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Introduction
H-mode tokamak plasmas are characterised by the occurrence of quasi-periodic edge

localised modes (ELMs) that lead to large particle and heat fluxes at the divertor region of
the tokamak Y. If extrapolated to large scale tokamaks, like ITER, the corresponding loads
will exceed the material melting point 2, so control of ELMs is needed. It has been
experimentally demonstrated that the use of non-axisymmetric magnetic perturbations
(MPs) allow control of ELMs, where either ELM mitigation or complete ELM suppression is
observed B4, However, reliable access to a suppressed state only occurs in a narrow regime
of the parameter space and complete physics understanding of the cause or access to a such
plasma state is still an area of active research. Although, increased particle transport is
required for efficient ELM mitigation and reduced pedestal density to achieve ELM
suppression, this work focuses on the impact of the established non-axisymmetric magnetic
equilibrium to the peeling-ballooning (PB) instability of the plasma edge. The PB instability is
an ideal MHD instability linked with the onset of large type-1 ELMs P11,

Variational 3D MHD Stability
The stability of ideal PB MHD modes can be efficiently studied through the energy

principle. In particular, if a displacement & exists such that the potential energy change W
around an equilibrium state is negative, then this equilibrium configuration is unstable. For

a tokamak plasma the potential energy can be written as,
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where J is the jacobian of the coordinate system, S = (n X b) -V X (n X b) is the local
shear, n and b are the normal and parallel vectors, and §W, is the vacuum magnetic energy.
The variables (X,U) are related to the normal and binormal components of the plasma
displacement. The W derived here assumes that fluid and magnetic compressional waves
that can occur are minimized due to their highly stabilizing contribution. The Hermitian nature
of W, together with the fact that unstable ideal MHD modes form a discrete spectrum,
allows the use of linear exponential stability analysis to determine the most unstable eigen
mode of the system.

The stability of the axisymmetric tokamak system is routinely studied using the energy
principle. A significant simplification arises through local ballooning analysis, that analytically
relates the normal and binormal components of the displacement. As such, the potential and
kinetic energy change can be expressed as a function of X and minimization is efficiently

achieved using Fourier harmonics as basis functions for the poloidal and toroidal direction,

XZ ) X nelme )

The application of basis functions allows the representation of the kinetic and potential
energy change in a matrix form, where minimization leads to a generalized eigenvalue

problem, such as
D[ < Wi — 26K o > = 0
mn

where w is the eigenvalue (or mode frequency), n and m represent the toroidal and poloidal
mode number respectively. In principle, the selection of "good" basis functions provides an
asymptotic higher bound for the eigenvalue. Therefore, a framework is visualized and
implemented where axisymmetric stability codes, in this case ELITE [®! which is routinely used
to solve the axisymmetric version of W and &K, can be used to provide trial functions for
the full 3D system. The trial functions X,,,,, represent the axisymmetric eigenfunctions of the
PB instability. This procedure requires the knowledge of the non-axisymmetric equilibrium,
such that the 3D component of §W and 6K can be computed. This information can be
obtained once again by axisymmetric stability codes run at marginal stability and applying
appropriate boundary conditions at the plasma-vacuum interface. In this work, a fixed
boundary condition is used to represent the non-axisymmetric normal displacement of the

last flux surface.
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Application to MPs

Due to the fact that 6B<<By only second order coupling is retained leading to the triplet
of modes {n-N,n,n+N}, where N is the toroidal mode number of the applied MP field. In
principle an arbitrary number of toroidal harmonics can be included. The above method is
applied to a circular large aspect ratio tokamak plasma that is unstable to ballooning modes.
An example of the linear response in terms of the 3D normal magnetic field § B,,, pressure dp
and parallel current density 6j is given in Fig.1.
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Figure.1 The non-axisymmetric A) normal magnetic field 6B, [Gs], B) pressure p [Ba] and C) parallel current
density &j, [Frs'cm™] as obtained for an even N = 3 external resonant MP field of the By = 2.36 equilibrium.

A series of equilibria, where the pressure is increased such that gy = [1.65,1.99,2.35] and
qa = [2.97,3.01,3.04], are used to examine the stability of PB modes under the application
of an even N = 3 RMP field that is nearly resonant with the surface of the plasma. It is
observed that symmetry braking leads to further destabilization of ballooning modes, as it
can be observed from Fig.2. In addition, the increase in the axisymmetric equilibrium
pressure, results in additional destabilization that is not attributed only to the larger plasma
response. Moreover, as can be seen from Fig.2 by varying the phase A¢ of the normal
magnetic field § B,,, the change in growth rate is larger in the non-resonant (A¢~m) than the

resonant (A¢~0) case. Although, the plasma response is stronger in the resonant case it does
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Figure.2 A) The normalized growth ratey /w, of an = 15 ballooning mode as a function of applied resonant
N = 3 MP normal field § B,, for different values of normalized beta [y. B) The normalized growth ratey/w, as
a function normal field phase A¢ for §B,, = 10 [Gs] of the By = 2.36 equilibrium case.
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not necessarily lead to further destabilization and potentially indicating the importance of the
non-resonant harmonics of the 3D equilibrium in the variation of curvature and local shear.
Finally, Fig.3 illustrates a comparison between the axisymmetric and non-axisymmetric mode
structure, where for large enough MP field the ballooning mode localizes at specific poloidal

locations that coincide with locations of increased pressure.
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Figure.3 The mode structure of A) an axisymmetric n = 15 PB mode and the mode structure of B) a non-
axisymmetric n = 15 PB mode under the influence ofa N = 3 MP with A¢ = 0, 6B,, = 10 [Gs] of the By =
2.36 equilibrium case.

Summary
A numerical framework around the ELITE stability code is presented for the calculation

of 3D MHD stability of tokamak plasmas, based on the variational formulation of the energy
principle. It is observed that the ballooning mode is in general destabilized by the application
of external MP fields in accordance with local ballooning analysis. The non-axisymmetric
equilibrium leads to coupling of toroidal and poloidal modes such that retaining the individual
poloidal harmonics of the toroidal basis functions becomes important. Finally, strong coupling
is observed with increasing external field and additional toroidal harmonics will lead to more
accurate results.
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