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Abstract
Local linear gyrokinetic simulations show that electron temperature gradient (ETG) instabilities
are the fastest growing modes for kyρi ≳ 0.1 in the steep gradient region for a JET pedestal
discharge (92174) where the electron temperature gradient is steeper than the ion temperature
gradient. Here, ky is the wavenumber in the direction perpendicular to both the magnetic field
and the radial direction, and ρi is the ion gyroradius. At kyρi ≳ 1, the fastest growing mode is
often a novel type of toroidal ETG instability. This toroidal ETG mode is driven at scales as
large as kyρi ∼ (ρi/ρe)LTe/R0 ∼ 1 and at a sufficiently large radial wavenumber that electron
finite Larmor radius effects become important; that is, Kxρe ∼ 1, where Kx is the effective radial
wavenumber. Here, ρe is the electron gyroradius, R0 is the major radius of the last closed flux
surface, and 1/LTe is an inverse length proportional to the logarithmic gradient of the equilibrium
electron temperature. The fastest growing toroidal ETG modes are often driven far away from
the outboard midplane. In this equilibrium, ion temperature gradient instability is subdominant
at all scales and kinetic ballooning modes are shown to be suppressed by E×B shear. ETG
modes are very resilient to E×B shear. Heuristic quasilinear arguments suggest that the novel
toroidal ETG instability is important for transport.
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1. Introduction

H-mode is currently the most favored high confinement oper-
ating regime in tokamaks. In H-mode, plasma confinement
significantly improves once plasma heating exceeds a certain
threshold [1, 2]. H-mode was first discovered in ASDEX [1],
and subsequently in most other tokamaks [3–6]. The precursor
to H-mode, L-mode [7], has fairly constant equilibrium gradi-
ents across its radius, whereas H-mode is characterized by
the presence of a pedestal with decreased turbulent particle
and heat diffusivities, and therefore significantly increased
equilibrium gradients. These increased gradients drive MHD
instabilities, which set hard limits on the maximum achiev-
able pressure gradient [8–11]. Turbulent transport caused by
microinstabilities driven unstable by equilibrium gradients
that steepen during the inter-ELM (inter-edge-localized mode)
period [12] can constrain other pedestal dynamics such as
MHD stability [13, 14], scrape off layer and divertor phys-
ics [15], and neoclassical transport [16], and hence studying
H-mode inter-ELM pedestal microstability is of great interest.

To study the pedestal microinstabilities, we use gyrokinet-
ics [17–22]—an asymptotic approach to solving the Fokker–
Planck kinetic equation. Gyrokinetics is well-suited for study-
ing anisotropic turbulence in highly magnetized plasmas. One
of its main results, the gyrokinetic equation, is a non-linear
partial differential equation for the time evolution of the per-
turbed gyroaveraged distribution function. We will use the lin-
earized gyrokinetic equation in conjunction with Maxwell’s
equations to study microinstabilities in JET pedestals. The
local δf gyrokinetic code GS2 [23] is used to simulate the ped-
estal plasmas presented in this article.

We study the stability of a JET ITER-like wall (JET-ILW)
inter-ELM magnetic equilibrium with different ion and elec-
tron temperature profiles. The ion and electron temperatures
are obtained using impurity charge exchange emission and
Thomson scattering, respectively. Since E×B shear is hypo-
thesized to play a key role in pedestal formation [7, 24, 25],
we focus on the radial region near the maximum value of the
equilibrium E×B shear. The region of maximum E×B shear
is estimated by balancing the radial electric field with the pres-
sure gradient.

Gyrokinetic studies of pedestals have been performed
before. Local gyrokinetic analysis of MAST found the main
instabilities at k⊥ρi ∼ 1 to be kinetic ballooning modes
(KBMs) in the steep pressure gradient region and microtear-
ing modes (MTMs) in the less steep pressure gradient region
inside the pedestal top, throughout the inter-ELM recovery of
the pedestal [26]. A follow up study using DBS and cross-
polarization scattering found that k⊥ρi ≈ 3− 4 turbulence at
the pedestal top in MAST was most consistent with the
electron temperature gradient (ETG) instability [27]. Using
the Gyrokinetic Toroidal Code [28], PIC simulations in the
steep gradient region of DIII-D discharges found electrostatic
electron-driven modes peaking at poloidal angle θ=±π/2
[29]. More recently, in JET-ILW discharges where the ion tem-
perature was not measured and was assumed to be equal to
the measured electron temperature, non-linear global gyrokin-
etic calculations were performed using the GENE code [30,

31]. These global simulations predict pedestal heat transport
fluxes that are comparable with experiment, and suggest that
pedestal fluxes will be increasingly dominated by ion temper-
ature gradient (ITG) turbulence as the heating power increases
[14]. Hatch et al also proposed that impurity seeding reduces
ion-scale and ETG instability transport via ion-dilution and
increased collisionality [14]. In [32], it was again demon-
strated that the sum of neoclassical, MTM, and ETG turbu-
lent transport was in good agreement with another JET-ILW
pedestal measurement. Another recent work that used experi-
mental ion temperature profiles found that ITGwas suppressed
in JET Carbon discharges, but not in JET-ILW cases, where
ITG turbulence carried a substantial fraction of the total heat
flux [33]. The difference between JET Carbon and JET-ILW
was attributable to a decreased density gradient in JET-ILW
discharges, which increased the growth rates of slab ITG and
ETG instabilities.

In this work, we identify a novel type of toroidal ETG
instability that appears in regions of steep equilibrium tem-
perature gradients. These sub-ion Larmor scale modes have
a radial wavenumber larger than its poloidal wavenumber,
and have been observed (but not explained) in previous ped-
estal simulations [29, 34–38]. The particularly large radial
wavenumber means that the radial magnetic drift plays an
important role in these toroidal ETG modes. We find that this
toroidal ETG has a large critical gradient threshold, which
occurs due to the pedestal’s magnetic geometry and the radial
magnetic drift. Moreover, because of the large equilibrium
temperature gradients, we show theoretically and numerically
that both toroidal and slab ETG modes are extended from per-
pendicular scales of kyρe ∼ 1 in the core, to kyρi ∼ 1 in the ped-
estal, where ky is the binormal wavenumber, defined in section
2, and ρs is the gyroradius for a species s.

We primarily examine microinstability at a single radial
location in the steep gradient region of JET-ILW shot 92714
[39], a highly-fueled deuterium discharge with deuterated
ethylene (C2D4) injection. For this discharge, at all scales
where instability occurs—0.005≲ kyρi ≲ 400—we find that
electron temperature gradient-driven modes are the fastest
growing modes. For kyρi ≳ 1, the novel toroidal ETG mode is
usually the fastest growing mode. We also show that the gradi-
ents of the measured ion temperature profiles are insufficiently
steep to drive ITG instability. With the measured ion temperat-
ure profiles, the ion temperature gradient is close to the critical
gradient needed for linear instability and hence subdominant.
We also show that if ion temperature gradients are made suffi-
ciently steep, toroidal and slab ITG modes become unstable at
kyρi ≪ 1, but can be suppressed by E×B shear. Our findings
suggest that the toroidal and slab ITGmode are stable in many
radial pedestal locations, even in the steep gradient region that
we examine.

The layout of this paper is as follows: we first introduce
gyrokinetics and the notation used throughout this paper in
section 2. We then present JET-ILW density, temperature,
and rotation profiles from an inter-ELM pedestal in section
3. Here, we also give a broad overview of the growth rates
and unusual mode structures for the fastest growing modes
in this pedestal, including a discussion of electromagnetic
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effects and E×B shear. At a wide range of scales, we find an
ETG mode with unusual character. This mode typically has
a radial wavenumber that is significantly larger than the pol-
oidal wavenumber, and is insensitive to finite β effects and
E×B shear. Motivated by the results of section 3 and using
the notation of section 2, we then make analytic predictions
about microinstability in steep gradient regions in section 4.
This theoretical analysis explains the existence of the novel
toroidal ETGmodes that we see in section 3. We then examine
ETG and ITG (or lack thereof) instability in linear gyrokin-
etic simulations in sections 5 and 6, respectively. The effect
of E×B shear is discussed further in section 7. Finally, we
conclude in section 8. Experimentally-minded readers might
wish to jump to sections 3 and 5, while those more theoret-
ically inclined and with a background in gyrokinetics might
wish to begin at section 4.

2. Gyrokinetics

In this section, we introduce the system of gyrokinetic equa-
tions and notation used throughout this paper. This section
can be skipped for readers well-acquainted with gyrokinetics,
or who mainly wish to see gyrokinetic simulations results in
sections 3, 5 and 6. Gyrokinetics [17–22] is used to invest-
igate turbulence and transport using an asymptotic expansion
in the ratio of ρ∗s ≡ ρs/LTs ≪ 1. We express the gradients
by the equilibrium length scales LQ ≡−(∂ lnQ/∂r)−1, where
Q can be the equilibrium density, temperature, or pressure,
and the distance r is half of the diameter of the flux surface
at the midplane. Assuming k⊥ρi ∼ 1 and ω≪ Ωs, gyrokinet-
ics describes plasma behavior on spatial scales comparable
to the ion gyroradius, and on timescales much longer than
the gyro period. The quantity k⊥ is the perpendicular turbu-
lence wavenumber, ω is the frequency for turbulence quant-
ities, Ωs = ZseB/msc is the gyrofrequency, Zs is the charge
number, e is the proton charge, B is the leading order mag-
netic field strength, ms is the species mass, and c is the speed
of light. The gyrokinetic ordering is ρ∗s ∼ ω/Ωs ∼ νs/Ωs ∼
k∥/k⊥ ≪ 1, where νs is a typical collision frequency for spe-
cies s, and k∥ is the turbulence parallel wavenumber. To obtain
a rough estimate for the radial electric field (see equation (16)),
we will impose that the radial electric field is comparable
to the pressure gradient, which implies a low flow ordering
[40–42] for the electric field, |E| ∼ T0e/eLTe, that is, the equi-
librium E×B drift is small compared with the thermal velo-
city vts =

√
2T0s/ms by a factor of ρ*s, where T0s is the leading

order temperature.
We expand the magnetic field in ρ*s, B+B1 +B2 + . . .,

where Bn = ρn∗sB (we reserve B for the leading order mag-
netic field, and do not explicitly use a symbol for the total
magnetic field in this paper). The lowest order magnetic field
is written as B= I(r)∇ζ +∇ζ ×∇ψ, where ζ is the toroidal
angle, ψ is the poloidal flux divided by 2π, and I(r) is a flux
function. For n≥ 1, we further split Bn into long-wavelength

and turbulence components, Bn = Blw
n +B

tb
n . We reserve the

overline notation for some turbulent quantities because later

we will write their Fourier components without an over-
line, which will keep the notation tidier. Long wavelength
quantities, glw, spatially change on equilibrium length scales,
∇glw ∼ glw/LTs, and temporally change on slow time scales,
∂glw/∂t∼ glw/τE, where τE is the energy confinement time
and t is the time variable. Turbulence quantities, gtb, spatially
change on equilibrium length scales along the mean mag-
netic field, b̂ ·∇gtb ∼ gtb/LTs, but on gyroradius scales across
the mean field, ∇⊥gtb ∼ gtb/ρs, and temporally change on
fast time scales, ∂gtb/∂t∼ ωgtb. Here, b̂= B/B, and ∇⊥ is
a spatial derivative perpendicular to B. We ignore the cor-
rection, Blw

1 , which is mainly due to the effect of the neo-
classical pressure anisotropy on the magnetic field. One can
show that the turbulent component of B1 can be written as

B
tb
1 =∇Atb∥1 × b̂+B

tb
∥1b̂, where B

tb
∥1 and A

tb
∥1 are the leading

order parallel components of the turbulent magnetic field and
magnetic vector potential, respectively.

We also expand the electric field E in ρ*s, E= E0 +E1 +
. . ., whereEn ∼ ρn∗sT0 s/eLTs.We splitEn into longwavelength

and turbulent parts, En = Elw
n +E

tb
n . To lowest order, E0 is

electrostatic;Elw
0 =−∇ϕ0, andE

tb
0 =−∇⊥ϕ

tb
1 . Here, ϕ0 is the

leading order electric potential and ϕ
tb
1 is the leading order

turbulent electric potential, where ϕ
tb
1 ∼ ρ∗sϕ0. Since ϕ0 is a

flux function, E0 · b̂= 0. To leading order, the parallel com-

ponents of the electric field are Elw∥ =−b̂ ·∇ϕlw1 and E
tb
∥ =

−b̂ ·∇ϕtb1 − (1/c)(∂A
tb
∥1/∂t). The electrostatic potential ϕ

lw
1 is

mainly due to neoclassical physics.
We expand the distribution function in ρ*s, fs = FMs+ f1 s +

. . ., where the lowest order distribution function, FMs, is a sta-
tionary Maxwellian,

FMs(r,v) = n0 s(r)
( ms

2πT0s(r)

)3/2
exp
(
− msv2

2T0s(r)

)
, (1)

with particle speed v, and flux functions n0s and T0s, where
n0s is the leading order density. The Maxwellian is stationary
because the mean flow is subsonic. Higher order corrections to
the distribution function can be split into long-wavelength and
turbulent quantities, fns = f lwns + f tbns, where neoclassical correc-
tions would be included in f lwns .

To describe phase space, we will employ gyrokinetic vari-
ables. These are the guiding center, Rs, the kinetic energy,
E = v2/2 , the magnetic moment, µ= v2⊥/2B where v⊥ =

v− v · b̂b̂, and the gyrophase, φ, which is a particle’s angu-
lar location during its gyromotion. The guiding center is given
by Rs = r−ρs, the gyroradius position is given by ρs = b̂×
v/Ωs, and the quantity r is the particle position. The first order
turbulent component of the distribution function can bewritten
as

f tb1s(Rs,E ,µ,φ, t) = hs
(
Rs,E ,µ, t

)
− Zseϕ

tb
1

T0 s
FMs(r,E , t). (2)

Note that the function hs is independent of the gyrophase—
our task is to find an evolution equation for hs. To find
hs, we substitute equation (2) into the Fokker–Planck equa-
tion. Because only the variable φ varies over a single
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gyroperiod, it is convenient to average the Fokker–Planck
equation over the gyromotion using a gyroaverage, defined as
⟨. . .⟩= (1/2π)

´ 2π
0 . . .dφ|Rs,E,µ, evaluated at fixed Rs,E , and

µ. Gyroaveraging the Fokker–Planck equation and taking its
turbulent component, we obtain the low flow electromagnetic
gyrokinetic equation,(
∂

∂t
+ΩE

∂

∂ζ

)
hs+(v∥b̂+ vMs+ ⟨vtbχ⟩) ·∇Rshs+

∑
s′

〈
C(l)
ss′

〉
=
ZseFMs
T0 s

(
∂

∂t
+ΩE

∂

∂ζ

)
⟨χtb1 ⟩

− ⟨vtbχ⟩ ·∇RsFMs, (3)

whereΩE(r) =−c∂ϕ0/∂ψ is the E×B toroidal angular velo-
city, C(l)

ss′ is a linearized Fokker–Planck collision operator,
∇Rs ≡ ∂/∂Rs, the magnetic drift is

vMs =
b̂
Ωs

×
[(

v2∥ +
v2⊥
2

)
∇ lnB+ v2∥

4π
B2

∂p0
∂r

∇r
]
. (4)

Here, p0 =
∑

s p0s is the total pressure and p0s = n0sT0s is the
lowest order pressure. The parallel velocity is v∥ = v · b̂, and
the gyrokinetic drift is vtbχ = (c/B)b̂×∇χtb1 . Here, χtb1 is the
leading order turbulent gyrokinetic potential defined as

χtb1 = ϕ
tb
1 −

v∥A
tb
∥1

c
+
ms

Zse

ˆ µ

0
B
tb
∥1(Rs+ρs(µ

′))dµ′. (5)

In equation (3), ΩE(r) can be approximated around the radial
location rc of interest by ΩE(rc)+ (r− rc)(∂ΩE/∂r) because
the characteristic size of the eddies is small compared with
LTe. In the low flow ordering that we use, the term (r−
rc)(∂ΩE/∂r), which represents the E×B shear, should be
neglected because it is of the same size as other terms that
we have not kept. Even so, we perform some simulations with
E×B shear. We will justify using this small term in section 7.

To close the system of equations, we need to find ϕ
tb
1 , A

tb
∥1,

and B
tb
∥1 using hs. To find ϕ

tb
1 , we use the first order turbulent

quasineutrality condition,

∑
s

Z2se
2ϕ

tb
1

T0s
n0s =

∑
s

Zse
ˆ
hs(r−ρs,E ,µ)d3v. (6)

The parallel vector potential, A
tb
∥1, is found using the parallel

component of Ampère’s law,

−∇2
⊥A

tb
∥1 =

4πe
c

∑
s

Zs

ˆ
v∥hs(r−ρs,E ,µ)d3v. (7)

Finally, B
tb
∥1 is determined by perpendicular pressure balance,

BB
tb
∥1

4π
+
∑
s

ˆ
msB
ˆ µ

0
hs(r−ρs(µ

′),E ,µ)dµ′d3v= 0. (8)

Note that the integral over µ′ only affects the µ dependence of
ρs.

Throughout this paper, we will examine the stability prop-
erties of the gyrokinetic equation in the linear local limit.
To understand how these linear instabilities then cause turbu-
lent transport, one needs to keep the non-linear term of equa-
tion (3), which we will neglect in this work. The local limit,
k⊥LTs ≫ 1, is useful for analytic treatment and numerically
efficient simulations. If k⊥LTs ≫ 1, modes can be Fourier ana-
lyzed in the perpendicular domain. In JET shot 92174 at the
radial location, we examine, LTe ≃ 0.02m, and thus the local
approximation is good provided that k⊥ρi ≫ ρi/LTe ≃ 0.12.
Note that throughout this work, the quantity kyρi will be a
deceiving measure of k⊥ρi; the modes that we find typically
have a very large radial wavenumber compared to kyρi. Hence,
for these modes k⊥ρi ≫ kyρi.

To describe the properties of the turbulent pieces,

ϕ
tb
1 ,A

tb
∥1,B

tb
∥1, and hs, we use the flux coordinates (x, y, θ). The

coordinate x is a local flux surface label defined around the
flux surface rc (note that it is different from the flux label r),
y is a field line label, and θ is a poloidal coordinate that labels
the position along the magnetic field line. The coordinates x
and y are given by

x=
qc
rcBa

(ψ(r)−ψ(rc)), y=
1
Ba

∂ψ

∂r

∣∣∣∣
rc

α, (9)

where Ba is the toroidal magnetic field strength evaluated at
rc and Rc, Rc is the distance from the axis of symmetry of the
tokamak to the center of the flux surface rc at the midplane,
qc = q(rc), α= ζ − qθ+ ν(r,θ), and ν(r, θ) is a function 2π-
periodic in θ,

ν(r,θ) =−I(r)
(ˆ θ

0
dθ′
[

1
R2(θ′)B(θ′) ·∇θ′

− 1
2π

˛
dθ′′

R2(θ′′)B(θ′′) ·∇θ′′

])
. (10)

The safety factor, q(r), is given by 2πq(r) =
¸
I(r)dθ/R2B ·

∇θ. We choose to define the poloidal angle θ as

θ = 2πl/Lθ, (11)

where l is the arclength along the magnetic field, and Lθ is the
distance along a field line for one complete poloidal turn.

Spatial anisotropy, k⊥/k∥ ≫ 1, implies that ∂/∂x∼
∂/∂y≫ (2π/Lθ)∂/∂θ. In the linear local limit, we Fourier

analyze ϕ
tb
1 locally in the perpendicular plane and in time,

ϕ
tb
1 (x,y,θ, t) =

∑
kx,ky,ω

ϕtb1 (kx,ky,θ,ω)exp(ikxx+ ikyy− iωt).

(12)
The electromagnetic fluctuations A

tb
∥ and B

tb
∥ are Fourier ana-

lyzed in a similar way. It will also be useful to Fourier analyze
hs,
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hs(Xs,Ys,θ,E ,µ, t) =
∑
kx,ky,ω

hs(kx,ky,θ,E ,µ,ω)

× exp(ikxXs+ ikyYs− iωt), (13)

where Xs = x−ρs ·∇x and Ys = y−ρs ·∇y are guiding cen-
ter variables. In the next section we present the profiles for the
JET shot that we are examining, as well as an overview of the
gyrokinetic results. These gyrokinetic results will motivate the
work for the rest of the paper.

3. Pedestal gyrokinetic simulations of JET shot
92174

In this section, we present the significant linear microstabil-
ity features of a single JET-ILW inter-ELM pedestal discharge
at a single radial location. This equilibrium exhibits proper-
ties such as temperature, magnetic geometry, injected neut-
ral beam power, and fueling that are typical for JET-ILW
inter-ELM H-mode pedestals: key experimental parameters
for this discharge are Ip= 1.4 MA, BT0 = 1.9 T, H98(y,2) = 1.0,
nG= 0.7, PNBI = 17.4 MW, βN = 2.5, and RD = 0.9× 1022

electrons/s. Here, Ip is the poloidal current, BT0 is the toroidal
magnetic field at R= 2.96m, H98(y,2) is the H factor relative to
the IPB98(y,2) scaling [43], nG is the Greenwald density frac-
tion [44] defined as the line averaged density divided by the
Greenwald density limit, PNBI is the neutral beam injection
power, βN is the normalized β factor [45], and RD is the deu-
terium electron flow rate.

In section 3.1, we show the pedestal equilibrium temper-
ature, density, and flow profiles, which will have significant
implications for microstability. In section 3.2, we present an
overview of linear results from gyrokinetic simulations, run
both with and without finite β effects. From these results, we
justify an electrostatic study. Here, we find a range of modes,
including an unusual toroidal ETG instability that is driven at
a very wide range of perpendicular scales, and has a radial
wavenumber that is typically much larger than its poloidal
wavenumber. A significant portion of the paper will be devoted
to understanding this mode. We show that this mode is largely
unaffected by finite β effects and E×B shear, and in sub-
sequent sections, that it could play an important role in trans-
port. Finally, in section 3.3, we present the prominent features
of the electrostatic growth rate spectrum.

3.1. JET-ILW Profiles

In this paper, we focus on simulation results from JET
shot 92174. We run linear gyrokinetic simulations with a
single deuterium ion species and no impurities, assuming that
n0e = n0i (note that experimentally Zeff = 1.8, where Zeff =∑

i n0iZ
2
i /n0e). The three other pedestals that we have analyzed

(82550, 92167, 92168) give qualitatively similar results, which
is notable, given that the nature of these discharges varies quite
significantly. The experimental and simulation parameters and
linear gyrokinetic growth rates for these additional three dis-
charges are shown in appendix A.

The temperature and density profiles for shot 92174 and
associated gradients, are shown in figures 1(a), (b), and (d) as
functions of r/a. The distance a is the value of r at the last
closed flux surface (LCFS). In figure 1(c), we also show the
toroidal velocity of 12

6 C
+, uζC, at the outboard midplane, nor-

malized by the ion thermal speed vti =
√

2T0i/mi. We assume
that this velocity is a good proxy for the toroidal ion velo-
city, uζi. We normalize the gradient length scales using the
major radius of the last closed flux surface, R0, which is the
radial distance to the center of the last closed flux surface
at the midplane. The profiles in figure 1 are consistent with
an emerging JET-ILW pedestal paradigm [14, 33, 46, 47],
whereby enhanced gas puffing reduces the edge density gradi-
ent [48] and shifts the density pedestal outwards [27, 49],
making microinstabilities more virulent [50]. Weaker density
gradients also reduce the E×B shear, which has often been
observed to be important for microinstability suppression in
the pedestal [14, 33, 47]. It is hypothesized that heat transport
from more strongly-driven microinstabilities with less shear
suppression is responsible for a reduced temperature at the
pedestal top [33].

In this work, the electron temperature and density are
determined from the High Resolution Thomson Scattering
profiles [51, 52]. To improve the data statistics, a composite
profile is constructed from profiles collected in a time window
of 80–99% in the ELM interval period. The profiles of the ion
temperature and rotation are measured with the edge Charge
Exchange Recombination Spectroscopy diagnostic [53] for
fully stripped carbon-12 (126 C

+), with a time integration of
7.2 ms. These ion profiles are collected on a longer 60-99 %
ELM interval period time window. The 12

6 C
+ and ion temper-

ature and rotation profiles in the pedestal can differ substan-
tially, as found in some recent DIII-D experiments [54–56].
Since the ITG instability is sensitive to T0i and R0/LTi, the ITG
instability results in section 6 should be viewed in the context
of potentially large uncertainties in ion temperature measure-
ments, which might significantly underestimate the ion tem-
perature gradient. For this reason, while we have mainly used
T0i > T0e and R0/LTe > R0/LTi in our simulations and theory,
we have also explored the impact on gyrokineticmicroinstabil-
ities of assuming T0e = T0i andR0/LTi = R0/LTe, which can be
found in section 6. However, unless explicitly mentioned oth-
erwise, we use the measured ion temperature profiles.

To obtain an estimate for the radial electric field, we use the
most general ion flow [40, 41],

ui =−c∂ϕ0
∂ψ

R2∇ζ − c
Zien0i

∂p0i
∂ψ

R2∇ζ + B
n0i
Ki(ψ)

∂T0i
∂ψ

.

(14)
Here, R is the major radius, and the flux function, Ki(ψ),
is determined by neoclassical theory [40, 41]. Based on the
experimental data in figure 1, we find that uζC ≲ (ρPi/LTi)vti.
The quantity ρPs = (B/BP)ρs is the poloidal gyroradius for a
species s, where BP is the poloidal magnetic field strength.
Thus, the flow velocity of the 12

6 C
+ impurity species is com-

parable to the size of the ion diamagnetic flow, uζip,
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Figure 1. Pedestal profiles and their gradients for JET shot 92174. Crosses indicate simulation location of r/a= 0.974 3. (a) Ion and
electron temperatures profiles. (b) Density profiles. (c) Flow profiles for uζC, the experimental value for the toroidal component of the 12

6 C
+

flow, and uζip, the toroidal component of the ion diamagnetic flow, defined in equation (15). (d) Temperature and density gradients profiles.
(e) ηs profiles, where the parameter ηs is defined as ηs ≡ Ln/LTs. (f ) Flow shear profiles.

uζip
vti

=− Rc
Zien0ivti

∂p0i
∂ψ

∼ ρPi
Lpi

∼ 1
3
. (15)

Note that this implies that there are only several poloidal
gyroradii in a pressure length scale, Lpi. To obtain a rough
estimate of the radial electric field, we use the fact that the
measurement of uζi suggests that the overall flow, the E×B
flow, the diamagnetic flow in equation (15), and the term pro-
portional to Ki(ψ) are all of the same order. Thus,

− ∂ϕ0
∂ψ

≈ 1
Zien0i

∂p0i
∂ψ

. (16)

Then, the radial shear in the E×B rotation, γE(ψ), is approx-
imately

γE ≡−cr
q
∂

∂r

(
∂ϕ0
∂ψ

)
≈ r
q
∂

∂r

(
c

Zien0i

∂p0i
∂ψ

)
. (17)

The location of the simulations was chosen to have equilib-
rium length scales characteristic of the steep gradient region
in the pedestal, and an E×B shear value close to the max-
imum possible for a given equilibrium, using the estimate
in equation (17). The radial location for JET shot 92174,

shown in figure 1, is r/a= 0.9743. To simulate this dis-
charge, we use the following simulation parameters: ρi =
0.27 cm, νeea/vti = 0.83, a/LTe = 42, a/LTi = 11, a/Ln =
10, ρi/LTe = 0.12, T0e/T0i = 0.56, ŝ= 3.36, q= 5.1, R0 =
2.86 m, a= 0.91 m, Rc= 2.91 m, and rc= 0.89 m, where
νss′ =

√
2πn0 s′Z2sZ

2
s′e

4 ln(Λss′)/
√
msT

3/2
0 s , ln(Λss′) is the Cou-

lomb logarithm, and ŝ= (r/q)∂q/∂r is the magnetic shear. In
the instances where we included E×B shear and electromag-
netic effects, we used γEa/vti = 0.56 and β= 0.0031. Here,
the quantity β = 8π(p0i+ p0e)/B2

a, where Ba= 1.99 T for this
equilibrium.

3.2. Gyrokinetic simulation results

In this section, we present results obtained from linear
gyrokinetic simulations (both electromagnetic and electro-
static) for this radial location and pedestal. For the chosen
pedestal and radial location, we will establish that linear elec-
trostatic simulations without E×B shear give similar growth
rate spectra to linear electromagnetic simulations with E×B
shear. The electrostatic limit of equation (3) is taken by requir-
ing that the turbulent electric field is primarily electrostatic,

6
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Figure 2. The Miller equilibrium and numerical equilibrium for JET shot 92174 used for gyrokinetic simulations. (a) Equilibrium and
Miller flux surfaces in RM,ZM space, (b) Equilibrium and Miller poloidal magnetic field versus θM , (c) Equilibrium toroidal and poloidal
magnetic fields.

|∇ϕtb1 | ≫ (1/c)|∂Atb∥1/∂t|, and that the turbulent magnetic

field is small, |µBtb1 | ≪ |Zsϕ
tb
1 |e/ms

8. It is no coincidence that
the electrostatic regime without E×B shear and the electro-
magnetic case with E×B shear give similar results; electro-
magnetic modes are suppressed by E×B shear, leaving elec-
trostatic modes that are unaffected by E×B shear as the dom-
inant instabilities. Therefore, it is reasonable to study this ped-
estal with linear electrostatic simulations without E×B shear.
We will choose to study the electrostatic limit without E×B
shear rather than an electromagnetic case with E×B shear
because the former is analytically and numerically simpler.We
now proceed to give an overview of gyrokinetic results for the
electrostatic pedestal.

We performed these local simulations in ballooning space,
which can be represented in a flux-tube [57]. Because the novel
toroidal ETG instability we have found is often driven at large
distances along the field line from θ= 0, we require a large
range of θ values, and hence we typically choose a flux-tube
with 64 gridpoints in each 2π period in θ, with nine periods.
This is equivalent to a ballooning space calculation extending
to nine poloidal turns in the extended ballooning angle. The
standard velocity space grid has 20 passing pitch angles, 33
trapped pitch angles, and 12 energy gridpoints [58]. Resolu-
tion scans were performed in all of these parameters by doub-
ling each of them independently; there was no significant dif-
ference in the frequencies or the character of these modes.

While GS2 is capable of reading in numerical equilib-
ria, we fit the magnetic equilibrium with Miller geometry.
A Miller equilibrium is a prescription to generate flux sur-
faces that satisfy the Grad Shafranov equation locally by
fitting to nine parameters [59]. The shape of the flux sur-
face rc and its neighbors is determined by R= RM(r,θM) and
Z= ZM(r,θM), where θM is the Miller poloidal angle, which

8 Even though the last term in equation (4) is formally small in β in the elec-
trostatic limit, we keep it in all our electrostatic simulations because the large
pressure gradients in the pedestal can make it important.

is in general not equal to the poloidal angle θ defined in
equation (11). In figure 2 we show the difference between
the exact flux surface at r/a= 0.9743 and the Miller fits
that we use. The Miller parameters for this radial location
are dRc/dr=−0.345, κ= 1.55, a(dκ/dr)= 0.949, δ= 0.263,
a(dδ/dr)= 0.737, β′ = βa(d lnp0/dr) =−0.161, where κ is
the flux surface elongation and δ is the triangularity.

Electromagnetic effects have been shown to be important
for microinstability in the pedestal [14, 26, 32, 33, 38]. While
we have neglected electromagnetic effects in most of this
study, we have scoped out the potential effects of nonzero β.
As an initial study, this is well-justified since we will show that
a linear electromagnetic gyrokinetic simulation with E×B
shear gives similar results to a linear electrostatic gyrokinetic
simulation without E×B shear. To demonstrate this equival-
ence, we first show the results of gyrokinetic simulations with
and without finite β effects in figure 3. To include finite β
effects, we included values of β and β′ consistent with the
Miller equilibrium.

In figure 3, we show the effect of finite β on the growth rates
(a), real frequencies (b), and eigenmodes (c) for θ0 = 0, where
θ0 is the ballooning angle, defined as θ0 = kx/ŝky. Throughout
this paper, the eigenmodes are separately normalized such that
|ϕtb1 | has a maximum of 1. When finite β effects are included,
a KBM appears, as shown by the small bump at kyρi ∼ 0.1 in
figure 3(a) of the growth rates. This KBM has a standard bal-
looning eigenmode structure, centered at θ= θ0 = 0. However,
when β= 0, there is no KBM, and instead at kyρi ∼ 0.1 there
are modes with a much lower growth rate and a complicated
mode structure in θ (see figure 3(c)). These eigenmodes tend
to have maxima in bad curvature regions and can have either
ballooning or tearing parity in both Re(ϕtb1 ) and Im(ϕtb1 ). More
details regarding these long wavelength electron modes can be
found in section B.

Much of the rest of the growth rate spectrum is quite unaf-
fected by finite β effects. At kyρi ≈ 1− 5 for θ0 = 0, there is
a peculiar bump in figure 3(a), whose corresponding instabil-
ity will be the focus of much of this paper. We identify this
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Figure 3. (a) GS2 growth rate (γ) and (b) Real frequency (ωR) for JET shot 92174 with θ0 = 0 with and without finite β. (c) Eigenmodes
for kyρi = 0.2. (d) Growth rates for an electromagnetic simulation with different θ0 values at kyρi ∼ 0.1. All of these simulations are
performed without E×B shear.

mode as toroidal ETG. We have undertaken extensive tests
described later in section 5 to confirm that it is a novel type
of toroidal ETG; for now, we will refer to it as a toroidal ETG
mode without justification. Finally, for kyρi ≳ 5 and θ0 = 0,
the fastest growing mode becomes a slab ETG mode, which
again, we will justify later in section 5. Clearly the toroidal
ETG mode is almost entirely unaffected by finite β, and the
slab ETG growth rates decrease by roughly 20%, but the mode
structure is qualitatively the same. Thus, apart from the KBM,
the electromagnetic and electrostatic growth rates and modes
are very similar.

Once E×B shear is included in the simulations, the elec-
tromagnetic and electrostatic growth rate spectra become qual-
itatively the same. This is because E×B shear is found to
easily suppress the KBM. Recall that the KBM is the main
difference between the electromagnetic and electrostatic sim-
ulations without E×B shear. Further evidence for the effect-
iveness of the E×B shear for suppressing the KBM is that
the KBM is stable for all |θ0|> θ0c ≈ 0.5, as shown in figure
3(d), where we show the growth rates for a range of θ0 values
at scales 0.01< kyρi < 0.3 in a simulation with finite β. The
dependence on θ0 is important because E×B shear causes a
mode’s radial wavenumber to vary with time as ∆kx = kyγEt,
giving a change of θ0 of ∆θ0 = γEt/ŝ. If a mode is shown
to be unstable only for a very narrow range of θ0 values,
|θ0|< |θ0c|, it is highly susceptible to E×B shear because in
a time of order 1/γE its θ0 changes significantly. After a time
tC ∼ ŝθ0c/γE, E×B shear will have suppressed the KBM; in

our simulations, tC≈ 3. Thus, to suppress instability we require
γtC ≲ 1, leading to γE/ŝγ ≳ θ0c ≈ 0.5. We will discuss the
E×B shear and its effects on all the other instabilities we find
in more detail in section 7. Until then, all simulations are per-
formed without E×B shear.

Finally, the perpendicular wavenumber of the KBM is
close to the limit where local simulations are valid, which
is when k⊥ρi ≫ 0.12. Hence, results from our KBM simula-
tions should be viewed in the context of uncertainties that are
present due to the value of k⊥ρi for the KBM being close to
this limit.

3.3. Linear features of the electrostatic pedestal

In this section, we describe the most prominent features of the
electrostatic growth rate spectrum.

A notable feature of the growth rate spectrum shown earlier
in figure 3 is the bump at kyρi ≈ 1− 5 in figure 3(a), which
we claimed was a novel toroidal ETG instability. In figure
4(a), we show the growth rates for two values of θ0. Focus-
ing first on θ0 = 0, we again identify the bump at kyρi ≈ 1− 5,
which has a peak growth rate at kyρi ≃ 3. Once kyρi ≳ 5, the
mode switches to a slab ETG instability. In figure 4(b), we
show the eigenmodes for two kyρi values in the θ0 = 0 growth
rate spectrum, one at kyρi = 2.4 (near the top of the toroidal
ETG bump) and one at kyρi = 51.4. The eigenmode associ-
ated with kyρi = 2.4 is fairly localized at large θ, whereas the
eigenmode associated with kyρi = 51.4 is centered at θ= 0 and
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Figure 4. (a) Electrostatic growth rates for 2 values of θ0. (b) Eigenmodes for 2 values of kyρi at θ0 = 0. (c) Eigenmodes for 2 values of kyρi
at θ0 = 0.5.

has a large parallel wavenumber. The kyρi = 2.4 mode is the
novel toroidal ETG mode, and the kyρi = 51.4 mode is a slab
ETGmode. In our up-down symmetric equilibrium fit, there is
a subtlety for the novel toroidal ETG eigenmodes when θ0 = 0:
there are two independent modes that grow at the same rate,
and are localized at opposite signs of θ. Indeed, for toroidal
ETG, there must be two independent modes with θ0 = 0, since
the linear gyrokinetic equation is invariant under the trans-
formation θ→−θ, θ0 →−θ0 [60]. Thus, henceforth, when
plotting the eigenmodes for θ0 ≃ 0, we choose a small value of
θ0, θ0 = 0.05, which causes the mode at one location to grow
slightly faster than the mode at the other, but barely changes
the growth rate compared with θ0 = 0. This results in a well-
defined single eigenmode, like the one in figure 8(a), rather
than two separate modes, like the ones shown in figure 4(b).
The relative size and phase of the modes at opposite values of
θ depend on the initial condition.

To distinguish between the toroidal and slab ETGmodes in
figures 3(a) and 4(a), we used a set of criteria discussed extens-
ively in section 5.1. Briefly, the toroidal ETG eigenmodes are
localized far along the field line for smaller kyρi values, and are
at a θ location with the opposite sign of θ0 for larger kyρi val-
ues. Sensitivity scans to equilibrium parameters, shown in fig-
ure 7, reveal that the slab and toroidal ETG branches have dif-
ferent dependencies on parameters such as R0/LTi and R0/Ln.
For a given kyρi, slab ETG modes also tend to have a much
larger k∥ than toroidal ETG modes.

While the novel toroidal ETG mode is the fastest growing
instability for 1≲ kyρi ≲ 5 when θ0 = 0, we find that when θ0
differs slightly from 0, the toroidal ETG mode is the fastest
growing for 1≲ kyρi ≲ 400. We show a simple example of
the growth rate spectrum for θ0 = 0.5 in figure 4(a), where
the toroidal ETG mode is the fastest growing mode for that
particular value of θ0 for all kyρi ≳ 1. In figure 4(c), we show
the eigenmodes for θ0 = 0.5 for kyρi = 2.4 and kyρi = 51.4.
For kyρi = 2.4, the eigenmodes for θ0 = 0 and θ0 = 0.5 have
a similar structure, both being localized at |θ| ≃ 8. However,
the eigenmode at kyρi = 51.4 is dramatically different to the

θ0 = 0 mode at kyρi = 51.4; the eigenmode for θ0 = 0.5 is loc-
alized at θ≃−1, and has, in fact, the same novel toroidal ETG
character we identified earlier. In section 5 we will explain
these toroidal ETG modes in much more detail, including the
reasons why they move in θ for different values of kyρi, as
evidenced by the eigenmodes for θ0 = 0.5 at kyρi = 2.4 and
kyρi = 51.4.

For completeness, we briefly describe the modes we
find at larger scales. For this JET discharge and the
surface r/a= 0.974 3, we find that the instabilities are
electron-driven between 0.005≲ kyρi ≲ 400. For 0.005≲
kyρi ≲ 0.07 the modes have electron tails similar to those
described in [61], and for 0.1≲ kyρi ≲ 1.0, there are
complicated modes that appear to be a form of ETG
we do not yet fully understand. Both the electron tails
and complicated ETG modes will be excluded from in-
depth analysis in the main text, but are described in
section B.

In the next section, we introduce the theory needed to
understand these novel toroidal ETGmodes as well as the slab
ETGmodes at kyρi ≳ 1. We will see that the existence of these
modes follows naturally from the steep temperature gradients
in pedestals.

4. Linear gyrokinetics with large gradients

In this section, we analyze the consequences of large equilib-
rium gradients for linear collisionless electrostatic gyrokinetic
stability, which will considerably change the character of the
toroidal ETG instability. We have already motivated the local
and linear limits in section 2, and the electrostatic limit in sec-
tion 3.2.We nowmotivate the collisionless limit of the electron
gyrokinetic equation, which will be used for the theoretical
analysis.

The collisionless limit for electrons is justified by the small
electron collision frequency, νee ≪ γ. For JET shot 92174 at
r/a= 0.974 3, νee ≃ 2.4× 105 Hz, and γ≃ 1.6× 106 Hz for
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kyρi = 2. In gyrokinetic simulations, we found ETG instabil-
ities to be relatively insensitive to whether collisions are
kept. However, for ITG scale instabilities at lower frequen-
cies, electron collisions can decrease the ITG growth rates
and cause electrons to be non-adiabatic, as we will see in
section 6.

Using the equations laid out in section 2, we take the
linear electrostatic collisionless local limit of the gyrokin-
etic equation in section 4.1. Analytically and computation-
ally, this limit is more straightforward, and includes key ele-
ments of the pedestal microinstability linear physics that we
wish to explain. Motivated by the steep pedestal gradients,
we explore the implications of steep equilibrium temperat-
ure gradients on ETG instability in section 4.2. Simple argu-
ments based on balancing terms with the same order of mag-
nitude reveal how these steep gradients affect the perpendicu-
lar scales of the instability and how magnetic shear determ-
ines the parallel toroidal ETG mode structure, allowing the
toroidal ETG mode to compete with the slab ETG mode.
In section 4.3, we convert the gyrokinetic equation derived
in section 4.1 to an algebraic equation in order to analyze
slab and toroidal ETG instabilities in the presence of large
equilibrium gradients. This is then used to derive an ana-
lytical ETG dispersion relation that supports our simplified
arguments.

4.1. Electrostatic collisionless local limit

In this section, we take the electrostatic, linear, collisionless
form of the gyrokinetic equation. In this limit, equation (3) is

∂hs
∂t

+ v∥b̂ ·∇Rshs+ vMs ·∇Rshs =
ZseFMs
T0s

∂⟨ϕtb1 ⟩
∂t

+
c
B
(∇Rs⟨ϕ

tb
1 ⟩×b̂) ·∇r

[
∂ lnns
∂r

+
∂ lnTs
∂r

(
msE
T0s

− 3
2

)]
FMs.

(18)

We have absorbed the toroidal mean flow in the convective
derivative as a constant Doppler shift, and neglected the equi-
librium E×B shear, which is consistent with the low flow
ordering in equation (16), and is justified in section 7 with sim-
ulation results.

Substituting the expressions for ϕtb1 and hs in equation (12,
13) into equation (18) gives a Fourier-analyzed gyrokinetic
equation,

−iωhs+
2πv∥
Lθ

∂hs
∂θ

+ ivMs ·k⊥hs =−iωZseFMs
T0s

ϕtb1 J0

(
k⊥v⊥
Ωs

)
+ iω∗s

[
1+ ηs

(
msE
T0 s

− 3
2

)]
ZseFMs
T0s

ϕtb1 J0

(
k⊥v⊥
Ωs

)
,

(19)

where J0 is a Bessel function of the first kind that comes from
gyroaveraging ϕ

tb
1 . The perpendicular wavenumber k⊥ is

k⊥ = kx∇x+ ky∇y=
[
kx− ky

(
ŝθ− r

q
∂ν

∂r

)]
∇x

+
∂ψ

∂r
1
Ba
ky

[
∇ζ +

(
∂ν

∂θ
− q

)
∇θ
]
,

(20)

where every function is evaluated at rc. We have also intro-
duced the drift frequency, ω*s, and the stability parameter, ηs,

ω∗s ≡− c
B

T0 s

ZseLns
(k⊥ × b̂) ·∇r= c

Ba

T0 s

ZseLns
ky, ηs ≡

Lns
LTs

.

(21)
Note that the factor (k⊥ × b̂) ·∇r in ω*s is only proportional
to ky. The system of equations is closed by the first order tur-
bulent quasineutrality condition in equation (6),

eϕtb1 n0e
T0e

(
ZiT0e
T0i

+ 1

)
+ 2π

ˆ
B
|v∥|

heJ0

(
k⊥v⊥
Ωe

)
dEdµ

− 2π
ˆ

B
|v∥|

hiJ0

(
k⊥v⊥
Ωi

)
dEdµ= 0,

(22)

where we used that the Jacobian of the gyrokinetic transform-
ation is J = ∂(r,v)/∂(R,E ,µ,φ)≃ B/|v∥| [21].

We proceed to demonstrate how the presence of large equi-
librium gradients changes the perpendicular scales at which
ETG can be strongly driven, and how in the presence of these
steep gradients, magnetic shear can act to determine the pol-
oidal location where the ETG mode has its maximum amp-
litude.

4.2. Slab versus toroidal ETG in large gradient regions

In this section, we describe a novel type of toroidal ETG with
anisotropic perpendicular wavenumbers. Equation (22) con-
tains two branches of electron temperature gradient driven
instability, slab [62, 63] and toroidal [64, 65]. These modes
have been covered extensively [30, 62–66]. Here, we give a
very brief overview. In the slab branch, the density perturba-
tion is caused by a competition between the parallel streaming
and the radial E×B drift. For sufficiently large ηs, a large par-
allel compression causes ϕtb1 to grow in time. For smaller val-
ues of ηs, the radial E×B drift term dominates and we obtain
stable electron drift waves. The toroidal instability is caused
by magnetic drifts, rather than parallel streaming, creating a
compression that again, gives rise to a destabilizing electric
field for sufficiently large ηs. In both cases, at the onset of
instability, increasing the temperature gradients causes the lin-
ear instability to be more virulent.

Motivated by the large temperature gradients in figure 1(d),
we proceed to demonstrate that

R0

LTe
,
R0

LTi
≫ 1, (23)

has major implications for ETG stability. First, we present an
intuitive, albeit non-rigorous argument that will turn out to be
incorrect. We then develop a more careful argument, which

10



Nucl. Fusion 60 (2020) 126045 Jason F. Parisi et al

reveals the distinctive new character of ETG modes in steep
gradients, which is very different to the more familiar lower
gradient regime typical of the core. Throughout this section,
we shall assume that θ0 = 0. We will investigate the physics of
θ0 ̸= 0 in section 5.3.

First, we present the intuitive, albeit incorrect argument.
For the electrons, since R0/LTe ≫ 1, we naively expect that the
ratio determining the relative strength of the drive frequency to
the magnetic drift frequency to be large. Therefore, in the ped-
estal, one might naively think that the drive for toroidal ETG
is weak and independent of k⊥,

ω∗eηe
vMe ·k⊥

∼ R0

LTe
≫ 1. (24)

Here, we use vMe ·k⊥ ∼ k⊥v2te/ΩeR0 and ky ∼ k⊥. Comparing
the size of the drive frequency to the parallel streaming fre-
quency, we obtain

ω∗eηe
k∥vte

∼
ky
k∥

ρe
LTe

. (25)

As we will show in section 4.3, the ratios in equation (24)
and (25) must be of order unity for a large toroidal and slab
ETG growth rate, respectively (see figure 6). Thus, equation
(24) suggests that the magnetic drifts are small for every k⊥,
whereas in equation (25), k∥ can become large to drive slab
instability. One would therefore expect slab ETG to be the
dominant electron microinstability at all scales.

The above argument, however, suffers from a deficiency. It
is naive to make the assumption ω∗eηe/vMe ·k⊥ ∼ R0/LTe (see
equation (24)) in the presence of magnetic shear, because k⊥
varies along a field line (see equation (20)). At large values
of |θ|, the radial component of the magnetic drift frequency
becomes increasingly large and can compete with the linear
drive ω∗eηe, to allow the toroidal branch to become unstable.
Toroidal modes, with vMe ·k⊥ ∼ ω∗eηe, are therefore possible
because the competition between the slab and toroidal modes
has a k⊥ dependence, which arises from the fact that vMe ·k⊥
depends on both kx and ky, whereasω*e only depends on ky. For
convenience, we define the radial component of k⊥ in equa-
tion (20) as

Kx = kx− ky

(
ŝθ− r

q
∂ν

∂r

)
. (26)

We now show that toroidal ETG modes with k⊥ ∼ Kx ≫ ky
can indeed compete with the slab ETG at sufficiently small
kyρi. Motivated by the eigenmodes in figure 4 that are localized
far along a field line, we will make Kx large by taking ŝθ≫
kx/ky = ŝθ0 and ŝθ≫ (r/q)∂ν/∂r. Thus, for ŝθ large, we find

k⊥ ∼ Kx ∼ kyŝθ. (27)

When we compare the size of ŝθ to other terms, we are actually
comparing |̂sθ|; for ease of notation, we will drop the abso-
lute value brackets, but will continue to compare the absolute
value. According to equation (27), for ŝθ≫ 1, the magnetic

drift term that drives toroidal ETG can become comparable to
the drive term,

ω∗eηe
vMe ·k⊥

∼
ky
k⊥

R0

LTe
∼ 1
ŝθ

R0

LTe
∼ 1. (28)

Thus, for sufficiently small kx, the toroidal mode must be
driven far along the field line,

ŝθ ∼ R0

LTe
≫ 1. (29)

Through detailed analysis in later sections, we will indeed see
that this explains the toroidal ETG modes, which are often
unstable at large distances along the field line (see figure 4).
Recall that here θ is the ballooning angle, which has a range
−∞< θ <∞.

When equation (28) is satisfied, we will demonstrate with
a local gyrokinetic dispersion relation in section 4.3 that the
toroidal ETG growth rate becomes comparable to the slab
ETG growth rate. This would seem to suggest that toroidal
ETG exists for all ky. However, for large ky and small kx,
k⊥ρe ∼ ŝθkyρe becomes so large that finite Larmor radius
(FLR) effects from the electron gyromotion become import-
ant. Thus, if R0/LTe ≫ 1 and ŝθ≫ 1, for strongly driven tor-
oidal ETG, Kx has a maximum of the order of

Kxρe ∼ ŝθkyρe ∼ 1. (30)

If Kxρe is much larger than in equation (30), the growth rate
will be strongly electron FLR damped. Motivated by equa-
tion (30), for a toroidal mode we expect ion FLR damping
to be very strong at kyρe ≪ 1 with k⊥ρe ∼ 1. Thus, our ana-
lytic treatment of toroidal ETG will assume hi= 0 because
|J0(k⊥ρi)| ≪ 1. Using equations (28) and (30), we obtain a
scale for ky,

kyρe ∼
LTe
R0
. (31)

Given that the pedestal profiles have R0/LTe ≳ ρi/ρe in the
steep pedestal regions, toroidal ETG can be unstable even at
scales as large as kyρi ≲ 1. Therefore, R0/LTe ≫ 1 extends
the minimum ky scale at which toroidal ETG modes can be
strongly driven to ion gyroradius scales or larger.

To obtain the parallel width of a toroidal ETG mode ∆θ,
we balance the parallel streaming term with the change in the
magnetic drift over the mode width,

vte
qR0

∂he
∂θ

∼∆θ
∂

∂θ
(k⊥ · vMe)he. (32)

This is based on the conjecture that the magnetic drift pro-
files limit the parallel width of the mode. The quantity∆θ cap-
tures the width of the mode envelope, rather than the oscilla-
tions within it, which would be captured by k∥. For the Taylor
expansion of the magnetic drift frequency in equation (32) to
be valid, ∆θ must be small, and as a result, any scalings that
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we obtain from equation (32) will only be valid as long as
∆θ≪ 1. Assuming that

∂he
∂θ

∼ he
∆θ

,
∂

∂θ
(k⊥ · vMe)∼ k⊥ · vMe, (33)

and that magnetic drifts balance the drive frequency, as in
equation (28),

vMe ·k⊥ ∼ ω∗eηe, (34)

we obtain a scaling for the mode width,

∆θ ∼
√

vte
qR0ω∗eηe

∼

√
1

qkyρe

LTe
R0
, (35)

where we use ω∗eηe ∼ kyρevte/LTe. Hence, higher values of
R0/LTe, kyρe, and q make the mode narrower. Using ŝθ ∼
R0/LTe, we obtain

∆θ

θ
∼ ŝ

√
1

qkyρe

(
LTe
R0

)3/2

. (36)

In the pedestal, the quantity∆θ/θ is small, whereas in the core,
∆θ/θ is of order unity. Results from gyrokinetic scans in q,
R0/LTe and kyρe are in fair agreement with the scalings in equa-
tion (35). We report these scans in section 5.

To summarize thus far, pedestal toroidal ETG—where
R0/LTe ≫ 1 — has a very different character to core toroidal
ETG—whereR0/LTe ∼ 1. In the pedestal, toroidal ETG can be
driven strongly at wavenumbers as small as kyρe ∼ LTe/R0 ≪
1, but with a large effective radial wavenumber Kxρe ∼ 1,
due to the mode being driven far along the field line, ŝθ ∼
R0/LTe ≫ 1. For pedestal toroidal ETG, the radial compon-
ent of the magnetic drift is essential for instability. In con-
trast, core toroidal ETG only becomes unstable at much lar-
ger poloidal wavenumbers kyρe ∼ 1, and has a much smaller
radial wavenumber Kxρe ≪ 1 due to θ≈ 0. For core toroidal
ETG, the in-surface poloidal magnetic drift is essential to the
instability drive.

Slab ETG is also shifted to larger perpendicular scales
by R0/LTe ≫ 1. Re-examining equation (25), and requiring a
strong slab drive,

ω∗eηe
k∥vte

∼
kyρe
k∥R0

R0

LTe
∼ 1. (37)

Thus, the scale for which slab ETG can be strongly driven is

kyρe ∼ k∥R0
LTe
R0
. (38)

We place bounds on kyρe for the ‘pure’ slab ETG branch by
considering two linear effects that can constrain the parallel
mode extent. The first constraint on the slab ETG mode is that
the mode is not too strongly FLR damped, which according to
equation (30), requires

θ ≲ 1
ŝ

1
kyρe

. (39)

A mode that oscillates only a few times before reaching the
maximum value of θ in equation (39) has a parallel wavenum-
ber k∥ ∼ kyρeŝ/qR0. Using equation (38), we find that such a
mode would have R0/LTe ∼ ŝ/q. Electron temperature gradi-
ents smaller than this value would be FLR damped. Since the
gradients in the pedestal satisfy R0/LTe ≫ ŝ/q, we conclude
that the FLR damping constraint on the electron temperature
gradient for the slab ETG mode is irrelevant in pedestals.

The second constraint on the slab ETG mode determines
how far the mode can extend in the parallel direction while
still retaining a parallel streaming frequency that is faster than
the magnetic drift frequency. From equation (28), the largest
θ value a mode can have before vMe ·k⊥ and ω∗eηe become
comparable is

θ ≲ 1
ŝ
R0

LTe
. (40)

A mode that oscillates only a few times before reaching this
value of θ has a parallel wavenumber of order

k∥ ∼
ŝ
qR0

LTe
R0
. (41)

A slab ETGmode with such a k∥ is the mode with the smallest
kyρe value because, for smaller values of kyρe, the mode would
have to extend into the region of θ where the magnetic drift
is large. Thus, due to the magnetic drift condition, slab ETG
modes must satisfy

kyρe ≳
ŝ
q

(
LTe
R0

)2

. (42)

Then, for a fast-growing ‘pure’ slab ETG mode, we require

ŝ
q

(
LTe
R0

)2

≲ kyρe ≲ 1. (43)

Even though our simple estimates suggest that slab ETG
modes can grow for wavenumbers as small as kyρe ∼
(ŝ/q)(LTe/R0)

2 ∼ 1/30000, we should point out that kinetic
ion physics is important at such large scales, and hence the
slab ETG will be modified at these very long wavelengths.

In principle, the above arguments are also valid for toroidal
and slab ITG in the collisionless limit with identical gradi-
ents. However, in the JET pedestal equilibrium we have stud-
ied, R0/LTe > R0/LTi, which causes the ITG growth rates to
decrease substantially. Furthermore, in the pedestal the elec-
trons are sufficiently collisional to be non-adiabatic on ITG
timescales; as we will show in section 6, these electron colli-
sions also decrease the ITG growth rate. Indeed, we will see
that the less steep measured ion temperature gradients and
collisions result in ITG being the subdominant mode at all
scales. For kyρi ≲ 1, ITG is likely stable, and hence we do not
expect ITG to cause significant transport in the equilibrium
and radial location studied in this paper. For other JET pedes-
tal equilibria that we studied in less detail, it was also true that
R0/LTe > R0/LTi in the steep gradient region; these equilibria
had qualitatively similar growth rate spectra to the equilibrium
studied in this paper (see appendix A).
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Figure 5. The functions Γ0 and Γ1 that appear in equation (51).

We now proceed to obtain an ETG dispersion relation using
the approximations in the previous sections. Its solutions will
provide useful insights on toroidal ETG stability, which will
be used heavily in subsequent sections.

4.3. ETG dispersion relation

Formally solving equation (19) for hs gives

hs =
− ⌢
ω s +

⌢
ω∗s

[
1+ ηs

(
v̂2∥ + v̂2⊥ − 3/2

)]
− ⌢
ω s +

⌢

k ∥s v̂∥ +σv̂2∥+
⌢
ω∇Bs v̂2⊥/2

× Zse
T0 s

ϕtb1 FMsJ0
(√

2bsv̂⊥
)
, (44)

where the parallel wavenumber is the operator

ik∥hs ≡ b̂ ·∇hs, (45)

and we define bs and v̂ as

bs =
k2⊥T0 s

msΩ2
s
, v̂=

v
vts
. (46)

We have non-dimensionalized quantities using the modulus of
the curvature magnetic drift frequency ωκs,

σ ≡ ωκs

|ωκs|
,

⌢
ω≡ ω

|ωκs|
,

⌢
ω∇Bs≡

ω∇Bs

|ωκs|
,

⌢
ω∗s≡

ω∗s

|ωκs|
,

⌢

k ∥≡
k∥vts
|ωκs|

, (47)

where

ωκs ≡
v2tsk⊥
Ωs

·
(
b̂×

(
∇ lnB+

4π
B2

∂p0
∂r

∇r
))

,

ω∇Bs ≡
v2tsk⊥
Ωs

· (b̂×∇ lnB). (48)

We write the total magnetic drift frequency as

vMs ·k⊥ = ωκsv̂
2
∥ +ω∇Bs

v̂2⊥
2
. (49)

It is important to note that equation (44) is valid for any value
of θ0, since in this work we are paying particular attention
to the radial component of k⊥ (see equation (20)) due to its
importance for the toroidal ETG instability in steep temper-
ature gradient regions. Thus, bs, ωκs, and ω∇Bs depend on θ0;
this differs frommany previous works where only the∇y com-
ponent of the magnetic drift frequency was retained.

As a simplified model, we will take k∥ to be a number. We
obtain the ETG dispersion relation by substituting equation
(44) into quasineutrality, as demonstrated in appendix C. For
a single ion species, this gives

T0e
T0i

Zi+ 1−
∑
s

Ds = 0, (50)

where Ds is given by

Ds =iZ
2
s
T0en0s
T0sn0e

ˆ ∞

0
dλ

Γ0(b̂σs )

(1+ iσλ)1/2
1

(1+ i
⌢
ω∇Bs λ/2)

× exp

(
iλ

⌢
ω −

(λ
⌢

k ∥)
2

4(1+ iσλ)

)
×

[
− ⌢
ω +

⌢
ω∗s

(
1+ ηs

{
1

1+ i
⌢
ω∇Bs λ/2

− 3
2

+
2(1+ iσλ)− (

⌢

k ∥ λ)
2

4(1+ iσλ)2
− b̂σs

1−Γ1(b̂σs )/Γ0(b̂σs )

1+ i
⌢
ω∇Bs λ/2

})]
.

(51)

The quantities Γν and b̂σs are defined as

Γν(x) = Iν(x)exp(−x), b̂σs ≡ bs

1+ i
⌢
ω∇Bs λ/2

, (52)

where Iν is a modified Bessel function of the first kind.We plot
Γ0 and Γ1 in figure 5; the function Γ0 will be used extensively
in this work.

We have numerically solved equation (50) in the adiabatic
ion limit, hi= 0,

T0e
T0i

Zi+ 1−De = 0, (53)

which is justified by k⊥ρi ≫ 1. For information on the numer-
ical techniques used to solve equation (53), refer to appendix
C. In figure 6, we solve equation (53), performing a scan in
ω∗eηe/ωκe and k∥vte/ω∗eηe. Note that while for figure 6 we
have set ωκe = ω∇Be, when we solve equation (53) with the
geometry for the discharge 92174 in forthcoming sections,
we use the correct values of ωκe and ω∇Be (for example,
see figures 10, 11 and 18). For the toroidal ETG mode, we
observe two stability limits in ω∗eηe/ωκe. Figure 6(a) shows
that for be= 0, toroidal ETG instability only occurs when
1.4≲ ω∗eηe/ωκe ≲ 42, and we found no instability when
ω∗eηe/ωκe < 0.

We observe in figure 6(b) and (c) that increasing k∥ causes
the ETG instability to transition from the toroidal ETG branch
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Figure 6. Solutions to equation (53) with ηe= 4.28. (a) Growth rates for different ω∗eηe and be with k∥ = 0. (b) Growth rates versus k∥ for
different values of ω∗e/ωκe with be= 0 and ωκe > 0. (c) Growth rates versus k∥ for different values of ω∗e/ωκe and be. Here, we set
ωκe = ω∇Be. In (a), we only plot the growth rate for ω∗eηe/ωκe > 0 because we find that all solutions are damped for ω∗eηe/ωκe < 0..

Figure 7. Electrostatic GS2 growth rates for JET shot 92174 for 0.15≤ kyρi ≤ 7.0 and sensitivity scans, all with θ0 = 0. (a) R0/LTe scans.
(b) R0/LTi and R0/Ln scans. ‘Standard’ denotes simulations performed with the following parameters:
R0/LTe = 130, R0/LTi = 34, R0/Ln = 31. All of the fastest growing ‘Standard’ modes at scales ky ≳ 0.1 are ETG-like instabilities.

to the slab ETG branch for the values of ω∗eηe/ωκe where the
toroidal mode is unstable. Generally, increasing be strongly
decreases the growth rate for both the toroidal and slab
branches, although small increasing values of be can increase
the growth rate, shown by comparing the ω∗eηe/ωκe = 21 val-
ues in figures 6(b) and (c).

The hi= 0 limit is generally an accurate description
of toroidal and slab ETG instability in the JET pedes-
tal discharges we analyzed, as will be described in sec-
tion 5. This is not surprising given that for the toroidal
ETG instability we require Kxρe ∼ 1, which means that
hi≈ 0 because of the large argument of J0 (see equation
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(44)). For the fastest growing slab ETG instability we usu-
ally find that kyρi ≫ 1, again resulting in hi≈ 0. How-
ever, the hi= 0 approximation might not always be justi-
fied for kyρi ∼ 1 slab ETG instability, where FLR damping
has not substantially decreased the size of the ion kinetic
response.

In the next section, we proceed to use gyrokinetic sim-
ulations to study ETG stability in the pedestal. Of partic-
ular interest, consistent with the predictions of this sec-
tion, we will find both toroidal and slab ETG modes
at scales kyρi ∼ (ρi/ρe)LTe/R0 ≲ 1, and long poloidal
wavelength toroidal ETG being unstable at ŝθ ∼ R0/LTe (for
θ0 = 0).

5. ETG stability in JET shot 92174

In this section, we describe ETG instability in electrostatic
gyrokinetic simulations of JET shot 92174 at r/a= 0.974 3.

The layout of this section is as follows. We first discuss
the character of the toroidal and slab ETG instability in the
pedestal in section 5.1. In section 5.2, we describe the parallel
dynamics of the toroidal ETG mode, detailing how its parallel
location and mode width are determined. In section 5.3, the
effects of a nonzero θ0 for the toroidal ETGmode are analyzed,
including an estimate for the quasilinear diffusion coefficient.
Then in section 5.4, we study the critical temperature gradient
for the toroidal ETG mode described in section 4.

5.1. Toroidal ETG Versus Slab ETG Instability

Gyrokinetic simulations show toroidal and slab ETG instabil-
ity as the fastest growing modes for kyρi ≳ 0.1 for JET shot
92174. Unlike ETG instability in the core, where the linear
growth rate typically peaks at kyρe ∼ 1, we find instances of
maximum toroidal ETG growth rates at spatial scales as large
as kyρi ∼ (ρi/ρe)LTe/R0 ≲ 1, strongly supporting the argu-
ments in section 4. We emphasize that very similar modes
have been seen in previous works [29, 34–38], but have not
been explained until now. For θ0 ̸= 0, we find toroidal ETG as
the fastest growing mode at all spatial scales between kyρi ∼ 1
and kyρe > 1, which we will discuss in section 5.3. In figure
7, we show the growth rates of modes with θ0 = 0, where we
find two dominant ETG modes: for this specific pedestal loc-
ation, the toroidal ETG branch is the fastest growing mode
for 1≲ kyρi ≲ 5. Once kyρi is sufficiently large (kyρi ≈ 5), the
toroidal ETG is FLR damped, and the slab ETG branch grows
faster. The slab ETG branch is not FLR damped as quickly as
the toroidal branch because the slab branch generally satisfies
Kx ∼ ky.

We use several criteria to distinguish between the toroidal
and slab ETG modes in the pedestal. First, as predicted in sec-
tion 4, toroidal ETG modes have ∆θ/θ≪ 1, and have a θ
location that satisfies ŝθ ∼ LTe/R0 for |θ0| sufficiently small.
Parameter scans can also be used to determine whether the
location along a field line of a suspected toroidal ETG mode
changes as predicted by equation (29). In contrast, slab ETG
modes tend to have a much larger k∥ (at a fixed kyρi), and to

have eigenmodes that are centered around θ= 0. In figure 8,
we show both toroidal and slab ETG eigenmodes in (a). To
go from ballooning angle θ to the physical poloidal angle ϑ,
where −π≤ϑ≤π, we use the ballooning transform,

ϕ
tb
1 (ϑ,x,y) =

∞∑
p=−∞

ϕtb1 (ϑ− 2πp)

× exp

(
ikyxŝ

(
ϑ− 2πp− r

ŝq
∂ν

∂r

)
− ikyy

)
+

∞∑
p=−∞

ϕtb1
∗
(ϑ− 2πp)

× exp

(
−ikyxŝ

(
ϑ− 2πp− r

ŝq
∂ν

∂r

)
+ ikyy

)
,

(54)

where * denotes a complex conjugate. In figure 8(b), the tor-
oidal ETG eigenmode is plotted against the Miller angle θM
for x/ρi = 0, y/ρi = 0 and for x/ρi =−0.1, y/ρi = 0.0. We

have normalized the mode such that the maximum of ϕ
tb
1 is

1, and we have chosen the mode’s phase such that the max-

imum is located at y= 0. The maximum value of ϕ
tb
1 occurs

at x/ρi =−0.1. In figure 9, we show the real space picture
of the mode at the outboard midplane (θM = 0) and where the
amplitude is maximum, at θM = 2.1. As expected, the toroidal
ETG modes have Kx ≫ ky at both the outboard midplane and
at θM = 2.1, and the maximum amplitude is far away from the
outboard midplane. To make the plots in figure 9, we first eval-
uated equation (54) for kyρi = 1.1 on a uniform x, y grid. We
then performed a change of variables from x, y toR,Z using the
Miller formulas for RM and ZM . Finally, we changed from ϑ to
θM variables. Figure 9, where we have plotted a toroidal ETG
mode with θ0 = 0, demonstrates how the wavenumbersKx and
kx can differ dramatically due to the presence of magnetic
shear. At both the outboard midplane and at θM = 2.1, this
mode has λx ≃ 0.1ρi, and so Kxρi ≃ 65, which is consistent
with the requirement thatKxρe ∼ 1 for the toroidal ETGmode.
Here, λx is the radial mode wavenumber. Since k⊥, which is
non-trivial (see equation (20)), enters the Bessel function argu-
ments and not simply kx and ky, the distinction between kx and
Kx is crucial for the character of the mode.

To investigate the character of the toroidal and slab ETG
modes, we have performed a scan in equilibrium gradients, as
shown in the linear gyrokinetic spectrum in figure 7. Our sim-
ulations indicate that the fastest growing toroidal ETG modes
are driven strongly by R0/LTe because they depend strongly
on this parameter, as shown in figure 7(a). Conversely, these
modes are relatively insensitive toR0/Ln, and do not depend on
R0/LTi. Modifying R0/Ln mainly affects the slab ETG growth
rate, determining at which kyρi it will exceed the toroidal ETG
growth rate. Kinetic ion physics is usually unimportant for tor-
oidal ETG instability because k⊥ρi ≫ 1. This is demonstrated
by the linear spectrum for the toroidal ETG being unchanged
when the non-adiabatic part of the ion distribution function is
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Figure 8. (a) Ballooning eigenmodes for toroidal and slab ETG in GS2 simulations. (b) Toroidal ETG eigenmodes in θM space with
kyρi = 1.1, using the transformation in equation (54) at two locations: (1) x/ρi =−0.1,y/ρi = 0.0, and (2) x/ρi = 0,y/ρi = 0. Location (1)
is where the mode amplitude is maximum.

Figure 9. Real space images at the outboard midplane (θM =ϑ= 0), and at ϑ= 1.6, θM = 2.1, of a single toroidal ETG ballooning mode
with kyρi = 1.1 and θ0 = 0.0 from GS2 simulations, demonstrating a relatively large radial wavenumber at both θM locations, and that the
mode has a larger amplitude at θM = 2.1 than at the outboard midplane. These were obtained using the transformation in equation (54). We
define the coordinates δR= R−RM(rc,θr) and δZ= Z− ZM(rc,θr), where θr =−0, 2.1 is the Miller poloidal angle of the image. The
gyroradius ρi is evaluated on the usual r/a= 0.974 3 flux surface at the outboard midplane. Both plots are normalized to the same colorbar.
The maximum absolute mode amplitude at θM = 0 is about 25% of the mode amplitude at θM = 2.1. The specific θM = 2.1 location was

chosen as this was the location of the maximum value of ϕ
tb
1 , which can be seen in figure 8(b). The diameter of the flux surface normalized

to the ion gyroradius is large: 2rc/ρi ≃ 660. Hence, the box at θM = 2.1 has a radial width roughly equal to 1/165 of the flux surface
diameter, and the box at θM = 0.0 has a radial width roughly equal to 1/660 of the flux surface diameter..

artificially set to zero, hi= 0, shown in figure 7(b). The simu-
lation results in figure 10 also show higher R0/LTe and smal-
ler T0i/T0e shifting the maximum growth rate of the toroidal
ETG instability to a smaller kyρi, as predicted by equation
(31). Unlike the wavenumber of the fastest growingmodes, the
size of the maximum growth rate in the range of wavelengths
shown depends on T0e/T0i in a non-trivial way. We show in

figure 10 that this dependence is consistent with a theory that
we describe in section 5.2.

For kyρi ≳ 1, the modes are unlikely to be a trapped elec-
tron mode (TEM) since ωbe ≪ γETG for kyρi ≳ 1, where ωbe =

vte
√
rc/q2cR3

c is the electron bounce frequency and γETG is the
ETG growth rate. In this equilibrium, we find that ωbea/vti ≃
1.5, which is comparable to γETGa/vti only when kyρi ≃ 0.5.
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Figure 10. Growth rates. (a) GS2 scan in R0/LTe, (b) GS2 scan in T0i/T0e, and (c) theory scan in T0i/T0e. These scans show the value of
kyρi for the peak growth rate of the toroidal ETG mode shifting. For T0i/T0e scans, T0i was fixed and T0e was allowed to vary. (b) Growth
rates from GS2 simulations with consistent collisionality. (c) The collisionless dispersion relation in equation (53) was solved, along with a
Fourier-transformed value of k∥ for each kyρi mode, described in section 5.2. The numbers in parentheses in the legend for (a) are the
multiples of the correct R0/LTe value.

Furthermore, ωbe/νee ≃ 1.9, and so we expect the passing and
trapped electron particle distributions to be fairly well equilib-
rated.

To understand the θ location of the toroidal ETG eigen-
modes, we solve the dispersion relation in equation (53) loc-
ally for JET shot 92174 at each value of θ by choosing ky and
setting k∥ = 0, and by using ωκe,ω∇Be and be from the Miller
equilibrium. This is an approximation that assumes the mode’s
growth rate is local in θ. Note that k⊥ in equation (20) is a
function of θ. By solving the dispersion relation, we obtain a
set of frequencies as a function of θ. Figure 11(c) shows the
growth rates along θ with k∥ = 0 (for the present discussion,
consider only the curve labeled ‘Standard’; the curve labeled
‘ωMe →−ωMe’ will be discussed in section 5.2). For θ0 = 0,
we find that the maximum growth rates are at |θ| ≃ 7.7 with
the standard sign of ωκe and ω∇Be. This θ location is very
close to the θ where GS2 toroidal ETG eigenmodes have their
maximum amplitude, as shown by comparison of figures 11(a)
and (c). Therefore, the parallel location of the toroidal ETG is
fairly well described by our model.

One prediction of section 4 was that the toroidal ETGmode
is driven most strongly at ŝθ≫ 1 when R0/LTe ≫ 1. This
causes the kyŝθ∇x term in k⊥ in equation (20) to become
particularly large. In figure 8, we show that the toroidal ETG
eigenmodes are indeed driven at ŝθ≫ 1. As an experiment, we
set the kyŝθ∇x component of vMe to zero. As expected, the tor-
oidal ETG mode was not driven, and slab ETG was the fastest
growing mode.

In JET shot 92174, slab ETG instability is the fastest grow-
ing mode for kyρi ≳ 5 when θ0 = 0, however, the ‘slab’ ETG
we observe is not always the conventional slab ETG with
ωκe = ω∇Be = 0. By artificially turning the magnetic drift off
in gyrokinetic simulations, we observed that the slab ETG

growth rate was reduced by factors of order unity. As shown in
figure 12, the slab ETG eigenmodes have quite a wide θ extent,
especially for smaller kyρi where FLR effects are less strong,
and hence the magnetic drift, which increases for increasing θ,
can have a strong impact on the character of the slab ETG in the
pedestal. As kyρi increases, FLR effects become stronger and
the slab ETG eigenmode becomes more localized near θ= 0.
Hence, when we refer to the ‘slab’ ETG in the pedestal simu-
lations described in this paper, we refer to the modes with a k∥
much larger than the toroidal ETG, but also sometimes with a
significant magnetic drift contribution.

The toroidal ETG modes are not affected by kinetic ion
physics due to their large radial wavenumberKxρi ≫ 1, but the
ions canmodify the slab ETGmodes slightly when kyρi ∼ 1, as
we demonstrate in figure 7, where we show results with the full
ion kinetic response and with hi= 0. This is consistent with
the fact that slab modes with kyρi ∼ 1 have Kxρi ∼ 1. We have
checked that hi becomes unimportant at larger values of kyρi.

Note that the slab ETG modes in figure 12 are asym-
metric. This asymmetry is not a result of our choice of θ0
because we observe it in modes with θ0 = 0. Due to the sym-
metry of the linear gyrokinetic equation described in [60],
for θ0 = 0, if one obtains an asymmetric mode, there must be
two modes with opposing asymmetry that grow at the same
rate. We have run our simulations with a small value of θ0
to avoid getting a linear combination of these two modes—
the final result would depend on the initial conditions in this
case.

Thus far, using the method described above to solve the
dispersion relation in equation (53), we found we could pre-
dict the parallel location of the toroidal ETG modes. We next
describe the physics that determines the parallel location and
width of the toroidal ETG mode in more detail.
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Figure 11. (a) Two eigenmodes obtained from two separate GS2 simulations, and the function Γ0(be) for kyρi = 3.4. When ωMe →−ωMe,
the mode moves to a location where the sign of ωMe allows instability, where ωMe refers to both ωκe and ω∇Be. (b) The quantities ω∗eηe/ωκe

and ω∗eηe/ω∇Be. The eigenmodes in (a) have their maxima in bad curvature regions, corresponding to ω∗eηe/ωMe > 0. (c) Finding the
growth rates for the ETG dispersion relation in equation (53) for two signs of ω∗eηe/ωMe in JET shot 92174. Note how the maximum
growth rates in (c) roughly align with the eigenmode maxima in (a). Vertical red and blue lines denote the eigenmode location for the two
signs of ωMe in (a). Here, ω*e < 0, ηe= 4.28, kyρi = 3.4, k∥ = 0, θ0 = 0.

5.2. Location and width of the toroidal ETG mode

We now discuss the parallel location and width of the toroidal
ETG mode. The parallel location of the toroidal ETG mode is
subject to four main constraints:

(a) The mode can only be driven in bad curvature regions,
ω∗eηe/ωκe > 0, which eliminates roughly half of the par-
allel domain.

(b) The mode is only unstable when A> ω∗eηe/ωκe > C.
According to the results in figure 6(a), for toroidal ETG
instability the value of ω∗eηe/ωκe must be above some
critical value C for instability, but not larger than another

critical value A. Consistent with figure 6(a), we observe
that no toroidal ETG modes with θ0 = 0 can exist at |θ|≲
6; this is because ω∗eηe/ωκe is too large and the bad
curvature region is too narrow, as shown in figure 13(a)
(note that for smaller values of R0/LTe, the θ0 = 0 toroidal
ETG mode can have its maximum amplitude at |θ|≲ 6
because ω∗eηe/ωκe is smaller—see section 5.4). Note that
we discuss ‘good’ and ‘bad’ curvature using the quantity
ω∗eηe/ωκe rather than ω∗eηe/ω∇Be because in the regions
where the toroidal ETGmode is typically most unstable (at
large |θ|), ωκe/ω∇Be ≃ 1 (see figure 11(b), for example).
There are important exceptions, which occur for θ0 ̸= 0
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Figure 12. Electrostatic slab eigenmodes from GS2 for kyρi > 7.0 instabilities at θ0 = 0.05. The corresponding linear growth rates are
shown in the inset.

Figure 13. A stability plot for the toroidal ETG mode, combining theory and GS2 simulations. For (a), the small red be= 0 stable region
corresponding to 0< ω∗eηe/ωκe ≲ 1.8, is obtained from figure 6. The blue be= 0 stable region is also obtained from figure 6, and
corresponds to ω∗eηe/ωκe ≳ 42. This is valid for θ0 = 0 and kyρi = 1.1. (b) Quantity Γ0(be) versus θ for kyρi = 1.1. (c) The associated
eigenmodes from GS2 with different temperature gradients, demonstrating that these modes are centered close to local maxima in Γ0(be),
and that increasing R0/LTe moves the mode to larger ŝθ, predicted in equation (31). Only for (c), we artificially lowered ŝ→ 1.68 to make
the mode more mobile in θ. Dashed vertical lines show the local maxima of Γ0(be) in bad curvature regions.
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Figure 14. (a) Linear growth rates from GS2 for different ŝ values with R0/LTe = 520. This is likely not an experimentally relevant
temperature gradient; it was used to test the scaling of θ with LTe. (b) Corresponding eigenmodes for kyρi = 2.6.

with larger values of kyρi, which we discuss briefly in sec-
tion 5.4.

(c) The parallel extent of bad curvature regions must be
sufficiently wide. We require that the ‘bad curvature’
regions not be too narrow in the parallel direction; if this
is the case, the mode acquires a large value of k∥ and
becomes damped.

(d) The mode maximum is close to a local maximum in
Γ0(be). The maximum amplitude for the fastest growing
toroidal ETG mode (at a given kyρi) is usually centered
close to a local maximum in Γ0(be) (or equivalently a
local minimum in be) to limit FLR damping. We choose to
plot the quantity Γ0(be) rather than be to demonstrate the
importance of FLR damping at different θ locations. This
is because Γ0(be) ∈ [0,1], and therefore it is easier to con-
vey the size of FLR damping, whereas be is unbounded and
can become extremely large. Furthermore, the term Γ0(be)
appears directly in the dispersion relation in equation
(51), and thus is a good measure of the size of FLR
effects.

As an experiment, we artificially reversed the signs of the
magnetic drifts in GS2. As expected, the toroidal ETG modes
only grew in regions that were previously ‘good curvature’
regions, which due to the sign reversal of ωκe, are turned into
‘bad curvature’ regions. This is shown in figure 11, being sub-
stantiated both by GS2 simulations (figure 11(a)) and the res-
ults of our model ETG dispersion relation (figure 11(c)).

Since ω∗eηe is fixed for a given kyρi, the θ location will be
such that ωκe and be have the right value for maximum growth
subject to FLR and curvature constraints. These constraints are
shown in figure 13(a) and (b). According to figure 13(a) and
the above arguments, the smallest |θ| that a mode with θ0 = 0
can occupy is |θ| ≃ 6.5. We denote this minimum θ location
as θmin. The toroidal ETG mode cannot occupy a smaller |θ|
value because either ω∗eηe/ωκe < 0, ω∗eηe/ωκe is too large, or
the bad curvature region is too narrow.

From these considerations, there are several obvious para-
meters that can change where the mode is located. As already

predicted in equation (31), a larger R0/LTe causes a mode to
be unstable at larger θ values; in figure 13(c) we show that
increasing R0/LTe increases the θ location of the mode. In fig-
ure 13(c), we use a smaller value of ŝ (1.68 instead of 3.36),
since we found that, for larger values of ŝ, increasing R0/LTe
was not particularly effective at shifting the mode to larger val-
ues of |θ|—this is because be increases nonlinearly with ŝ, and
once ŝ is sufficiently large, a toroidal ETG mode becomes sig-
nificantly more FLR damped as it moves along θ. The parallel
location of the modes with different values of R0/LTe agrees
well with the curvature and FLR constraints discussed above.
Smaller ŝ and kyρi also force the mode to larger θ—as pre-
dicted in equation (31), the shifting of modes due to ŝ and kyρi
is shown in figures 14 and 15, respectively.

Figure 14(a) illustrates that the toroidal ETG growth rate
is relatively insensitive to ŝ, until ŝ exceeds a threshold
value. Recall that ω∗eηe/ωκe ∼ R0/LTeŝθ. This implies that if ŝ
changes, a toroidal mode would move in θ to have a R0/LTeŝθ
that maximizes its growth rate. As ŝ increases, the |θ| location
will decrease. However, the mode cannot be driven linearly
unstable below θmin, so at a critical value of ŝ the mode will
become increasingly stabilized by FLR effects while the mode
maximum remains at fixed θ = θmin. In figure 14(a), we show
that increasing ŝ beyond some critical ŝ indeed decreases the
growth rate of the toroidal ETG mode. This increase in ŝ once
themodewas at θmin increased k⊥, and hence caused its growth
rate to be lower than the slab ETG mode—this occurred for a
value of ŝ somewhere between ŝ= 3.4 and ŝ= 10 in figure
14(b).

The θ location of the mode also depends strongly on kyρi,
as shown in figure 15(b) where we ran GS2 simulations with a
smaller value of ŝ= 0.45 and an increased value of R0/LTe,
which makes the location of the mode more sensitive to
changes in ky. Clearly, the eigenmodes are centered very close
to a local minimum in be. The toroidal ETG modes are close
to this minimum because of a competition between the size of
the magnetic drift and FLR effects; as shown in figure 6, the
growth rates are very sensitive to be. Careful inspection of the
growth rates in figure 15(a) reveals that there is a change in
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Figure 15. (a) Growth rates versus kyρi. (b) Corresponding eigenmodes and the functions Γ0(be) and ω∗eηe/ωκe. The toroidal ETG mode
shifts due to changing kyρi, predicted by equation (31). Here we have set ŝ= 0.45 and R0/LTe = 520, allowing the mode to be very mobile
in θ. This is likely not an experimentally relevant temperature gradient; it was used to test the scaling of θ with LTe. The values of Γ0(be) are
evaluated for kyρi = 5.9.

mode type as the mode jumps to a new θ location—this can be
seen by discontinuities in ∂γ/∂ky.

We now examine the scalings for the mode width from
equation (35) by comparing them with toroidal ETG eigen-
modes from GS2 simulations. We calculate the width ∆θ as
the length in θ for the half height of the mode; this is shown
in figure 16(a). Equation (35) predicts that the mode width∆θ
scales with R0/LTe, kyρi, and q as∆θ ∼

√
LTe/R0kyρeq. Scans

in these quantities, shown in figure 16, demonstrate increasing
R0/LTe, kyρi, and q narrows the toroidal ETG mode structure.
However, the scaling exponents do not appear to be quantitat-
ively correct. The theoretical scaling ∆θ ∼

√
LTe/R0kyρeq in

equation (35) is not perfect because the mode changes loca-
tion. Indeed, since the parallel location of the mode is sensit-
ive to q,kyρi, and R0/LTe, changing the location of the mode
by changing these parameters changes the local derivative of
vMe ·k⊥, and hence changes ∆θ. Additionally, because we
have used a Taylor expansion assuming that the variation in
vMe ·k⊥ is proportional to ∆θ, this expansion breaks down
when∆θ becomes too large.

As the toroidal ETG instability is FLR damped at increas-
ing ky, the mode switches to the slab branch, with an accompa-
nying increase in k∥. The switch from toroidal to slab at fixed
ky is shown in the simple dispersion relation used to plot fig-
ure 6(c). At this transition, k∥ for the slab mode is much lar-
ger than for the toroidal mode and the eigenmodes move from
being quite localized around a large value of θ, to oscillating
rapidly about smaller θ, as shown in figure 8(a).

To demonstrate this transition, we need to define k∥. Our
choice of θ in equation (11) is such that θ is proportional to the
length along the magnetic field line. Thus, Fourier analyzing
in θ is equivalent to obtaining the spectrum in k∥.

To carry out the Fourier transform, we first interpolate
ϕtb1 (θ) onto a regular θ grid, since GS2’s θ grid is not usually
regularly spaced. Next, we apply a Fast Fourier Transform [67]

to obtain the Fourier transform of ϕtb1 ,

ϕ̂tb1 (m) =
ˆ ∞

−∞
ϕtb1 (θ)exp(−imθ)dθ. (55)

The relation between m and k∥ is

k∥ =
2π
Lθ
m. (56)

Figure 17(a) shows that the power spectrum |ϕ̂tb1 |2 changes sig-
nificantly at the transition between toroidal and slab ETG. The
toroidal ETG spectrum is Gaussian whereas the slab spectrum
is more complicated, with at least two peaks. It is noteworthy
that the toroidal ETG has a non-zero k∥ for its fastest grow-
ing mode, since theory predicts toroidal ETG with the highest
growth rate at k∥ = 0, shown in figure 6. Previous studies of
toroidal ETG have also found k∥ = 0 as the fastest growing
mode [23].

We now use equation (55) to calculate the toroidal ETG
growth rates for a range of kyρi. Our analytic model requires k∥
as an input, which we obtain from GS2 by choosing the value
of k∥ that corresponds to the largest amplitude in the poloidal

Fourier transform ϕ̂tb1 . Once we have obtained k∥ from the GS2
data for each value of kyρi, we solve the model dispersion rela-
tion in equation (53) for each value of θ, inputting the correct
value of k⊥, ωκe, and ω∇Be at each θ location. For each kyρi
value, we take the growth rate from the θ location with the
highest growth rate to be the growth rate of the toroidal ETG
mode for that kyρi. There is excellent agreement between the θ
location with the highest growth rate by solving equation (53)
and the eigenmode maximum from GS2. This method for cal-
culating k∥ gave a toroidal ETG growth rate reasonably close
to the values obtained from GS2 shown in figure 18, as well
as the kyρi location of the peak. Since the toroidal ETG mode
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Figure 16. (a) Toroidal ETG eigenmodes for different values of kyρi, and numerical definition of ∆θ used in subsequent subplots. (b)
Numerical (solid) and predicted (dashed) ∆θ versus q scaling, (c) ∆θ versus R0/LTe scaling, (d) ∆θ versus kyρi scaling.

Figure 17. (a) The Fourier transformed coefficient |ϕ̂tb1 (m)|2 spectrum for 2 modes from GS2 with different values of kyρi. The coefficient
|ϕ̂tb1 (m)|2 is normalized so that its maximum value is 1. (b) Eigenmodes. (c) The k∥ associated with the largest coefficient |ϕ̂tb1 (m)|2 in (a).
(d) Growth rates. All of these plots have θ0 = 0.02.

is no longer the fastest growing instability for kyρi ≳ 5, the
value of k∥ that we deduce from GS2 and we use to plot the
values of the toroidal ETG growth rate in figure 18 is not reli-
able for kyρi ≳ 5. To calculate the toroidal ETG growth rate
for kyρi > 5.0, we simply evaluated the growth rate at θ= 7.7
with k∥ given by the slab ETG mode from GS2. To calculate
the slab ETG growth rate, we found the value of k∥ for which
the growth rate at θ= 0.0 was maximized. Surprisingly, this
method also gives a very good approximation to the slab ETG
growth rate even though slab ETG modes are very extended
(see figure 12).

The theory presented in this paper cannot self-consistently
calculate k∥ and thus we have used solutions with a k∥ asso-
ciated with the numerical simulations. Until now, our analysis

has been performed with θ0 = 0. In the next section, we extend
our analysis to toroidal ETG with a nonzero value of θ0.

5.3. Effects of θ0

We now consider ETG instability for θ0 ̸= 0. The growth
rate of microinstabilities and MHD ballooning instabilities
has a complicated dependence on θ0. Previous works have
found that nonzero θ0 can substantially change the growth
rates for toroidal ITG [47, 68], ETG [35, 36], and MTMs
[32]. For MHD ballooning modes, it was found that for smal-
ler pressure gradients, increasing |θ0| is stabilizing, but once
the gradients become sufficiently large, increasing |θ0| is
destabilizing [69].
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Figure 18. The growth rates obtained in theory and in GS2. For the toroidal ETG growth rate, we found the θ with the highest growth rate
for equation (53), which occurred at θ= 7.7, and for the slab ETG growth rate, we evaluated the dispersion relation at θ= 0.0 (note that ωκe

is nonzero at θ= 0). The k∥ input for the toroidal ETG was obtained by Fourier transforming the GS2 eigenmodes for each ky, and for the
‘1.25k∥’ series, we multiplied all k∥ values by 1.25.

As briefly discussed in section 3, we find that increasing
|θ0| can substantially increase the toroidal ETG growth rate,
shown in figure 19(a). For many values of θ0, the toroidal ETG
mode can be the fastest growing mode not only at ion scales,
kyρi ∼ 1, but at scales smaller than the electron gyroradius:
kyρe > 1. To be precise, we find that at low values of kyρi
(kyρi ≲ 2), the toroidal ETG has a similar growth rate for all
values of θ0, whereas for larger values of kyρi, the toroidal ETG
growth rate becomes very strongly dependent on θ0. We pro-
ceed to explain why.

For kyρi ≲ 2, the location and growth rate of the toroidal
ETG mode are fairly independent of θ0, as shown in figures
19(a) and (b). For such small values of kyρi, FLR damping
is weak at many θ locations, that is, k⊥ρe ≪ 1 (and hence
Γ0(be)≈ 1) in many distinct bad curvature regions. Since
Γ0(be)≈ 1 in multiple regions, the fastest growing mode will
be located at θ where ω∗eηe/ωκe is optimal. The value of
ω∗eηe/ωκe is modified by θ0, shown in figure 19(f ). The
modification is particularly noticeable for |θ|≲ 6, where there
are regions of much smaller values of ω∗eηe/ωκe when θ0
is nonzero. For example, for θ0 =−1.05, figure 19(f ) shows
that ω∗eηe/ωκe has values as small as ω∗eηe/ωκe ≃ 15− 30
for 1≲ θ ≲ 2. While this value of ω∗eηe/ωκe is appropri-
ate to have an unstable toroidal ETG mode, at larger val-
ues of |θ| there exists an even smaller value of ω∗eηe/ωκe

(recall that smaller ω∗eηe/ωκe typically gives higher growth
rates as long as ω∗eηe/ωκe ≳ 2− 3, see figure 6). Again con-
sidering the θ0 =−1.05 mode, we see that ω∗eηe/ωκe ≃ 3−
10 for −8≲ θ ≲−7. Because we are currently considering

relatively small values of kyρi, the FLR damping at θ=−7.7
is not much stronger than at θ= 1.5 (see figure 19(g)).
Therefore, a mode at θ≃−7.7 grows faster than a mode
at θ≃ 1.5. The kyρi = 2.11 modes in figure 19(b) (all with
θ0≤0) have their maximum amplitude at θ=−7.7 rather than
θ= 7.7 because FLR damping is slightly weaker at θ=−7.7.
Because both the ω∗eηe/ωκe profiles and the Γ0(be) profiles
are not strongly dependent on θ0 for |θ|≳ 6 (see figures 19(f )
and (g)), the location of the toroidal ETG modes and their
associated growth rates are almost independent of |θ0| for
kyρi ≲ 2, although the sign of the θ location does depend on
sign(θ0).

We now consider what happens for larger values of kyρi.
Here, the Γ0 profiles are much more strongly dependent on
θ0, as shown in figure 19(h). For θ0 = 0, as kyρi increases
the toroidal ETG mode cannot grow at a smaller value of |θ|
because either ω∗eηe/ωκe is too large, or the bad curvature
region is too narrow, causing the mode to have a stabilizing
value of k∥. Hence, the θ0 = 0 toroidal ETG mode becomes
increasingly FLR damped as kyρi increases and at kyρi ≃ 5,
the slab ETG mode overtakes the FLR damped toroidal ETG
mode to become the fastest growing mode (see figure 19(a)).
However, for nonzero θ0, the toroidal ETG mode can grow at
a smaller value of |θ| where FLR damping is much weaker,
and have a high growth rate because ω∗eηe/ωκe is sufficiently
small. A consequence of the toroidal ETG mode moving to a
bad curvature region with reduced FLR damping is that modes
can be unstable in a wide range of poloidal locations, even
close to the inboard midplane of the tokamak, a region that
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Figure 19. The effect of θ0 on growth rates and eigenmodes. (a) Growth rates with three values of θ0. Vertical dashed lines indicate the kyρi
values for the eigenmodes that are shown in (b), (c), (d), and (e). (b), (c), (d), and (e) Eigenmodes for kyρi = 2.11,6.34,21.15,49.35 and
different θ0. (f ) ω∗eηe/ωκe for different θ0; for |θ0| sufficiently large, new good curvature regions near θ= 0 appear. (g) and (h) Γ0(be) for
different θ0 at two values of kyρi. Vertical solid lines on rows 2 - 5 indicate the maximum amplitude of a selected toroidal ETG eigenmode
for a given θ0; if the eigenmode is not shown for a given kyρi, the fastest growing mode for that kyρi is not a toroidal ETG mode. Rows 2-5
share the same θ axis. Consistent coloring and linestyle series is used throughout the plot, determined by the legend in (a).

has traditionally been considered to have ‘good curvature’ for
all values of θ0 (see figure 11(b), where even the toroidal ETG
mode with θ0 = 0 is unstable close to the inboard midplane).
However, the maximum eigenmode amplitude for the fastest
growing mode is typically close to θ mod 2π≃±π/2, which
is mainly due to local magnetic shear making a local maximum
in Γ0 at θ mod 2π≃±π/2.

As shown in figures 19(c), (d), and (e), for nonzero θ0 and
larger values of kyρi, the mode moves to a θ location that satis-
fies θθ0 < 0. This can be explained by including θ0 in the scal-
ing for ω∗eηe/ωκe,

ω∗eηe
ωκe

∼
ky
k⊥

R0

LTe
∼ 1
ŝ(θ0 − θ)

R0

LTe
∼ 1. (57)

Hence, at larger values of kyρi when a mode needs to move to
a location with a smaller |θ| value, it will choose the location
where θθ0 < 0 in order to make ω∗eηe/ωκe small.

To summarize, for smaller values of kyρi (here kyρi ≲ 2),
FLR effects are relatively weak in multiple bad curvature

regions, allowing the toroidal ETG mode to choose between
multiple θ locations in order to find the optimal value of
ω∗eηe/ωκe. For the equilibrium considered in this paper, this
occurs for |θ|≳ 6. However, when kyρi is much larger and
θ0 = 0, FLR damping prevents instability at higher values of
|θ|, even though bad curvature regions still exist there. For
larger kyρi and θ0 ̸= 0, instability becomes possible at lower
|θ| values due to modest FLR damping in select regions near
θ= 0.

To gauge the relative importance of toroidal and slab ETG
modes for transport, we calculate the quantity γ/k2⊥ for all
modes at 1≲ kyρi ≲ 230 and |θ0|< π. The quantity γ/k2⊥ is
a rough quasilinear estimate for the transport diffusion coeffi-
cient of the mode. To estimate k⊥ for each mode, we find the
θ location with the largest eigenmode amplitude, and calcu-
late k⊥ at that location. In figure 20(a), we show the growth
rates versus θ0 and kyρi. There is a notable maximum in
the growth rate at kyρi ≈ 80 and θ0 = 0 (which corresponds
to a slab ETG mode). In figure 20(b) we show the quantity
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Figure 20. Growth rate-associated quantities from GS2 simulations. (a) Contour plot of growth rates versus θ0 and kyρi. (b) Contour plot of
γ/k2⊥ versus θ0 and kyρi. (c) Location of the maximum of |ϕtb1 |, θMax. (d) The maximum value of γ/k2⊥ (over all θ0 values) for each value of
kyρi.

γ/k2⊥—normalized and presented as the dimensionless para-
meter γa/vtik2⊥ρ

2
i—versus θ0 and kyρi. We observe that γ/k2⊥

has its largest values across a wide range of kyρi and θ0 scales,
5≲ kyρi ≲ 100 and |θ0|≲ 1.5. Most of these are toroidal ETG
modes, although when θ0 = 0 and kyρi ≳ 5, the fastest growing
mode is a slab ETG mode. We stress that the quantity γ/k2⊥ is
only an approximate measure, and that non-linear simulations
will be needed to ascertain which modes are most important
for transport. In figure 20(c), we plot the |θ| location of the
maximum of |ϕtb1 |, denoted as |θMax|; we see that modes with
large values of γ/k2⊥ tend to have 0≲ |θMax|≲ π/2. In fig-
ure 20(d), for each kyρi we plot the normalized value of γ/k2⊥
that is maximum over θ0. This plot demonstrates that there
is a comparable quasilinear diffusion coefficient estimate for
all fastest growing modes between 1≲ kyρi ≲ 100, and hence
suggests that a wide range of kyρi values might be import-
ant for transport. In appendix A, we show estimates of γ/k2⊥
for the other three JET discharges we have examined, which
demonstrate a qualitatively similar dependence of γ/k2⊥ on θ0
and kyρi as JET shot 92174 in figure 20(b).

While significant heat might be transported by toroidal
ETG modes, they are unlikely to transport particles because
the ions are very close to adiabatic (see figure 7(b)). How-
ever, since the ions are not fully adiabatic for the slab ETG
at lower kyρi (see figure 7(b)), the long wavelength slab
ETG instability could cause particle transport. Finally, the

‘extended ETG’ modes, which are the fastest growing modes
for 0.1≲ kyρi ≲ 1 (see appendix B), can also have a large non-
adiabatic ion response, and thus they too, may cause particle
transport.

Next, we show how the values of θ0, θmin, and ŝ determine
the critical temperature gradient of the toroidal ETG mode.

5.4. Critical R0/LTe

We now discuss the critical temperature gradient for the tor-
oidal ETG instability that we are studying. We find critical
R0/LTe values as large as R0/LTe ≈ 32 for toroidal ETGmodes
in the pedestal (see figures 22(a) and 23(a)), significantly
larger than in the core. Unless mentioned otherwise, the quant-
ity ηe will be kept fixed, to prevent the ETG from becoming
stable due to ηe being less than its critical value.

We want to understand the dependence of the critical
R0/LTe on different parameters. Recall from figure 6(a) that
there exists a stability boundary ω∗eηe/ωκe for the toroidal
ETG mode; that is, for instability we require

ω∗eηe
ωκe

> C. (58)

For be= 0, C≃ 2. Given that ω∗eηe/ωκe ∼ R0/ŝθLTe, and that
ŝ and R0/LTe are fixed parameters, the only free parameter in

25



Nucl. Fusion 60 (2020) 126045 Jason F. Parisi et al

our scaling theory for the ratio ω∗eηe/ωκe for a given equilib-
rium is θ (note that C in equation (58) is weakly dependent on
θ, because C depends on be, which in turn depends on θ). For
the toroidal ETG mode to be unstable we then require

R0

ŝLTe

1
C

≳ θ ≳ θmin. (59)

The quantity θmin is determined by the profiles of ω∗eηe/ωκe

and Γ0 (see discussion at start of section 5.2). If a simulation
only resolves up to θ < θmin in ballooning space (or equival-
ently insufficiently large values of |Kx|), a toroidal ETG mode
might incorrectly appear to be stable.

Numerical results have shown that θmin is only very weakly
dependent on R0/LTe, but can be strongly dependent on θ0, and
on ŝ for large values of ŝ. For now we set θ0 = 0, but will soon
consider the θ0 ̸= 0 case. Thus, from equation (59) we obtain
a critical gradient, R0/LcritTe ,

R0

LcritTe

≈ ŝθminC. (60)

When the growth rate is relatively small and comparable to
νee, and |θ0| is sufficiently small and ŝ is sufficiently large, a
mode different from the toroidal ETGmodes that we are study-
ing often appears. This means that we are sometimes unable
to directly show the toroidal ETG growth rate going to zero.
When we artificially decrease the collision frequency (keeping
all other parameters fixed) to νeea/vti ≃ 0.1, the toroidal ETG
growth rates visibly go to zero. Therefore, we first discuss the
low collisionality cases in which we can almost find R0/LcritTe
for the toroidal ETG mode before another mode (such as the
mode due to high collisionality) appears. Following this, we
discuss the simulations with the standard collisionality.

For the low collisionality case, we demonstrate the ŝ and
θmin scaling of the critical temperature gradient by perform-
ing a scan in R0/LTe for three different values of ŝ, shown in
figure 21(a). Here, ηe and ηi are held fixed to avoid the ηs sta-
bility boundary. This scan is performed in GS2 for kyρi = 2.8
with the standard pedestal equilibrium we have used before,
except for changing the value of ŝ. We see that θmin ≃ 2 for
ŝ= 3.4, as shown by the eigenmode in figure 21(b). For this
value of ŝ, the eigenmode can have a relatively small value of
θmin because of the bad curvature region (ω∗eηe/ωκe > 0) that
appears at θ≃ 2 in figure 21(c). Once ŝ is decreased, the smal-
lest possible value for the mode appears to be θmin ≃ 8.5, as
shown in figure 21(b) and (c). Due to the scaling of R0/LcritTe
in equation (60), a much larger value of θmin causes R0/LcritTe
to increase, shown in figure 21(a). Both the cases ŝ= 0.8 and
ŝ= 1.7 have the same value of θmin ≃ 8.5, but the ŝ= 1.7 case
has a much higher R0/LcritTe due to its value of ŝ being larger.
Thus, we have demonstrated that increasing both ŝ and θmin

increases R0/LcritTe for the toroidal ETG mode.
For the standard collisionality case, for ŝ= 1.7,3.4 we see

that newmodes appear at lower values of R0/LTe due to higher
collisionality, shown in figure 22(a). These modes are differ-
ent from the toroidal ETG instability because these modes can
have large amplitudes in good curvature regions (see the eigen-
mode corresponding to this ‘collisional’ mode for ŝ= 1.7 in

figure 22(c), denoted by the dash dotted black line). These
modes merit further investigation, but they are outside the
scope of this work. Shown by the eigenmode with the solid
black line in figure 22(c) (corresponding to the square marker
in figure 22(a)), we see that before the fastest growing mode

switches to the collisional mode as R0/LTe decreases, the tor-
oidal ETG mode indeed has θmin ≃ 8.5, as one would pre-
dict from the profile of ω∗eηe/ωκe in figure 22(e). In figure
22(a), we see that θmin ≃ 2 for ŝ= 3.4, as shown by the cor-
responding eigenmode in figure 22(c). For this value of ŝ, the
eigenmode can have a relatively small value of θmin because
of the bad curvature region (ω∗eηe/ωκe > 0) that appears at
θ≃ 2 in figure 22(e). Once ŝ is decreased to a value of ŝ= 1.7,
θmin appears to also have a value of θmin ≃ 2 (shown in fig-
ure 22(c)), yet R0/LcritTe increases, in apparent contradiction to
equation (60), which predicts that R0/LcritTe should decrease for
smaller values of ŝ at fixed θmin. However, this contradiction
is due to the collisional mode that appears for smaller values
of R0/LTe, which for ŝ= 1.7 has a value of |θmin| that is much
smaller than for the toroidal ETG mode, where |θmin| ≃ 8.5.

As mentioned above, there is another critical value of
R0/LTe that occurs due to ηe being too small [70]. Figure 22(b)
shows a scan in R0/LTe and ŝ with R0/Ln and R0/LTi fixed,
allowing ηe to vary; here, we see that the critical value of ηe
for the toroidal ETG mode is ηe≈ 1.3 (this cannot be seen dir-
ectly here, but we have checked in the low collisionality case).
Interestingly, for smaller values of R0/LTe we find a weakly
driven slab ITG mode, whose growth rate depends on R0/LTe.
The slab ITG mode and the toroidal ETG modes for the scan
in R0/LTe at fixed ηi are shown in figure 22(d).

The above arguments assumed that |θ0| ≪ |θ|. The critical
temperature gradient is also modified by θ0. As discussed pre-
viously, larger values of |θ0| can allow a new region of bad
curvature to appear at small values of |θ|, as shown in figure
23(d). Allowing θ0 ̸= 0, for instability, we require

R0

LTe
≳ ŝ|θ− θ0|C. (61)

We expect that for nonzero θ0, θ and θ0 have opposite
signs because the mode will grow faster where ω∗eηe/ωκe ∼
R0/LTeŝ|θ− θ0| is smallest, giving the critical temperature
gradient

R0

LcritTe

≈ ŝ(|θmin|+ |θ0|)C. (62)

Consistent with this idea, we see that for |θ|≲ 6 the only
accessible bad curvature regions appear when θθ0 < 0 and
when |θ0| is sufficiently large. To demonstrate the scaling
in equation (62), we performed a scan in θ0 and R0/LTe at
fixed ŝ, ηe, and ηi, shown in figure 23(a); we observe that
R0/LcritTe indeed increases with θ0 as expected. Furthermore, the
assumption that θminθ0 < 0 is also shown to be correct, as seen
by the eigenmodes in figure 23(b). Curiously, we note that the
collisional mode that we found in figure 23 only appears for
θ0 = 0 at smaller values of R0/LTe. For θ0 = 1.0, 2.0, 3.0, we
cannot find such a mode.
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Figure 21. Stability plots of the toroidal ETG mode with kyρi = 2.8 with lower collisionality. (a) Growth rate scan in R0/LTe with ηe and ηi
fixed for three values of ŝ. (b) Eigenmodes corresponding to values of R0/LTe denoted by the colors in (a). (c) The quantity ω∗eηe/ωκe for
three values of ŝ, where R0/LTe = 26, ηe = 4.3. (d) The quantity Γ0(be) for three values of ŝ..

Figure 22. Stability plots of the toroidal ETG mode with kyρi = 2.8. (a) Growth rate scan in R0/LTe with ηe and ηi fixed for three values of
ŝ with the standard and lowered collisionality (denoted by dotted lines labelled with ‘low ν’). (b) Growth rate scan in R0/LTe with R0/Ln
and R0/LTi fixed for three values of ŝ. (c) Eigenmodes corresponding to values of R0/LTe denoted by the markers in (a). The black dash
dotted eigenmode corresponds to the cross marker for ŝ= 1.7 in (a), and the black solid eigenmode to the square marker for ŝ= 1.7 in (a).
(d) Eigenmodes corresponding to values of R0/LTe denoted by the markers in (b). (e) The quantity ω∗eηe/ωκe for three values of ŝ, where
R0/LTe = 26, ηe = 4.3. (f ) The quantity Γ0(be) for three values of ŝ.

Finally, we briefly discuss the effect of the difference
between ωκe and ω∇Be on toroidal ETG stability. Through-
out this paper, we have exclusively used ω∗eηe/ωκe for our

analysis, which is justifiable if ωκe ≃ ω∇Be in the paral-
lel vicinity of where the toroidal mode is most unstable.
While this is true for |θ|≳ π (see figure 11(b)), for |θ|≲
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Figure 23. Stability plots of the toroidal ETG mode with kyρi = 2.8. (a) Growth rate scan in R0/LTe with ηe and ηi fixed for four values of
θ0. (b) Corresponding eigenmodes at locations indicated by markers in (a). (c) The quantity Γ0(be) for different values of θ0. (d) The ratio
ω∗eηe/ωκe for different values of θ0, using R0/LTe = 26.

π, the value of ωκe/ω∇Be in bad curvature regions can
be as large as 1.5 in a sufficiently-wide parallel region
for some values of θ0. For certain values of kyρi and
θ0, the stability boundary for the toroidal ETG mode is
increased when ωκe > ω∇Be, which is consistent with previous
work [71].

To summarize, we have demonstrated that the value of
R0/LcritTe for toroidal ETG depends on ŝ,θmin, and θ0. Most rel-
evant to the Miller equilibrium of JET discharge 92174, scans
in θ0 at fixed ŝ= 3.4 showed R0/LcritTe ≈ 8− 32, depending on
the value of θ0. This is a much higher value of R0/LcritTe than
is typically observed in the core (for example, R0/LcritTi ≈ 3 for
Cyclone Base Case toroidal ITG). This new type of stability
boundary for toroidal ETG directly results from the import-
ance of the radial component of the magnetic drift, in contrast
to the core, where the ∇y component of the drift is usually
considered more important.

6. ITG instability in JET Shot 92174

In this section, we discuss the ITG instability in JET shot
92174. Previous works have emphasized the importance of
ITG instability in the pedestal [14, 33, 72–74]. In this work,
we find that with the measured T0i profiles, the ITG growth
rate is extremely small compared with the ETG instability
growth rate. This is due to R0/LTi and ηi being relatively small,
and electron collisions that decrease the ITG growth rates. If
we increase the ion temperature profiles to make them equal
to the electron temperature profiles and we ignore the E×B
shear, the ITG instability is the fastest growing mode at very

large scales, kyρi ∼ LTi/R0. This finding is entirely consistent
with section 4’s results, as the same arguments can equally
be applied to ITG (since R0/LTi ≫ 1). While this section will
discuss ITG for θ0 = 0, we also performed a scan in θ0, to see
if any other θ0 ̸= 0 values could be unstable at kyρi ≲ 1 using
the measured ion temperature profile. We found no signific-
ant increase in growth rates due to θ0 with the measured ion
profiles.

Due to the symmetry of the collisionless ITG and ETG dis-
persion relations when he= 0 for ITG and hi= 0 for ETG,
the growth rates of ITG and ETG are isomorphic: γITG =
γETGρe/ρi at wavenumbers kyITG = kyETGρe/ρi.

Here we investigate how the non-adiabatic electron
response and a difference in equilibrium profiles in the ped-
estal break this isomorphism. According to the isomorph-
ism, ITG instability is driven at kyρi ∼ LTi/R0 ≪ 1, and the
ETG instability is driven at kyρi ∼ (ρi/ρe)LTe/R0, as demon-
strated in figure 24. In figure 24, we show the growth rates
of ITG at ‘ITG’ scales, kyρi ∼ LTi/R0, and the growth rates
of ETG at ‘ETG’ scales, kyρi ∼ (ρi/ρe)LTe/R0, for JET shot
92174. The isomorphism between ITG and ETG is confirmed,
with the ‘T0i = T0e,he = 0’ and ‘T0i = T0e,hi = 0’ cases hav-
ing the same isomorphic growth rates. Here, ‘T0i = T0e’ means
that both the ion and electron temperatures and their gradi-
ents are set equal to each other—specifically, T0e is increased
to match T0i, and R0/LTi becomes as large as R0/LTe. This
affects the electron collision frequencies, which are decreased
self-consistently. Note that the difference between the toroidal
ETG growth rates in figure 24(b) is mainly due to a different
electron temperature, not a different collisionality.
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Figure 24. Linear ITG and ETG GS2 growth rates at (a) kyρi ∼ LTi/R0 (ITG scales) and (b) kyρe ∼ LTe/R0 (ETG scales). Dashed series
indicates an ITG mode, solid is a mode driven by electron temperature gradients. For the ITG scales, the growth rates and kyρi have been
multiplied by ρi/ρe. The series ‘T0i = T0e’ indicates that T0e = T0i, LTi = LTe; ‘Measured T0i’ indicates that values of T0i and LTi are taken
from the measured ion profiles. Here, ρi/ρe ≈ 82 for the measured T0i and T0e profiles, and ρi/ρe ≈ 61 when T0i = T0e.

Electron collisions have a significant effect on the tor-
oidal and slab ITG growth rates. As shown in figure 24(a),
there is a substantial difference between the collisional and
collisionless simulations, indicated by ‘T0i = T0e’ and ‘T0i =
T0e, Collisionless’ cases. In the simulations we have per-
formed, electron collisions reduce the toroidal and slab
ITG growth rates. It is not obvious that electron collisions
should always decrease the ITG growth rates, or whether
this stabilization can be ascribed to trapped or passing
electrons. At these scales, νeea/vti ∼ 0.8≫ γITGa/vti and
the modes with kinetic electron physics have a significant
contribution of passing electrons due to the long electron
‘tails’ shown in figure B3 in appendix B. Hence, at scales
where there is ITG instability, the trapped electron response
will be collisionally coupled to the large passing electron
response.

We now describe gyrokinetic simulations with the meas-
ured ion profiles. Compared with the equal profile case, ‘T0i =
T0e,’ once measured equilibrium profiles are included, the ITG
growth rates decrease substantially. In figure 24(a), ‘Meas-
ured T0i’ is a simulation with the measured ion temperature
profiles; the fastest growing modes at ITG scales are electron-
driven modes with large electron tails [61] (see appendix B),
switching to a toroidal ETG mode once kyρi ≳ 0.1. In order
to find the subdominant ITG instability, we must set he= 0
(otherwise electron-driven modes dominate), as shown in the
‘Measured T0i, he= 0’ line. The ITG instability barely grows
in the runs with adiabatic electrons, although there were well-
resolved toroidal ITG eigenmodes. Using GS2’s eigensolver
function [75], we could not find any toroidal ITG instability
for kyρi ∼ LTi/R0 when using themeasured profiles and kinetic

electrons, indicating that ITG is stable at kyρi ≪ 1. However,
at ETG scales (kyρe ∼ LTe/R0), we did find weakly growing
slab ITG modes by using adiabatic electrons, shown in fig-
ure 24(b) (‘Measured T0i, he= 0’), a result that was corrob-
orated by very weakly growing slab ITG modes found using
GS2’s eigensolver. Therefore, for the measured profiles, ITG
is extremely subdominant in JET shot 92174. Moreover, we
will see in section 7 that the slab ITG is easily quenched by
E×B shear.

Heuristically, we can understand the stability of the toroidal
ITG mode using a similar stability analysis performed for the
toroidal ETGmode in section 5.4. In figure 22(b), we show the
toroidal ETG mode being stabilized at ηe ≃ 1.3 (we checked
the toroidal ETG growth rates went to zero for the low colli-
sionality case; in the correct collisionality case shown in figure
22(b), a slab ITG mode appears before the toroidal ETG mode
can be seen to be stabilized). Due to the isomorphism between
toroidal ITG and toroidal ETG in the collisionless case where
the other species is adiabatic, we can reasonably predict that
toroidal ITG also has a similar critical ηi≈ 1. Examining the
ηi profile in figure 1(c), we find that ηi≃0.8− 1.2 in the steep
gradient region of the pedestal (r/a≈ 0.97− 0.99). Hence, ηi
is very close to (and likely slightly below) its critical value
in all regions of the pedestal for θ0 = 0, and it is unsurprising
that the toroidal ITG mode is very weakly-driven. A broader
question that merits examination is the physics that keeps ηi
close to its critical value, while ηe is far above its critical value
(although this is subject to uncertainties in the ion temperat-
ure profile, which could change ηi). Finally, the suppression
of ITG instability in pedestals is not inconsistent with what
has been observed in previous analyses; for example, [76]
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found that the ion heat diffusion was close to neoclassical in
ASDEX-U inter-ELM pedestal discharges.

One might be concerned about the use of local simulations
to analyze these large scale ITG modes. For JET shot 92174,
at r/a= 0.974 3 the local equations require k⊥ρi ≫ ρi/LTe =
0.12 to be valid. Just as steep electron temperature gradients
and FLR effects require toroidal ETG modes with wavenum-
ber kyρe ∼ LTe/R0 to satisfy k⊥ρe ∼ 1, steep ion temperature
gradients and FLR effects require toroidal ITG modes with
wavenumber kyρi ∼ LTi/R0 to satisfy k⊥ρi ∼ 1. Thus, even the
long wavelength toroidal ITG does not violate k⊥ρi ≳ 0.12.
For example, we find that the toroidal ITGmode in figure 24(a)
with kyρi = 0.04 (‘T0e = T0i,he = 0’) has an eigenmode max-
imum at k⊥ρi = 0.9, and so is far from violating the condition
k⊥ρi ∼ 0.12. One might be concerned about the correspond-
ing long wavelength slab ITGmodes in figure 24(a), since kyρi
can be as small as kyρi ≃ 0.05 for the fastest growing slab ITG
instability; however, similar to the slab ETG instability, these
eigenmodes are still quite extended in θ for smaller values of
kyρi. For a slab ITG mode with kyρi = 0.05, we find the eigen-
mode maximum occurring at a location where k⊥ρi = 0.2,
with many other peaks in the eigenmode with very similar
amplitudes occurring at θ locations where k⊥ρi ≳ 1.0. There
may be subdominant ITGmodes at kyρi ∼ LTi/R0 that are very
narrow in θ, and hence have k⊥ρi ∼ LTi/R0; suchmodes would
likely be poorly described by a local prescription, and there-
fore we would not dare to include such modes in our analysis.
To summarize, the radial profile variationwould bemuchmore
important for modes where Kxρi is sufficiently small, but we
are examining modes that are typically much less extended in
the radial direction than in the y direction, and hence we do
not expect a big difference between local and global simula-
tions for these Kx ≫ ky modes. Given the particular import-
ance of FLR damping for these modes in the pedestal, having
an accurate gyroaveraging scheme is also useful, which can be
more challenging to implement for global simulations [77].

To summarize, we find that with the measured ion temper-
ature profiles, the ITG mode is stable for kyρi ≪ 1, and there
is very weakly-driven ITG at kyρi ∼ 1. When the ion tem-
perature profile is set equal to the electron profile and ITG
modes become linearly unstable at very long wavelengths, the
isomorphism between ITG with he= 0 and ETG with hi= 0
holds. Electron collisions appear to decrease the ITG growth
rate significantly. The detailed mechanism for this stabilizing
impact of electron collisions requires further investigation.

7. E×B shear

In this paper we chose to perform most simulations without
E×B shear, since in simulations with E×B shear, the elec-
trostatic modes were barely modified compared to the simula-
tions without E×B shear.

In this section, we present the results of gyrokinetic simula-
tions withE×B shear. First, we discuss the validity of keeping
E×B shear even though it is small in the low flow ordering.
After that, in addition to the results we presented in section 3
where KBMs were argued to be suppressed by E×B shear,

we show the effect of E×B shear on KBMs, and ETG and
ITG modes. We will see that while KBMs usually are easily
suppressed by E×B shear, ETG modes are barely affected.
ITG instability is easily stabilized when using the measured
ion temperature profile, but is not fully-suppressed when the
ion temperature profile is made equal to the electron temper-
ature profile.

In our local linear simulations with E×B shear, we use a
new E×B shear algorithm [78], and also tested that the res-
ults were qualitatively similar with the previousGS2 algorithm
[79]. With the newer algorithm, a typical simulation with
E×B shear contained a single poloidal mode, 150 radial
wavenumbers with a spacing of ∆kx ≈ ky, and a E×B shear
value of γEa/vti = 0.56. With the previous algorithm, the
range of kx values was held fixed, but the ∆kx spacing was
reduced by a factor of 10.

In the low flow ordering, if one retains the E×B shear, one
should also keep neoclassical corrections to the Maxwellian
[42, 80], but for simplicity, we have neglected neoclassical
corrections throughout this paper. When analyzing high k⊥
modes for this equilibrium, it is inconsequential whether or
not the E×B shear is kept, and we expect the neoclassical
corrections to be similarly unimportant. However, for small
k⊥, we find the small E×B shear can suppress instabilities
and hence one might expect that neoclassical corrections are
also important.

The parallel flow is one of the main physical features of
neoclassical corrections. Therefore to estimate the effect of
these corrections, we will use previous studies on the parallel
velocity gradient (PVG) instability [81–86]. The PVG growth
rate is

γPVG ∼
duζip
dr

kyρi. (63)

In regions where we see ITG stabilization by E×B shear,
kyρi ∼ 0.1, and the PVG growth rate is much smaller than
the E×B shear rate. From the measured 12

6 C
+ rotation pro-

files at r/a= 0.974 3, we find that |duζip/dr|a/vti ≈ 1.4, and
thus γPVGa/vti ≈ 0.14. Therefore, given that γEa/vti = 0.56>
γPVGa/vti, this PVG mode is likely stabilized by the E×B
shear. Hence, we do not expect that the neoclassical flows
will significantly modify a mode’s growth rate, although the
effect of neoclassical terms at these small scales merits further
investigation.

The E×B shear is usually more effective for low than
for high k⊥ modes, as shown in figure 25. This is because
the growth rate of the electrostatic instabilities that we are
investigating typically scales with ω∗sηs ∼ kyρsvts/LTs, and
because of the differences in a mode’s radial extent for dif-
ferent instabilities. If the typical timescale for an instabil-
ity, 1/γ, is comparable to the E×B shearing time, 1/γE, the
E×B shear can be effective. However, when 1/γE ≫ 1/γ ∼
LTs/kyρsvts, the E×B shear is unable to shear the mode suffi-
ciently quickly. Hence,E×B shear suppresses modes at smal-
ler ky, and barely modifies short wavelength modes. Addition-
ally, modes that are radially localized (Kx ≫ ky) are harder to
shear than those with a wider radial width; this is apparent
when examining the middle term in equation (65). If the time
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Figure 25. Density time traces of KBM and ITG instabilities with and without E×B shear. (a) The KBM is suppressed by the E×B shear
consistent with the measured ion temperature profile. (b) The ITG is not fully suppressed by the E×B shear when the ion temperature and
gradient are equal to the electron temperature and gradient. The two separate values of γEa/vti correspond to its consistent value for the
measured ion temperature profile (γEa/vti = 0.56) and when the ion temperature and gradients are equal to the electron temperature and
gradient (γEa/vti = 2.24). (c) The effective growth rates of the ITG instability for the three separate values of γEa/vti in (b).

independent piece of |Kx| is already large, it will take a long
time for flow shear to change |Kx| substantially, by which time
the linear mode will have likely already grown for multiple e-
folding times. Hence, modes with Kx ≫ ky are challenging to
suppress with flow shear.

We now apply these two criteria (growth rate versus shear-
ing rate, and radial extent of the mode) to explain our obser-
vations for which modes are suppressed by E×B shear. The
KBM we discussed in section 3 is easily suppressed by E×B
shear because it is radially extended and is stable for a wide
range of θ0 values (see figure 3(d)). The KBM was shear sup-
pressed even though γKBM > γE. This suppression is demon-
strated in figure 25(a), where the mode’s density is shown to
decay in time.

Determining the effect of the E×B shear on toroidal and
slab modes separately is challenging. To understand why this
is the case, it will be useful to define an ‘effective’ θ0 that now
depends on time,

Θ0(γE, t) = θ0 − ky
γE
ŝ
t, (64)

such that the time-dependent radial wavenumber is

Kx = ky
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(65)

The fact that the mode has different Θ0 values at different
times considerably complicates understanding the effect of
E×B shear on toroidal and slab ETG in the pedestal sep-
arately: for kyρi ≳ 5 in the absence of E×B shear, while
for θ0 = 0 the fastest growing modes are slab ETG modes,

for θ0 ̸= 0 the fastest growing modes are almost always tor-
oidal ETG modes. Since E×B shear changesΘ0 with time as
described in equation (64), if at t= 0 a mode is a slab ETG
mode (i.e. it has θ0 = 0), after a period of time it will become a
toroidal ETG mode. Therefore, we can only determine if the
E×B shear suppresses both slab and toroidal modes.

We now consider the effect of E×B shear on the ITG
instability. Our simulations indicate that the effectiveness
of E×B shear at suppressing ITG is sensitive to several
parameters. We first test the effectiveness of E×B shear
with the measured ion temperature profiles, which requires
using adiabatic electrons, since electron temperature gradient-
driven modes are the fastest growing at all scales (see fig-
ure 24). We test the E×B shear on an ITG mode with
kyρi = 0.7, which has a modest growth rate of γa/vti≃0.1.
In simulations with E×B shear, the mode is easily sup-
pressed. This is expected, since 1/γE ≪ 1/γ for this ITG
mode, and hence, both toroidal and slab ITG are suppressed by
E×B shear at kyρi = 0.7 with the measured ion temperature
profiles.

We also test the effectiveness of the E×B shear at sup-
pressing the ITG instability when the ion temperature pro-
files are made equal to the electron temperature profiles (that
is, T0i = T0e and LTi = LTe). To investigate this, we perform
GS2 simulations with E×B shear for a single toroidal ITG
mode with kyρi = 0.04. Recall that we estimate the radial
electric field by balancing it with the pressure gradient as
in equation (16), which requires that γE is roughly propor-
tional to the second derivative of the pressure gradient, as
in equation (17). Therefore, when we quadruple 1/LTi for
the case where the ion and electron temperature profiles are
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made equal, to be consistent with the temperature profile we
must also roughly quadruple the value of γE. In figure 25(b),
we show the time trace of the density for three simulations
of the ITG mode with T0i = T0e, LTi = LTe, where the value
of γE varies in each simulation. We show the ITG mode in
the absence of E×B shear, the mode with γEa/vti = 0.56,
which is consistent with the measured ion temperature gradi-
ents, and the mode with γEa/vti = 2.24, which is consist-
ent with the steepened ion temperature gradients. To calcu-
late the effective growth rate, we used a similar technique
to that in [87], which involves fitting the mode amplifica-
tion in time. As shown in figure 25(c), while the consistent
value of E×B shear, γEa/vti = 2.24, reduces the growth rate
by 70 %, it does not fully suppress the ITG instability. We
also found a range of additional parameters that determined
how successfully the E×B shear suppressed the high gradi-
ent ITGmode such as T0i/T0e; more work is required to under-
stand the resilience of strongly-driven pedestal ITG to E×B
shear.

We now discuss the ETG instability. We found that E×B
shear was insufficient to quench the ETGmodes. Even tripling
the value of γE at kyρi = 2.8 barely changed the growth rates
of the toroidal and slab ETGmodes. The ineffectiveness of the
E×B shear for ETGmodes is due to γ≫ γE for these modes.
There is likely no experimentally-realizable value of γE that
would suppress these ETG modes in the pedestal.

Thus, to summarize, we establish the following hierarchy
for the efficiency of E×B shear at reducing the growth rates
of linear modes. KBMs are completely suppressed by E×B
shear, and ITG is also fully suppressed when using the meas-
ured ion temperature profiles. Using profiles with ion gradi-
ents as steep as the electron gradients, while the toroidal
ITG growth rate is significantly reduced by E×B shear, it
is not necessarily stabilized. ETG is very resistant to E×B
shear.

8. Discussion

In the steep gradient region of the fully developed pedestal of a
JET H-mode discharge (92174) where measurements indicate
that T0i > T0e and R0/LTe > R0/LTi, local gyrokinetic simula-
tions demonstrate that electron-driven modes are the fastest
growing modes at all length scales perpendicular to B. Lin-
early, KBMs are quenched by E×B shear, as is ITG when the
measured ion temperature profiles are used. This leaves ETG
at 0.1≲ kyρi ≲ 400.

Using R0/LTe ≫ 1, we predicted that a novel type of tor-
oidal ETG would be driven at kyρi ∼ 1 and Kxρe ∼ 1, which
we have confirmed in gyrokinetic simulations. This toroidal
ETG at kyρi ∼ 1 in the linear growth rate spectrum seems
to be a robust feature of steep temperature gradient regions,
having been seen in all three other pedestals we examined
(see figure A1, and appendix A for experimental information),
as well as in other works: DIII-D [29, 38], NCSX [37], and
ASDEX-U [34–36, 38]. It is also likely that a toroidal ITG

mode of a similar nature has been observed at kyρi ∼ LTi/R0

in [88].
A notable success of this work is that a simple theoretical

model predicted the linear growth rates of the toroidal and slab
ETG and the poloidal location of the toroidal ETGmode fairly
well. If the ion temperature profile is set equal to the electron
temperature profile, ITG modes grow fastest for kyρi ≲ 0.5,
and ETGmodes grow fastest for 0.5≲ kyρi ≲ 400. With equal
ion and electron temperature profiles, one might be concerned
about significant transport caused by the toroidal ITG at scales
as small as kyρi ∼ LTi/R≪ 1, since nonlinearly these instabil-
ities might produce large eddies that cause substantial heat
transport. However, our simple estimate of γE by balancing the
radial electric field with the pressure gradient found thatE×B
shear could fully suppresses the ITG instability for certain
temperature ratios T0i/T0e when the ion temperature gradients
are as steep as the electron temperature gradients. While the
E×B shear frequency is too small to damp the ETG, impurit-
ies are known to damp ETG [70, 89]. Therefore, further invest-
igation might explore the effect of impurities on toroidal ETG
instability in pedestals. Work has already shown that impur-
ities can produce non-negligible ion-scale pedestal transport
[33, 47].

With the measured ion temperature profiles, it is likely that
the non-linear state of JET shot 92174’s pedestal is domin-
ated by electron-driven transport. Indeed, the novel toroidal
ETGmodes we have described in this work could be important
for transport, as evidenced by the heuristic estimate of γ/k2⊥
in figure 20. Careful work will be required to resolve these
modes in non-linear simulations. We have not included results
from non-linear simulations in this paper because the linear
results of this work demonstrate how challenging these simula-
tions are to correctly resolve. For example, to resolve the fast-
est growing linear modes—toroidal ETG modes—from 1≲
kyρi ≲ 100 in a non-linear simulation requires significant kx
resolution, as well as a sufficiently large number of independ-
ent θ0 modes. In addition, the slab ETGmodes require increas-
ingly fine θ grids to resolve at higher values of kyρi, which sig-
nificantly increases computational cost. Caution is required in
attempting to infer transport properties from these linear res-
ults: the modes we observe span a wide range of perpendicular
scales, and complexmultiscale interactions could be important
[90–94].

While in this paper we have focused on a single radial
location for a single discharge, we have also investigated the
growth rates at various radial locations using gyrokinetic sim-
ulations. These simulations have demonstrated a significant
sensitivity of the growth rates to the radial location because
of the sensitivity of the instabilities to local gradients. Never-
theless, certain features such as (i) the dominance of ETG at all
scales, and (ii) the toroidal ETG at kyρe ∼ LTe/R0 were robust
features. Due to the sensitivity of microstability to the radial
location, we caution against using the local growth rates at any
given flux surface to infer global properties about the pedes-
tal, such as its width or height. We have observed that some
pedestals have consistently lower growth rates than others,
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but more work, particularly non-linear simulations, is required
to connect gyrokinetic analysis with predictions of pedestal
structure.

Data and code accessibility

The data and code versions used for the material in this paper
are available at the following dataset archive [95].
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Appendix A. Other discharges

Here we present the results of gyrokinetic analysis for
three other JET-ILW H-mode pedestal discharges. The basic
experimental and simulation parameters for these JET-ILW

Table A1. Experimental and simulation parameters for the
discharges in this work.

Discharge 82550 92167 92168 92174

Experimental parameters
Ip [MA] 2.5 1.4 1.4 1.4
BT0 [T] 2.7 1.9 1.9 1.9
H98(y,2) 0.7 0.9 1.0 1.0
nG 0.8 0.6 0.7 0.7
RD [electrons/s ×1022] 2.3 0.8 0.4 0.9
q95 3.3 4.3 4.4 4.2
Zeff 1.2 1.8 1.8 1.8
PNBI [MW] 14.4 17.4 17.6 17.4
βN 1.1 2.2 2.6 2.5

Simulation parameters
r/a 0.9660 0.9784 0.9713 0.9743
q 3.65 5.14 5.07 5.08
ŝ 4.92 3.93 4.62 3.36
a/LTe 57 41 29 42
a/LTi 12 19 16 11
a/Ln 23 8 10 10
κ 1.61 1.54 1.54 1.55
δ 0.30 0.26 0.26 0.26
aβ′ −0.09 −0.06 −0.07 −0.08
a(dκ/dr) 1.11 1.15 0.81 0.95
a(dδ/dr) 0.97 0.85 0.67 0.74

discharges in addition to the discharge discussed in the
main text (shot 92174) are shown in table A1. Discharge
82550 is a very highly-fueled deuterium discharge with high
triangularity and low ion temperature, 92167 is a highly-
fueled deuterium discharge, 92168 is a weakly-fueled deu-
terium discharge, and 92174 is a highly-fueled deuterium dis-
charge with deuterated ethylene (C2D4) injection. In table A1,
the quantity q95 is the safety factor measured at the loca-
tion where the normalized poloidal flux is equal to 0.95. For
more information on these data types, refer to the JET data
handbook.

Figure A1 shows results from local gyrokinetic microin-
stability analysis at the radial location with the maximum pres-
sure gradient (and therefore close to the maximum γE) in
the four JET-ILW H-mode pedestals described in figure A1.
These are all electrostatic, linear GS2 simulations performed
without E×B shear and with θ0 = 0. While JET shot 92168
does not appear to have the characteristic toroidal ETG bump
at kyρi ∼ 1, an analysis of the eigenmodes demonstrates that
toroidal ETG modes are indeed the fastest growing modes for
1≲ kyρi ≲ 7 with θ0 = 0.

In figure A2, we also plot quasilinear transport estimates
for JET shots 82550, 92167, and 92168 using γ/k2⊥. These
estimates demonstrate that γ/k2⊥ depends non-trivially on θ0,
similar to JET shot 92174, which is shown in figure 20(b).

Appendix B. Electrostatic modes at kyρi ≲ 1.0

For completeness, we briefly detail the electrostatic modes at
kyρi ≲ 1.0. We describe their eigenmode structure as well as
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Figure A1. GS2 gyrokinetic pedestal electrostatic growth rates for 4 JET equilibria with θ0 = 0 for different ranges of kyρi. (a)
1≲ kyρi ≲ 135. (b) 0.1≲ kyρi ≲ 1.0. (c) 1≲ kyρi ≲ 5. (d) 5≲ kyρi ≲ 50.

Figure A2. Quasilinear estimates of γa/vtik2⊥ for JET shots 82550, 92167, and 92168.

growth rate sensitivity scans in temperature gradients and col-
lisionality.

All of these simulations are performed with θ0 = 0.05.
For 0.1≲ kyρi ≲ 1.0, we observe modes that become increas-
ingly extended in θ with decreasing values of kyρi. For kyρi ≈
1, the fastest growing mode is still the toroidal ETG mode

described throughout this paper, shown in figure B3(a). Once
kyρi decreases, the eigenmodes become more complicated and
more extended in θ, as shown by figures B3(b) and (c); we refer
to these modes as ‘extended ETG.’ We also plot the quant-
ity ω∗eηe/ωκe when it is positive in figures B3(a), (b), and
(c)—we observe that the extended ETG tends to have maxima
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Figure B3. Eigenmodes for kyρi ≲ 1 and θ0 = 0.05 for JET shot 92174. In (a), (b), and (c), the quantity ω∗eηe/ωκe is plotted only when it is
positive. In (a)–(d), the crimson lines are Re(ϕtb1 ), the blue lines are Im(ϕtb1 ), the gold dashed lines are |ϕtb1 |, and the black dashed lines are
ω∗eηe/ωκe. (a) kyρi = 0.97, toroidal ETG with large amplitude far down the field line. (b) kyρi = 0.62, extended ETG, (c) kyρi = 0.34,
extended ETG, and (d) kyρi = 0.06: modes with electron tails. Growth rates for kyρi ≲ 1.0 modes with scans in temperature gradients,
collisions, and kinetic/adiabatic ions: (e) kyρi < 0.14 modes, and (f ) 0.14< kyρi < 1.4 modes.

of |ϕtb1 | in bad curvature regions. This leads us to speculate
that the extended ETG modes are a more complicated version
of the toroidal ETG modes described throughout this paper.
The extended ETG modes in figures B3(b) and (c) have tear-
ing parity for both Re(ϕtb1 ) and Im(ϕtb1 ). We normalize the
eigenmodes in figure B3(a)–(d) such that the maximum of
|ϕtb1 | is 1, and such that the value of ϕtb1 is purely real at that
location. In figure B3(f ), we perform a growth rate sensitiv-
ity scan for these modes; the growth rate of these extended
modes is very sensitive to R0/LTe and only slightly sensitive
to R0/LTi and collisions for smaller values of kyρi. The exten-
ded ETG modes are stable when run with adiabatic ions for
kyρi ≲ 0.2.

For kyρi ≲ 0.1, we observe extremely extended eigen-
modes, shown in figure B3(d)—the mode extendsas far as
θ≈ 50 before the typical |ϕtb1 | value is less than 10 % of the
eigenmode maximum value. The modes are reminiscent of
modes with extended electron tails [61]. There is no apparent
relationship between the maxima of |ϕtb1 | and bad curvature
regions, unlike for the extended toroidal ETG modes. The
mode shown in figure B3(d) has tearing parity for both Re(ϕtb1 )

and Im(ϕtb1 ). Sensitivity scans in figure B3(e) show that these
modes are very sensitive to R0/LTe, but insensitive to R0/LTi.
The modes with electron tails were stable for collisionless
simulations.

Appendix C. Full dispersion relation

Using equation (44) in the quasineutrality equation (22), we
find equation (50) with

Ds ≡
(
eϕtb1 n0e
ZsT0e

)−1ˆ
hsd

3v=
2iZ2s
π1/2v3ts

T0e
T0 s

n0 s
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0

× dλ
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0
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ˆ ∞

−∞
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× exp
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(
⌢
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⌢
ω∇Bs

v̂2⊥
2
−

⌢

k ∥ v̂∥

)
− v̂2∥ − v̂2⊥

)
×
[
− ⌢
ω +

⌢
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(
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(
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J20
(√
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Re( )

Im( )

C0

C12i

σi

(a, 0)

ω∇Bs

Figure C4. Contour paths C0 and C1, constructed to avoid the poles along the imaginary λ axis at σi and 2σi, as well as minimizing
exponential oscillations.

where we have used [96]

i
ˆ ∞

0
dλexp

(
iλ
(
⌢
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2
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To find growing solutions and obtain a converged integral, we
require that Im(

⌢
ω)> 0. Evaluating the integral in v̂∥ gives

Ds =2i
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The integral in v̂⊥ gives equation (51), where we used the
integrals

ˆ ∞

0
xJ20(ax)exp(−bx2)dx=

1
2b
I0

(
a2

2b

)
exp(−a2/2b)

=
1
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, (C4)

and
ˆ ∞

0
x3J20(ax)exp(−bx2)dx

=

−(a2 − 2b)Γ0

(
a2/2b

)
+ a2Γ1

(
a2/2b

)
4b3

, (C5)

which is found by differentiating equation (C4) with respect
to b.

We proceed to explain the numerical technique used to cal-
culate the λ integral in equation (51). The λ integral in equa-
tion (51) along the real λ axis is highly oscillatory when γ→ 0,
and standard numerical integrationmethods canmake substan-
tial errors in the low growth rate limit. Similarly, a straightfor-
ward change of variables such as λ→ iλ will fail for nonzero
k∥ and bs due to exponential singularities caused by k∥ and bs
(at λ=σi and 2i/

⌢
ω∇Bs, respectively). To avoid these prob-

lems, we introduce a numerically robust path of integration
that avoids singularities and significantly reduces the number
of oscillations.

In the limit λ→∞, the exponential in equation (51)
reduces to,

exp

i
⌢
ω +

⌢

k
2

∥

4σ

λ
 . (C6)

Thus, if we wish to minimize oscillations, we should choose
our path such that the imaginary component of the exponential
is constant. This is achieved with the integral path

λ= i

⌢
ω

∗
+

⌢

k
2

∥

4σ

λ+ a, (C7)

where a is a constant that we need to choose to improve integ-
ral convergence. Therefore, we choose an integration path
composed of two different paths, C0 and C1. The first path,
C0, goes a short distance a along the real λ axis. The second
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path, C1, is the one given in equation (C7). The total integra-
tion path is shown in figure C4. The integration path in figure
C4 gives the same result as the original path because the integ-
rand in equation (51) decays as |λ| →∞. The constant a needs
to be sufficiently large to avoid the singularities at λ=σi and
2i/

⌢
ω∇Bs. A value a= 0.5 is usually sufficiently large.
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