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Introduction 
H-mode tokamak plasmas are characterised by the occurrence of quasi-periodic edge 

localised modes (ELMs) that lead to large particle and heat fluxes at the divertor region of 

the tokamak [1]. If extrapolated to large scale tokamaks, like ITER, the corresponding loads 

will exceed the material melting point [2], so control of ELMs is needed. It has been 

experimentally demonstrated that the use of non-axisymmetric magnetic perturbations 

(MPs) allow control of ELMs, where either ELM mitigation or complete ELM suppression is 

observed [3],[4]. However, reliable access to a suppressed state only occurs in a narrow regime 

of the parameter space and complete physics understanding of the cause or access to a such 

plasma state is still an area of active research. Although, increased particle transport is 

required for efficient ELM mitigation and reduced pedestal density to achieve ELM 

suppression, this work focuses on the impact of the established non-axisymmetric magnetic 

equilibrium to the peeling-ballooning (PB) instability of the plasma edge. The PB instability is 

an ideal MHD instability linked with the onset of large type-I ELMs [5],[6]. 

 
Variational 3D MHD Stability 

The stability of ideal PB MHD modes can be efficiently studied through the energy 

principle. In particular, if a displacement 𝝃 exists such that the potential energy change 𝛿𝑊 

around an equilibrium state is negative, then this equilibrium configuration is unstable. For 

a tokamak plasma the potential energy can be written as, 
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where 𝒥 is the jacobian of the coordinate system, 𝑆 = (𝒏 × 𝒃) ∙ 𝛁 × (𝒏 × 𝒃) is the local 

shear, 𝒏 and 𝒃 are the normal and parallel vectors, and 𝛿𝑊O  is the vacuum magnetic energy. 

The variables (𝑋,𝑈) are related to the normal and binormal components of the plasma 

displacement. The 𝛿𝑊 derived here assumes that fluid and magnetic compressional waves 

that can occur are minimized due to their highly stabilizing contribution. The Hermitian nature 

of 𝛿𝑊, together with the fact that unstable ideal MHD modes form a discrete spectrum, 

allows the use of linear exponential stability analysis to determine the most unstable eigen 

mode of the system. 

The stability of the axisymmetric tokamak system is routinely studied using the energy 

principle. A significant simplification arises through local ballooning analysis, that analytically 

relates the normal and binormal components of the displacement. As such, the potential and 

kinetic energy change can be expressed as a function of X and minimization is efficiently 

achieved using Fourier harmonics as basis functions for the poloidal and toroidal direction, 

𝑋 ≡T𝑋(𝜓)UV𝑒X(VYZU[) 

The application of basis functions allows the representation of the kinetic and potential 

energy change in a matrix form, where minimization leads to a generalized eigenvalue 

problem, such as 

T\ < (𝛿𝑊UV − 𝜔2𝛿𝐾UV)|𝑋UV > 	d𝜓
V,U

= 0 

where 𝜔 is the eigenvalue (or mode frequency), n and m represent the toroidal and poloidal 

mode number respectively. In principle, the selection of "good" basis functions provides an 

asymptotic higher bound for the eigenvalue. Therefore, a framework is visualized and 

implemented where axisymmetric stability codes, in this case ELITE [6] which is routinely used 

to solve the axisymmetric version of 𝛿𝑊 and 𝛿𝐾, can be used to provide trial functions for 

the full 3D system. The trial functions 𝑋UV represent the axisymmetric eigenfunctions of the 

PB instability. This procedure requires the knowledge of the non-axisymmetric equilibrium, 

such that the 3D component of 𝛿𝑊 and 𝛿𝐾 can be computed. This information can be 

obtained once again by axisymmetric stability codes run at marginal stability and applying 

appropriate boundary conditions at the plasma-vacuum interface. In this work, a fixed 

boundary condition is used to represent the non-axisymmetric normal displacement of the 

last flux surface. 
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Application to MPs 

Due to the fact that δB<<B0 only second order coupling is retained leading to the triplet 

of modes {n-N,n,n+N}, where N is the toroidal mode number of the applied MP field. In 

principle an arbitrary number of toroidal harmonics can be included. The above method is 

applied to a circular large aspect ratio tokamak plasma that is unstable to ballooning modes. 

An example of the linear response in terms of the 3D normal magnetic field 𝛿𝐵U, pressure 𝛿𝑝 

and parallel current density 𝛿𝑗∥ is given in Fig.1. 

 
                   A)                                                           B)                                                           C)                

Figure.1 The non-axisymmetric A) normal magnetic field δBn [Gs], B) pressure p [Ba] and C) parallel current  
density 𝛿𝑗∥ [Frs-1cm-3] as obtained for an even 𝑁 = 3 external resonant MP field of the 𝛽g = 2.36 equilibrium. 

A series of equilibria, where the pressure is increased such that 𝛽g = [1.65, 1.99, 2.35] and 

𝑞n = [2.97,3.01,3.04], are used to examine the stability of PB modes under the application 

of an even 𝑁 = 3 RMP field that is nearly resonant with the surface of the plasma. It is 

observed that symmetry braking leads to further destabilization of ballooning modes, as it 

can be observed from Fig.2. In addition, the increase in the axisymmetric equilibrium 

pressure, results in additional destabilization that is not attributed only to the larger plasma 

response. Moreover, as can be seen from Fig.2 by varying the phase Δ𝜙 of the normal 

magnetic field 𝛿𝐵U, the change in growth rate is larger in the non-resonant (Δ𝜙~𝜋) than the  

resonant (Δ𝜙~0) case. Although, the plasma response is stronger in the resonant case it does 

 
                                               A)                                                                                   B)      

Figure.2 A) The normalized growth rate 𝛾/𝜔w of a 𝑛 = 15 ballooning mode as a function of applied resonant 
𝑁 = 3 MP normal field 𝛿𝐵U for different values of normalized beta 𝛽g. B) The normalized growth rate 𝛾/𝜔w as 

a function normal field phase 𝛥𝜙 for 𝛿𝐵U = 10 [Gs] of the 𝛽g = 2.36 equilibrium case. 
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not necessarily lead to further destabilization and potentially indicating the importance of the 

non-resonant harmonics of the 3D equilibrium in the variation of curvature and local shear. 

Finally, Fig.3 illustrates a comparison between the axisymmetric and non-axisymmetric mode 

structure, where for large enough MP field the ballooning mode localizes at specific poloidal 

locations that coincide with locations of increased pressure. 

   
                                              A)                                                                                            B)      

Figure.3 The mode structure of A) an axisymmetric 𝑛 = 15 PB mode and the mode structure of B) a non-
axisymmetric 𝑛 = 15 PB mode under the influence of a 𝑁 = 3 MP with 𝛥𝜙 = 0, 𝛿𝐵U = 10	[𝐺𝑠]	of the 𝛽g =

2.36 equilibrium case. 
 

Summary 
A numerical framework around the ELITE stability code is presented for the calculation 

of 3D MHD stability of tokamak plasmas, based on the variational formulation of the energy 

principle. It is observed that the ballooning mode is in general destabilized by the application 

of external MP fields in accordance with local ballooning analysis. The non-axisymmetric 

equilibrium leads to coupling of toroidal and poloidal modes such that retaining the individual 

poloidal harmonics of the toroidal basis functions becomes important. Finally, strong coupling 

is observed with increasing external field and additional toroidal harmonics will lead to more 

accurate results.  
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