for ρ0 = 0.33, 0.66 and 1.0, with c = 3.438, 6.875 and
10.313. The values of ρ0 are common in each column and increase from left to right and
the values of c are common in each row and increase from top to bottom.

(i) The radial regions that first experience the onset of stiff transport are dependent
on the heating profile and transport model and STs are more resilient to this onset
occurring.

(ii) The heating power dependence of the plasma energy content that takes account
of the gradual onset of stiff transport (from which one can readily deduce the
energy confinement) has been calculated.

(iii) An algebraic expression for this power dependence has been developed and it
reflects the nature of the heating profile.

(iv) The extent to which impurity radiation losses impact on the energy confinement
and modify the scaling law in the presence of stiff transport has been quantified.
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a b

FIGURE 11. The variation of the coefficients a and b used in the fitting function (6.2)
with ρ0 for c = 3.438, 6.875 and 10.313. The left-hand column is for (a), the middle
column for (b) and the right-hand column shows the mean square error in the fits. The
values of c are common in each row and increase from top to bottom.

This modelling could be improved while still retaining a similar calculation,
though at the cost of more algebraic complexity, by (i) allowing an additional
radial dependence in the thermal diffusivity, as in the example in appendix A, and
(ii) allowing the impurity radiative loss to occur in a region of different width to that
of the heating power, though still assuming both are box-like. Indeed, in the transport
code simulations of Fable et al. (2017), it was found that the effect of impurity
radiation on confinement was most reduced if the heating, due in that case to fusion
reactions peaked on axis, was separated from an outer radiating zone. Realistic radial
profiles for these quantities could be addressed using the type of modelling presented
here, using numerical solutions provided by a transport code. However, the present
calculation indicates, by allowing us to study in detail the properties of the analytic
solutions, the care needed to monitor where the onset of critical gradients, arises,
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which we have seen can occur in distinct radial regions of the plasma as the heating
profile changes.

Acknowledgements
One of us, J.W.C., acknowledges valuable and stimulating discussions with Drs P.

Buxton, A. Costley and S. McNamara of Tokamak Energy, who brought this problem
to my attention.

Appendix A. Improved gyro-Bohm transport model

It is more realistic to supplement the simple gyro-Bohm scaling χ ∼ τ 3/2 with an
additional, radially increasing factor. We take

χ =
(1+ α%2)

(1+ α)
τ 3/2χa, (A 1)

with α an 0(1) constant. This change implies that, for most reasonable parameters the
onset of stiffness starts from the plasma edge and migrates steadily inwards, as in case
(i) studied previously. Thus, this is the situation for α = 2 and ρ0 > 1/4 for example.

The analysis proceeds as before, with the transport equation becoming

1
ρ

d
dρ

(
ρ(1+ α%2)τ 3/2 dτ

dρ

)
=−
λ(1+ α)
ρ2

0
, (A 2)

so that we can again solve for u= τ 5/2/(1+ α).
Before stiffness sets in, the solution is

u= u0 −
λ

4αρ2
0

ln(1+ α%2), ρ < ρ0 (A 3)

and

u= 1−
λ

4
ln
(
%2(1+ α)
(1+ α%2)

)
, ρ > ρ0. (A 4)

Matching (A 1) and (A 2) at ρ0 yields

u= 1−
λ

4

(
ln
(
ρ2

0(1+ α)
(1+ αρ2

0)

)
+

1
αρ2

0
ln
(
(1+ α%2)

(1+ αρ2
0)

))
, ρ < ρ0. (A 5)

As λ increases, stiffness sets in at ρ = 1, when

λ= λ
(1)
c = 2c(1+ α), (A 6)

when u is given by

u= ec(1−ρ)
; ρ1 <ρ < 1, (A 7)

with ρ1 determined by

λ= 2cρ1(1+ αρ2
1)e

c(1−ρ1). (A 8)
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Then, for ρ0 <ρ < ρ1,

u= ec(1−ρ1) −
λ

4
ln
(
%2(1+ αρ2

1)

ρ2
1(1+ α%2)

)
(A 9)

and, for ρ < ρ0,

u= ec(1−ρ1) −
λ

4

(
ln
(
ρ2

0(1+ αρ
2
1)

ρ2
1(1+ αρ2

0)

)
+

1
αρ2

0
ln
(
(1+ α%2)

(1+ αρ2
0)

))
. (A 10)

The above results relate to the case ρ0 <ρ1, but for ρ1 <ρ0 which occurs when

λ= λ
(2)
c = 2cρ0(1+ αρ2

0)e
c(1−ρ0), (A 11)

we have

u= ec(1−ρ)
; ρ1 <ρ < 1 (A 12)

and

u= ec(1−ρ1) −
λ

4αρ2
0

ln
(
(1+ α%2)

(1+ αρ2
1)

)
; ρ < ρ1, (A 13)

where ρ1 is now determined by

λ
ρ1

ρ0
= 2cρ0(1+ αρ2

1)e
c(1−ρ1). (A 14)

These expressions can be used to construct the normalised energy content, F, for this
improved gyro-Bohm model

F(λ, α, c, ρ0)= 2(1+ α)2/5
∫ 1

0
ρu2/5(λ, ρ, c, ρ0) dρ, (A 15)

which involves integrals of the type

F1

(
ρj, u0, α,

λ

4αρ2
0

)
=
(1+ α)2/5u2/5

0

α

∫ 1+αρ2
j

1

(
1−

λ

4αρ2
0 u0

ln y
)2/5

dy

+
1
α

(
(1+ α)λ

4αρ2
0

)2/5

exp
(

4αρ2
0 u0

λ

)
×

[
Γ

(
7
5
,

4αρ2
0 u0

λ
− ln(1+ αρ2

j )

)
− Γ

(
7
5
,

4αρ2
0 u0

λ

)]
, (A 16)

F2

(
ρj, ρk, u1, α,

λ

4

)
= (1+ α)7/5u2/5

1

∫ ρ2
k (1+α)/(1+αρ

2
k )

ρ2
j (1+α)/(1+αρ

2
j )

dy
(1+ α − αy)2

(
1−

λ

4u1
ln y
)2/5

, (A 17)
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which needs numerical integration and, again as before,

F3(ρj, ρk)=
2
ĉ2
[(1+ ĉρj)eĉ(1−ρj) − (1+ ĉρk)eĉ(1−ρk)], (A 18)

where we emphasise ĉ, rather than c, re-appears.
Thus, we obtain for λ< λ

(1)
c

F = F1

(
ρ0, 1−

λ

4

[
ln
(
ρ2

0(1+ α)
(1+ αρ2

0)

)
−

1
αρ2

0
ln(1+ αρ2

0)

]
, α,

λ

4αρ2
0

)
+F2

(
ρ0, 1, 1−

λ

4
ln(1+ α), α,

λ

4

)
. (A 19)

For λ
(1)
c < λ< λ

(2)
c

F = F1

(
ρ0, ec(1−ρ1) −

λ

4

(
ln
(
ρ2

0(1+ αρ
2
1)

ρ2
1(1+ αρ2

0)

)
−

1
αρ2

0
ln((1+ αρ2

0))

)
, α,

λ

4αρ2
0

)
+F2

(
ρ0, ρ1, ec(1−ρ1) −

λ

4
ln
(
(1+ αρ2

1)

ρ2
1

)
, α,
λ

4

)
+ F3(ρ1, 1). (A 20)

Finally, for λ
(2)
c < λ(1)c ,

F= F1

(
ρ1, ec(1−ρ1) +

λ

4αρ2
0

ln((1+ αρ2
1)), α,

λ

4αρ2
0

)
+ F3(ρ1, 1). (A 21)

However, given that F2 needs to be evaluated numerically, it is more straightforward
to evaluate F directly from (A 15) using the appropriate expressions for u(ρ).

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1972 Handbook of Mathematical Functions. (Applied
Mathematics), chap. 6. National Bureau of Standards.

BUXTON, P. F., CONNOR, J. W., COSTLEY, A. E., GRYAZNEVICH, M. P. & MCNAMARA, S. 2019
On the energy confinement in spherical tokamaks: implications for the design of pilot plants
and fusion reactors. Plasma Phys. Control. Fusion 61 (3), 035006.

CHAPMAN, I. T., SIMPSON, J., SAARELMA, S., KIRK, A., O’GORMAN, T., SCANNELL, R. & THE

MAST TEAM 2015 The stabilizing effect of core pressure on the edge pedestal in MAST
plasmas. Nucl. Fusion 55 (1), 013004.

CONNOR, J. W. 1988 Invariance principles and plasma confinement. Plasma Phys. Control. Fusion
30 (6), 619–650.

CONNOR, J. W., TAYLOR, J. B. & TURNER, M. F. 1984 Ideal MHD ballooning instability and
scaling law for confinement. Nucl. Fusion 24 (12), 642–647.

CONNOR, J. W., HAM, C. J. & HASTIE, R. J. 2016 The effect of plasma beta on high-n ballooning
stability at low magnetic shear. Plasma Phys. Control. Fusion 58 (8), 085002.

DIMITS, A. M. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence
simulations. Phys. Plasmas 7 (3), 969–983.

DOYLE, E. J., HOULBERG, W. A., KAMADA, Y., MUKHOVATOV, V., OSBORNE, T. H., POLEVOI, A.,
BATEMAN, G., CONNOR, J. W., CORDEY, J. G., FUJITA, T. et al. 2007 Progress in the ITER
Physics Basis, Chapter 2: plasma confinement and transport. Nucl. Fusion 47 (6), S1-S414.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377820000136
Downloaded from https://www.cambridge.org/core. UKAEA, on 06 Mar 2020 at 10:29:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820000136
https://www.cambridge.org/core


28 J. W. Connor, R. J. Hastie and K. Richards

FABLE, E., WENNIGER, R. & KEMP, R. 2017 Selected transport studies of a tokamak-based DEMO
fusion reactor. Nucl. Fusion 57 (2), 022015.

ITER PHYSICS EXPERT GROUPS ON CONFINEMENT & CONFINEMENT MODELLING & DATABASE,
PLASMA CONFINEMENT & TRANSPORT 1999 ITER Physics Basis, Chapter 2. Nucl. Fusion
39 (12), 2175–2249.

KIRK, A., O’GORMAN, T., SAARELMA, S., SCANNELL, R. et al. 2009 A comparison of H-mode
pedestal characteristics in MAST as a function of magnetic configuration and ELM type.
Plasma Phys. Control. Fusion 51 (6), 065016.

KOTSCHENREUTHER, M., VALANJU, P. M., MAHAJAN, A. M. & WILEY, J. C. 2007 On heat
loading, novel divertors and fusion reactors. Phys. Plasmas 14 (7), 072502.

LUX, H., KEMP, R., WARD, D. J. & SERTOLI, M. 2015 Impurity radiation in DEMO systems
modelling. Fusion Engng Des. 101, 42–51.

LUX, H., KEMP, R., FABLE, E. & WENNIGER, R. 2016 Radiation and confinement in 0D fusion
system codes. Plasma Phys. Control. Fusion 58 (7), 075001.

MAGGI, C. F., FRASSINETTI, L., HORVATH, L., LUNNISS, A., SAARELMA, S., WILSON, H.,
FLANAGAN, J., LEYLAND, M., LUPELLI, I., PAMELA, S. et al. 2017 Studies of the pedestal
structure and inter-ELM pedestal evolution in JET with the ITER-like wall. Nucl. Fusion 57,
116012.

OCHOUKOV, R., BOBKHOV, V., ANGIONI, C., BENNERT, M., DUNNE, M., DUX, R., NOTERDAEME,
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