
PAPER

Towards understanding reactor relevant tokamak
pedestals
To cite this article: C.J. Ham et al 2021 Nucl. Fusion 61 096013

 

View the article online for updates and enhancements.

You may also like
Pedestal properties of H-modes with
negative triangularity using the EPED-CH
model
A Merle, O Sauter and S Yu Medvedev

-

Role of the pedestal position on the
pedestal performance in AUG, JET-ILW
and TCV and implications for ITER
L. Frassinetti, M.G. Dunne, U. Sheikh et al.

-

Access to pedestal pressure relevant to
burning plasmas on the high magnetic
field tokamak Alcator C-Mod
J.W. Hughes, P.B. Snyder, M.L. Reinke et
al.

-

This content was downloaded from IP address 194.81.223.66 on 27/01/2022 at 09:58

https://doi.org/10.1088/1741-4326/ac12e9
/article/10.1088/1361-6587/aa7ac0
/article/10.1088/1361-6587/aa7ac0
/article/10.1088/1361-6587/aa7ac0
/article/10.1088/1741-4326/ab1eb9
/article/10.1088/1741-4326/ab1eb9
/article/10.1088/1741-4326/ab1eb9
/article/10.1088/1741-4326/aabc8a
/article/10.1088/1741-4326/aabc8a
/article/10.1088/1741-4326/aabc8a


International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 61 (2021) 096013 (17pp) https://doi.org/10.1088/1741-4326/ac12e9

Towards understanding reactor relevant
tokamak pedestals

C.J. Ham1,∗ , A. Bokshi2 , D. Brunetti1 , G.Bustos Ramirez3 ,
B. Chapman1 , J.W. Connor1 , D. Dickinson4 , A.R. Field1 ,
L. Frassinetti5 , A. Gillgren6, J.P. Graves3 , T.P. Kiviniemi7 , S. Leerink7,
B. McMillan8, S. Newton1, S. Pamela1, C.M. Roach1 , S. Saarelma1,
J. Simpson1 , S.F. Smith1 , E.R. Solano9, P. Strand6, A.J. Virtanen7 and
the JET Contributorsa

1 UKAEA-CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great
Britain and Northern Ireland
2 Institute for Plasma Research, Gandhinagar, India
3 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne,
Switzerland
4 York Plasma Institute, University of York, Heslington, York YO10 5DD, United Kingdom of Great
Britain and Northern Ireland
5 Division of Fusion Plasma Physics, KTH, Stockholm SE, Sweden
6 Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
7 Aalto University, FI-00076 Aalto, Finland
8 University of Warwick, Coventry CV4 7AL, United Kingdom of Great Britain and Northern Ireland
9 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

E-mail: christopher.ham@ukaea.uk

Received 1 April 2021, revised 21 June 2021
Accepted for publication 9 July 2021
Published 2 August 2021

Abstract
The physics of the tokamak pedestal is still not fully understood, for example there is no fully
predictive model for the pedestal height and width. However, the pedestal is key in determining
the fusion power for a given scenario. If we can improve our understanding of reactor relevant
pedestals we will improve our confidence in designing potential fusion power plants. Work has
been carried out as part of a collaboration on reactor relevant pedestal physics. We report some
of the results in detail here and review some of the wider work which will be reported in full
elsewhere. First, we attempt to use a gyrokinetic-based calculation to eliminate the pedestal
top density as a model input for Europed/EPED pedestal predictions. We assume power
balance at the top of the pedestal, that is, the heat flux crossing the separatrix must be equal to
the heat source at the top of the pedestal and investigate the consequences of this assumption.
Unfortunately, the transport assumptions of the EPED model mean that this method does not
discriminate between different pairs of density and temperature profiles for a given pressure
profile. Second, we investigate the effects of non flux surface density on the bootstrap current.
Third, type I ELMs will not be tolerable for a reactor relevant regime due to the damage that
they are expected to cause to plasma facing components. In recent years various methods of
running tokamak plasmas without large ELMs have been developed. These include small and
no ELM regimes, the use of resonant magnetic perturbations and the use of vertical kicks.
We discuss the quiescent H-mode here. Finally we give a summary and directions for future
work.
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(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

The pedestal, which is associated with a local formation of
a transport barrier (in energy and particles), plays an impor-
tant role in determining the confinement in tokamak H-mode
plasmas. Indeed the increased confinement associated with the
steep pedestal gradients strongly affect the global plasma per-
formance, and the expected fusion power associated with a
given scenario. However, the steep pressure gradients in this
transport barrier also lead to edge localized modes (ELMs) [1].
There is a reasonable understanding of the pedestal in type I
ELM regimes being limited by ideal MHD peeling-ballooning
(PB) modes. The EPED model can predict pedestal height and
width of type I ELMing plasmas on current machines given
various assumptions [2], however, type I ELMs are known
to damage plasma facing components and so future large
tokamaks must operate with small or no ELMs.

Many of our models of the pedestal are based to some
degree on experimental understanding from current machines.
It is well known that reactor class machines will often operate
in different regions of parameter space than current machines.
However, reactor class machines are currently being designed
and we need to improve our confidence in potential plasma
scenarios. The fusion power for a given plasma scenario is
very sensitive to the pedestal height, which itself is determined
by physics processes we are yet to fully understand in reactor
regimes. If we can improve our basic physics understanding
of the pedestal we will be able to improve our confidence in
extrapolations to reactor scale machines.

1.2. Overview

Our collaboration aimed to understand various aspects of the
physics of reactor relevant pedestals or at least to understand
the gaps in our knowledge. In section 2 we review recent work,
especially that carried out as part of our collaboration, which
was directed towards understanding pedestal physics relevant
to tokamak reactors. In this paper we detail results in three
areas: pedestal prediction, the effect of density not being con-
stant on a flux surface, and ELM free scenarios. These are all
relevant to designing reactor relevant pedestals. In section 3 we
describe the work we have done on improving pedestal predic-
tion models. In particular, making the EUROPED model [3]
more general and building our understanding of the physics
that underlies the model. To improve our confidence in the
extrapolation to the reactor scale we need to base pedestal
prediction on fundamental physics.

We need to more fully understand various issues that are
important for current machines but which we have not fully
investigated. The variation of density over a flux surface is in
this category. In section 4 we investigate how a non flux sur-
face density, i.e. density is not constant on a flux surface, may

change the bootstrap current with potential consequences for
MHD stability. Finally, it is well known that ELMs will not
be tolerable in reactor scale devices so we must investigate
ELM free scenarios such as QH-mode. In section 5 we dis-
cuss the improvements we have made in our understanding of
the QH mode. There is still much to understand and we will
give our thoughts on where future efforts could be directed
in section 6.

2. Recent work on reactor relevant pedestals

The pedestal continues to be a rich source of interesting
physics. We still do not have a solid understanding of all of
the underlying processes. It is important that we develop our
understanding of the pedestal not just because of the interest-
ing physics, but also because to design and build future toka-
mak fusion reactors we must be able to predict pedestals to give
confidence that potential designs will operate at the required
performance. The EPED and EUROPED models have had
some success in this area, but they have underlying assump-
tions that to one degree or another are based on experimental
observations. One such assumption is the pedestal gradient
being limited by

√
βpol. This is an assumption about the trans-

port and the instabilities that are assumed to produce that trans-
port. It originates from an empirical relationship between the
width of the pressure pedestal and beta poloidal at the pedestal
top for a subset of DIII-D plasmas. It is heuristically justified
on the basis of kinetic ballooning modes (KBMs). We report
work in section 3 that seeks to improve our approach in this
area.

A further important part of the physics of the pedestal is the
bootstrap current that is generated by the steep pressure gradi-
ent in the pedestal region. This current can drive instabilities
such as the ELM. There are various ways of calculating the
bootstrap current that involve either direct solution of the neo-
classical equations [4, 5] or a fitting of the numerical solution
over various parameter ranges [6, 7]. Members of our collabo-
ration have used the global full f gyrokinetic code ELMFIRE
[8] first to benchmark the Hager and Sauter models [9]. It was
found that these two formulae agree with ELMFIRE in the
regime where there is no Shafranov shift and low collision-
ality, which is relevant for ELMFIRE. Further, ELMFIRE has
been used to assess the effect of poloidal variation of density
on the bootstrap current [9]. Initial results indicate that there is
an effect which should be investigated further. Analytic calcu-
lations of the effect of poloidal variation of density have been
carried out and this analysis is presented in section 4. We have
also investigated the effect of poloidal variation of density on
MHD stability using the JOREK code [10]. The initial results
showed that the growth rate of low toroidal mode number insta-
bilities were affected but further work is required to confirm
this.
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Integrating all of the pedestal models together and running
them could be quite time consuming if the pedestal predic-
tion is part of a design loop for a reactor design or to design
a shot or indeed to interpret experimental results. Members of
our collaboration have therefore been investigating the use of
neural networks. These neural networks can be trained either
on experimental data or on the results of modelling and the
resulting neural network can then be used to produce fast
pedestal predictions. This has been completed for JET using
PENN [11].

Our collaboration investigated some of the small and no
ELM regimes that will have to be considered for a reactor. The
quiescent H-mode (QH-mode) is one such ELM free regime
that has been investigated in DIII-D [12], JET [13] and at AUG
[14]. The plasma still has a pedestal and so has reactor rele-
vant performance but it develops an edge harmonic oscillation
which is thought to be a saturated MHD mode. The hypothe-
sis is that this mode produces sufficient density transport such
that the PB mode boundary is not reached and the ELMs are
avoided. Experimental evidence so far suggests that an edge
rotation shear is required for the QH-mode to appear. Our col-
laboration has investigated the QH-mode both numerically and
analytically. We have used the VMEC code to find saturated
nonlinear MHD states [15]. These can be found in two regimes.
One where the safety factor profile (q profile) is just below a
rational value at the plasma edge. This is the classical external
kink mode. The other is a pressure driven mode that requires
a flattening of the q profile at the edge. This flattening is pro-
vided by the bootstrap current which is driven by the pressure
gradient in the pedestal. The ballooning stability of these two
saturated instabilities is discussed in section 5. The QH-mode
in JET has also been investigated with particular focus on the
impact of collisionality [16]. A model for grassy ELMs has
been investigated using a gyrofluid model implemented in the
BOUT++ framework. Initial tests of the model have been
completed but further work will be required to test it in the
appropriate regime. An analytic model of type III ELMs has
been developed based on a resistive MHD model and this will
be discussed elsewhere [17].

3. Pedestal prediction

In this section we seek to improve the well known EPED model
by making it more firmly based on physics principles. This
model has various assumptions underlying it. In particular, one
input is the density at the pedestal top. We aim here to use a
gyrokinetic-based calculation to eliminate this input. The idea
is to assume power balance at the top of the pedestal, that is,
the heat flux crossing the separatrix must be equal to the heat
source at the top of the pedestal. The workflow is as follows:
use Europed with a range of ne,ped as input to get a correspond-
ing range of Te,ped then use a gyrokinetic-based calculation to
test each pair of profiles and calculate the heat flux Qped. The
pedestal prediction is the ne, Te profile pair with Qped equal to
the experimental heat flux.

A key part is to calculate the heat flux. There are a num-
ber of options available which include: (a) full, multi-scale
gyrokinetic simulations including neoclassical terms; (b) a trio

of gyrokinetic simulations: nonlinear global ion-scale, non-
linear local electron-scale, neoclassical; (c) quasilinear model
with linear gyrokinetic simulations; (d) quasilinear model with
eigensolver e.g. QuaLiKiz [18] and finally; (e) fast neural
network-type software trained on any of the above.

Work is underway to develop a sophisticated quasilinear
model in the pedestal. At the time of writing, a comprehen-
sive quasilinear model that can be used reliably and routinely
has not been published. To match the heat flux we must there-
fore run fully non-linear simulations that capture the spatial
and temporal scales of the turbulence believed to be the pri-
mary source of heat flux through the pedestal. However, the
computational expense of such simulations is prohibitive. We
therefore opt for a comparison to linear spectra instead. As
we shall see, it is unlikely that further information would be
obtained from nonlinear simulations.

In order to test the heat flux matching concept we exam-
ine JET-ILW pulse #84793 which lies along the PB stabil-
ity boundary, figure 1 [19], and therefore satisfies one of
the key EPED model assumptions. We start by assuming
slab-ETG modes are the primary driver of turbulent heat
flux, and neglect neoclassical heat flux, which can easily
be added to the model later. It is noted that other modes
may also drive the heat flux but we restrict ourselves to the
slab-ETG in this work as calculating the full microinstabil-
ity drive heat flux would be computationally too demanding
and the consideration of the pure slab-ETG mode will pro-
vide insight into the full problem. It should also be noted
that in metal machines slab-ETG and slab-ITG play a dom-
inant role in the pedestal. We use the GENE gyrokinetic
code [20, 21] in its local model of operation. The resolution
requirements for this pulse are known from previous analy-
sis. Before continuing, it is first necessary to test the valid-
ity of the EPED model and discuss some of the features and
extensions of Europed that are required in order to fulfil our
objective.

3.1. Europed results

3.1.1. Details of the EPED model and Europed package. The
two principle assumptions of the EPED1 model are: (a) an
ideal-MHD constraint—the pedestal is limited by PB modes,
and (b) a transport constraint—the width of the pressure
pedestal scales with the square-root of the pedestal poloidal
beta according to Δp = Cβ1/2

p,ped; where C is a model constant.
The two main inputs to the EPED model are the global beta
βN or βp, and the value of density at the pedestal top ne,ped. In
addition, the standard EPED1 model has the following fixed
assumptions: Δp = ΔTe = Δne ; the density and temperature
profiles are aligned to the same pedestal position; the profiles
are well described by a mtanh fit; and T i = Te. Note these
assumptions produce the density profiles and so encapsulate
the particle flux.

EPED1 also has three notable variable assumptions which
are usually device specific: the transport constraint model con-
stant C = 0.076; Te,sep = 100 eV for JET-ILW [22, 23] and;
ne,sep = f × ne,ped where f is a constant—we often use f =
0.25.
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Figure 1. Linear MHD pedestal stability analysis for the JET deuterium plasma #84793, Ip = 1.4 MA, Bt = 1.7 T. The numbers indicate the
most unstable mode number for given edge current and pressure gradient.

The value of the model constant C can be obtained from
an empirical fit to experimental data. The value of Te,sep is
device specific but in the case of JET-ILW, this is borne out
well by edge modelling. The relationship ne,sep/ne,ped = 1/4
is less well-founded, but the pressure profile prediction from
EPED1 appears to be relatively insensitive to this. As we shall
see later, the choice of ne,sep may have important consequences
for the stability of slab-like microinstabilities in the pedestal.
In practice, the density peaking factor, related to the core den-
sity, must also be specified. However, pedestal predictions are
mostly insensitive to this so we omit it from discussion here.
The Europed package consists of the EPED series of models
along with some additional functionality. Chief among these
are two models which allow us to specify ne,ped and several
models for the self-consistent heating in the core which allow
for an arbitrary core profile shape [3]. These models are not the
subject of this work and we will be running Europed in the beta
constrained mode of operation with ne,ped specified according
to our model. There are two extensions of the EPED model
within Europed that are critical for the heat flux matching con-
cept. The first is the ability to specify a relative shift, δn−T ,
between the density and temperature pedestals, an important
feature of JET-ILW pedestals [23]. The second is the possibil-
ity of specifying the ratio ΔTe/Δne , which was implemented
as part of this project.

3.1.2. Europed runs-the effect of ΔTe �= Δne and δn−T �= 0. It
is well known that an important parameter related to the lin-
ear stability of slab-ETG modes is the ratio of the normalised
density and temperature scale lengths ηe given by:

ηe =
d ln(Te)
d ln(ne)

=
ne∇Te

Te∇ne
=

1/LTe

1/Lne

=
Lne

LTe

. (1)

Previous work by Jenko and others has shown that strong
linear slab-ETG drive requires ηe � 1 [20]. The standard
EPED assumptions that the temperature and density pedestal
positions, henceforth referred to as ΨN,Te andΨN,ne respec-
tively, are aligned, and the pedestal widths ΔTe and Δne are
equal, mean that ηe ≈ 1 across the pedestal region by design.
We explore the consequences of a finite relative shift δn−T =
ΨN,ne −ΨN,Te �= 0 and ΔTe �= Δne on Europed predictions for
JET-ILW pulse #84793. Figure 2 shows the experimental pro-
files in dotted black along with the results of four Europed
runs made possible by. Note that a corollary of the newly
implemented functionality is that Δne < Δpe

< ΔTe [24].
In all four cases, the predicted Δp varied between ∼0.030

and 0.034, i.e. Δp is relatively insensitive to these modifica-
tions between the relationship between the density and tem-
perature pedestals. We also note in passing that the Europed
predictedΔp is approximately equal to the experimentalΔne , a
feature that will be explored in future work with a larger exper-
imental dataset. In these four runs we set ne,sep = 0.33ne,ped,
which, in the case of a finite relative shift and equal density and
temperature pedestal widths, matches the experiment almost
exactly. This is because of the aforementioned, and perhaps
coincidental, correspondence between the Europed predicted
Δne and the experimental Δp. The solid traces show that, in
general, δn−T influences pedestal profile prediction more than
having ΔTe �= Δne . The solid red line has the most physical
effects in that δn−T and ΔTe/Δne have been chosen to match
experiment. This prediction therefore gives the closest match
in Te,ped to experiment, but under-predicts the width of both
the density and temperature pedestals. Note that this predic-
tion required the input of two known quantities from exper-
iment. Figure 3 displays ηe, the normalised density gradient,
and the normalised temperature gradient corresponding to the
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Figure 2. Density (left) and electron temperature (right) as a function of normalised poloidal flux, ΨN, in the pedestal region for JET-ILW
pulse #84793. An mtanh fit to raw HRTS data is shown in black. Blue traces show Europed predictions with ΔTe/Δne = 1.0 (the default
EPED assumption), while red traces show Europed predictions with ΔTe/Δne = 1.76 (the experimental value). Dashed traces show Europed
predictions with δn−T = 0 (the default EPED assumption), while red traces show Europed predictions with δn−T = 0.8% (the experimental
value). In both panels, the vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature pedestal top for the widest
pedestal prediction. Europed data points with ΨN � 0.956 are therefore outside the range of accurate Europed predictions.

Figure 3. ηe (left), normalised density gradient (middle), and normalised temperature gradient (right) as a function of normalised poloidal
flux, ΨN, in the pedestal region for JET-ILW pulse #84793. Experimental data is shown in black. Blue traces show Europed predictions with
ΔTe/Δne = 1.0 (the default EPED assumption), while red traces show Europed predictions with ΔTe/Δne = 1.76 (the experimental value).
Dashed traces show Europed predictions with δn−T = 0 (the default EPED assumption), while red traces show Europed predictions with
δn−T = 0.8% (the experimental value). In both panels, the vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature
pedestal top for the widest pedestal prediction. Europed data points with ΨN � 0.956 are therefore outside the range of accurate Europed
predictions.

profiles shown in figure 2. The colour scheme and line-styles
are the same as figure 2. The dashed blue line, correspond-
ing to the standard EPED1 prediction, shows identical den-
sity and temperature gradients in the steep gradient region,
along with a flat ηe ∼ 1 trace. Looking at the solid blue line
we see that the finite relative shift has flattened the density
profile in the pedestal region (ΨN � 1) which results in a
larger, and non-constant value of ηe more in line with experi-
ment. In the dashed red line, with no relative shift but unequal
pedestal widths, the Δne prediction has decreased which has
resulted in a normalised density gradient much larger than the

experimental value. This has the effect of lowering ηe. How-
ever, as ΔTe/Δne > 1 means ΔTe > Δp, the normalised tem-
perature gradient is less than that of the standard EPED1
prediction (dashed blue trace). These two effects—larger den-
sity gradient and smaller temperature gradient—compensate
for each other and lead to an ηe profile which closely resembles
the experimental profile. When we add a relative shift to this,
shown in the solid red trace, the flat density profile increases
ηe to larger values than experiment. Thus, despite having less
physical effects, the dashed red trace seems to be a better pre-
dictor of ηe than the solid red trace. This is a coincidence; the
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Figure 4. Density (left) and electron temperature (right) as a function of normalised poloidal flux, ΨN, in the pedestal region for JET-ILW
pulse #84793. An mtanh fit to raw HRTS data is shown in black. Blue, orange, and green traces show Europed pedestal predictions using
3.0 × 1019 m−3, 3.5 × 1019 m−3, and 4.0 × 1019 m−3 respectively. In both panels, the vertical black line denotes ΨN ≈ 0.956, which is the
location of the temperature pedestal top for the widest pedestal prediction. Europed data points with ΨN � 0.956 are therefore outside the
range of accurate Europed predictions.

Figure 5. ηe (left), normalised density gradient (middle), and normalised temperature gradient (right) as a function of normalised poloidal
flux, ΨN, in the pedestal region for JET-ILW pulse #84793. Experimental data is shown in black. Blue, orange, and green traces show
Europed predictions using 3.0 × 1019 m−3, 3.5 × 1019 m−3, and 4.0 × 1019 m−3 respectively. In both panels, the vertical black line denotes
ΨN ≈ 0.956, which is the location of the temperature pedestal top for the widest pedestal prediction. Europed data points with ΨN � 0.956
are therefore outside the range of accurate Europed predictions.

normalised density gradient profile is clearly not in line with
experiment.

3.2. Proof-of-principle test

We now proceed to test our heat flux matching idea for this
pulse using our proxy method of comparing the linear spec-
tra. Recall that the aim is to eliminate ne,ped as an input vari-
able in the EPED model. Using the experimental values of
δn−T = 0.8% and ΔTe/Δne = 1.76, we perform a three point
scan of ne,ped centred on the experimental value using: 3.0 ×
1019 m−3, 3.5 × 1019 m−3, and 4.0 × 1019 m−3. We again set
ne,sep = 0.33ne,ped. We have modified Europed so that once the

pedestal profile has been predicted, the code runs an instance
of HELENA followed by CHEASE to produce an eqdsk equi-
librium file for use in GENE simulation for the prediction. The
bootstrap current is also calculated in this HELENA run. The
profiles that result from this scan are shown in figure 4 and a
plot of ηe and the normalised gradients are shown in figure 5.
We immediately see from the left panel of figure 4 that that
Δne turns out to be approximately the same in all three cases.
This is because the Europed Δp prediction is approximately
the same, and the two widths are related to each other by a con-
stant scale factor. A consequence of this is that βp, ped ∝ Δ2

p
is approximately constant, which in turn means that as ne,ped

increases, Te,ped decreases in a predictable fashion accord-
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Figure 6. Growth rates as a function of binormal wavenumber ky of slab-ETG modes from linear local GENE simulations at ρt = 0.98 for
JET-ILW pulse #84793. The red trace corresponds to the experimental profiles at the same flux surface. Blue, orange, and green traces show
Europed pedestal predictions using 3.0 × 1019 m−3, 3.5 × 1019 m−3, and 4.0 × 1019 m−3 respectively.

ing to ∝ 1/ne,ped. As expected, the scan point closest to the
experimental value (orange) predicts pedestals that are closest
experiment (black).

Looking at the centre panel of figure 5, we see that the
normalised density gradients are very-nearly the same for the
three scan-points (they are minutely different due to differ-
ences in ne,sep). This is because the Δne prediction is the same
for all three runs and the un-normalised density gradient scales
with the input ne,ped. We also see that the normalised temper-
ature gradients are of similar value across a wide range of the
pedestal. The values of 1/LTe do change towards the separatrix,
but this is a consequence of fixing Te,sep = 100 eV for differ-
ing values of Te,ped. The combined effect is that the ηe profiles
in the pedestal region (to the right of the vertical black line)
are indistinguishable.

Given the similarity of the ηe, a/Lne , and a/LTe profiles,
we expect no substantial difference in the linear spectra and
nonlinear flux for the three scanpoints. There may be some
difference in the GENE spectra for simulations at ΨN ∼ 0.98
if the excited modes are driven primarily by changes in a/LTe .
As discussed, the changes in the a/LTe profiles ΨN ∼ 0.98 are
a consequence of fixing Te,sep = 100 eV. For the moment, we
assume this change in the a/LTe profile has physical mean-
ing and proceed to run a trio of linear local GENE sim-
ulations at ρt = 0.98 (in the vicinity of ΨN ∼ 0.98). The
resolution requirements for these simulations is known from
previous work, and we restrict our attention to modes at the
outboard mid-plane, that is θ0 = 0. Figure 6 shows the lin-
ear normalised growth rate γ as a function of the binor-
mal wavenumber ky. The red trace shows the equivalent
calculation using the experimental profiles for this pulse. The
modes present in the experimental profiles have a smaller
peak γ than the spectra produced using the Europed predicted
profiles. More importantly, the growth rate spectra for the
three Europed profile predictions are extremely similar. We
emphasise that even these small variations in the spectra are
almost entirely a consequence of fixing Te,sep = 100 eV. Past
experience suggests that the nonlinear counterparts of linear
simulations with extremely similar spectra will also predict
extremely similar heat fluxes. We conclude that for this pulse,
and this range of scanpoints, it is not possible to use gyroki-
netic simulations as a means of eliminating ne,ped as an input
variable.

3.3. Discussion

In this work we have tested the feasibility of using a
gyrokinetic-based calculation as a means of eliminating the
pedestal top density ne,ped as an input into the EPED/Europed
model. Using a JET-ILW pulse lying along the PB boundary
as our test case, we found that in order for the Europed pre-
dictions to approach experiment the effects of relative shift
δn−T = ΨN,ne −ΨN,Te and non-equal temperature and density
pedestal widths had to be included. We found that this was nec-
essary in order to predict Te and ne profiles that have ηe > 1
and are hence susceptible to slab-ETG instabilities, which have
been found to be important [25, 26]. In addition, we upgraded
Europed to allow forΔTe/Δne �= 1 and to produce equilibrium
files for use in gyrokinetic simulations. Note that these features
allow us to predict profiles susceptible to slab-ITG instabilities
as the EPED assumption T i = Te results in ηi = ηe.

These additional physical effects aside, we found that for
a range of ne,ped around the experimental value, the Europed
predicted profiles were too similar for a linear gyrokinetic cal-
culation to accurately distinguish between input profiles. We
fully expect this result to carry over to a nonlinear calcula-
tion of heat flux, meaning it is currently not possible to use
gyrokinetic simulations as a means of eliminating ne,ped as an
input variable. The source of this limitation may lie within
the EPED transport constraint Δp = Cβ1/2

p, ped. This relation-
ship means that for a given shot, the predicted Δp and βp,ped

will always be similar over a wide range of inputs. In evi-
dence, a scan of δn−T from 0.4% to 1.1% (not shown here)
resulted in a variation in the predicted Δp changes by only
∼ 9%. In the results discussed in previous sections, changing
ΔTe/Δne changed Δp by ∼ 4% for δn−T = 0 and by ∼ 13%
for δn−T = 0.8%. Most importantly, for the cursory ne,ped scan
discussed above,Δp changed by only∼ 5%. These small vari-
ations in Δ2

p ∝ βp, ped ∝ Te, ped mean that for an ne,ped scan, the
normalised density and temperature gradients will always be
similar, which in turn means the value of ηe = ηi will always
be similar.

In conclusion, using a gyrokinetic based calculation to
eliminate ne,ped as an EPED/Europed input is not feasible

until the transport assumption Δ = Cβ1/2
p, ped is improved [27].

Such an improvement must be the primary focus of future
work. This conclusion is very likely to hold even if other
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microinstabilities are considered. Finally, we note that if ne,ped

were known in advance, a gyrokinetic-based heat flux match-
ing calculation may prove useful for eliminating the ratio
ΔTe/Δne and/or δn−T as model inputs, as figure 3 shows the
driving parameters are much more sensitive to this.

4. Effect of a poloidal variation of the plasma
density on the bootstrap current

The use of gas puffing and the result of recycling might be
expected to introduce a poloidal variation of the plasma density
on a flux surface [28]. It is of interest to investigate the impact
this has on the bootstrap current [29] in a plasma H-mode edge
pedestal, as it could affect the PB mode stability [30] believed
to play a role in the triggering of ELMs in tokamak H-mode.
Furthermore, toroidal rotation can also generate a variation in
density, with it peaking on the outboard side [31].

We first describe the kinetic equation for a large aspect ratio
tokamak geometry with a zero order (in a Larmor radius expan-
sion) plasma distribution function that is a Maxwellian having
a poloidally varying density, a model that we use to illustrate
the calculation. Then we calculate the increment in the boot-
strap current, relative to the standard result, that the poloidal
variation in the density produces. However, it may well be that
in reality the distribution differs from a simple Maxwellian
and additional corrections to our simple model for the boot-
strap current might emerge, but these would involve a much
more complex calculation. A related paper [32] avoided this
difficulty by introducing a source (as a δ-function in poloidal
angle) in the first order equation, rather than in lowest order as
our Maxwellian ansatz implies. We compare the effect of sinu-
soidal variations in two situations: one up-down symmetric
(case (a)), the other symmetric in the inboard-outboard direc-
tion (case (b)). In practice, however, edge modelling codes
show the variation due to neutral sources crossing the separa-
trix may be better represented by a more poloidally localised
function [33, 34]. We therefore also consider case (c) where we
represent this situation by a δ-function (although assuming the
localisation exceeds the electron Larmor radius in order to jus-
tify the use of the electron drift kinetic equation in calculating
the bootstrap current). We show this solution also serves as a
Green’s function for an arbitrary poloidal variation in density.
Furthermore, it allows one to extend the calculation to describe
a general, axisymmetric toroidal geometry although we limit
this to toroidal equilibria with a small number of trapped par-
ticles to justify the use of the pitch-angle scattering collision
operator—and also to up–down symmetric ones, for simplic-
ity. The electron and ion temperatures will also respond to a
density variation on a flux surface through rapid electron ther-
mal transport along field lines and pressure equalisation on a
flux surface on the sound time scale to produce temperature
perturbations that equalises the plasma pressure on the surface.
We consider the impact of this, as well as that of the den-
sity variation, on the incremental bootstrap current. A numer-
ical investigation of this problem has been carried out using
ELMFIRE [9]. Previous work on understanding the effect of
a poloidal density variation on transport was carried out by
Solano and Hazeltine [35]. This work is in the plateau regime

rather than the banana regime and the structure of the source
is different.

4.1. The model

The distribution function for species j, fj, satisfies a kinetic
equation

∂ fj
∂t

+
Iv‖

BR2q
∂ fj
∂θ

− vd j · ∇ fj + Cj( fj) + S(r, θ, v) = 0, (2)

where spatial derivatives are at constant energy. In first order
we introduce a source S(r, θ, v) to ensure a steady state if the
drift terms lead to a net flux across a flux surface.

Here we use velocity space co-ordinates: v, λ = v2
⊥/Bv2,

σ = v‖/|v‖|, v‖ = σv
√

(1 − λB) so that
∫

d3v = πΣσ

∫
B dλ∫

v2 dv/|
√

(1 − λB), vd j = (v‖/B) ×∇(v‖/ωc j). Specialising
to a large aspect ratio tokamak geometry and a steady state sit-
uation for simplicity (we indicate how to generalise our results
to an arbitrary axisymmetric toroidal geometry later), this can
be written [36]

v‖
Rq

∂ fj
∂θ

− m j

e j
v‖

(
∂

∂r

(v‖
B

) ∂ fj
r∂θ

− ∂

r∂θ

(v‖
B

) ∂ fj
∂r

)

+ Cj( fj) + S(r, θ, v) = 0, (3)

with B = B0(1 − r
R cos θ), so that ∂

∂r (v‖/B) = − cos θ
R

and ∂
∂θ

(v‖/B) = sin θ
R . We expand f j = FM j + f j1, where

FM j(v, r, θ) is the Maxwellian and consider the incremental
changes to f j due to the effects of the perturbations, δn j(r, θ)
and δT j(r, θ) in FM j.

To illustrate the calculational formalism, we just con-
sider the effect of a density perturbation: δn j(r, θ) =
n0 j(r)γ j(r)hj(θ), and assume a Lorentz collision model for the
electrons [37]:

Ce( f e) = vei
v‖
v2

the

∂

∂λ

(
v‖λ

B
∂

∂λ
f e

)
+ vei

v‖u‖i

v2
the

FMe, (4)

with u‖i the mean ion parallel flow. Since we ignore temper-
ature gradients for the moment, the ion distribution is merely
a displaced Maxwellian. To capture the effect of the δT j(r, θ),
it will be necessary to include an ion flow, like-particle colli-
sions and the effects of the energy dependence of the collision
frequencies [37]; including the former is discussed below and
the others later. For the electron density variation, we take

ne(r, θ) = n0(r)(1 + γ(r)h(θ)). (5)

Since we consider the pedestal region, we can also take ∂ne
∂r �

1
r
∂ne
∂θ

. With these assumptions the effect of the ion flow in the
collision operator is merely to combine with the radial deriva-
tive of the electron density, which is taken at constant energy
in equation (3), replacing it by the combination ∂ne

∂r + Ti
Te

∂ni
∂r ,

(where we take the ion charge as Z = 1, so that quasi-neutrality
requires ne = ni. The radial derivatives are of the actual densi-
ties as the electrostatic potential terms cancel between the ion
and electron contributions (as in standard neoclassical theory).

8
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Thus, we have

v‖
Rq

∂ f e

∂θ
− me

e
v‖FMe

∂

∂r
(δn(r, θ))

∂

r∂θ

(v‖
B

)
+ Ce( f e) + S(r, θ, v) = 0 (6)

with δn = (1 + T i/Te)δne. We take the source to be poloidally
symmetric, in which case

S(r, v) = −me

e
FMe〈

∂

∂r
(δn(r, θ))

∂

r∂θ

(v‖
B

)
〉/〈 1

v‖
〉. (7)

4.2. The incremental bootstrap current, δjbs

The lowest order solution f 0 is:

f 0 =
meRq

e
FMe

[∫ θ

θ0

dθ
∂

∂r
(δn(r, θ))

∂

r∂θ

(v‖
B

)

−
∫ θ

θ0

dθ
v‖

〈 ∂
∂r

(δn(r, θ))
∂

r∂θ

(v‖
B

)
〉 1
〈 1
v‖
〉

]
+ g, (8)

where ∂
∂θg = 0 and the end-point contribution from θ0 to the

integral (θ0 is to be chosen judiciously to simplify calculations)
can be absorbed into g. The function g is then determined from
a solubility condition arising in first order in the collisional
expansion:

〈 ∂

∂λ

(
v‖λ

B
∂

∂λ
f 0

)
〉 = 0, (9)

where the operator 〈Aσ〉 =
∮

dθAσ/2π for passing particles

and 〈A〉 = 1
2Σσ

∫ θ2
θ1

dθ Aσ/2π, with v‖(θ1) = v‖(θ2) = 0, for

trapped particles. This determines ∂g
∂λ

and hence ∂ f 0

∂λ
. Now the

incremental bootstrap current is given by

δ jbs = −e

∮
dθ

2π

∫
d3v v‖ f 0

= eπ〈Σσ

∫
B dλ

∫
v‖v

3 dv λ∂ f 0/∂λ/|v‖|〉. (10)

We then obtain

δ jbs = −3
8

(Te + Ti)
Bθ

d
dr

(n0(r)γ(r))I, (11)

where I = (I1 + I2) with

I1 = 2v 〈
∫

B dλBλ

[∫ θ

θ0

dθ h(θ)
∂

∂θ

(
1
v‖

)

− 1
〈|v‖|〉

〈|v‖|
∫ θ

θ0

dθ h(θ)
∂

∂θ

(
1
|v‖|

)
〉
]
〉 , (12)

I2 = −2v 〈
∫

B dλB
1

〈1/|v‖|〉

[∫ θ

θ0

dθ
1
|v‖|

− 1
〈|v‖|〉

〈|v‖|

×
∫ θ

θ0

dθ
1
|v‖|

〉
]
〈h(θ)

∂

∂θ

(
1
|v‖|

)
〉 〉 , (13)

for passing particles, defined to be independent of v. For
trapped particles, I = I3 with

I3 = 2v 〈
∫

B dλB

[
〈
∫ θ

θ0

dθ h(θ)
∂

∂θ

(
1
|v‖|

)

−
∫ θ

θ0

dθ
1
|v‖|

1
〈 1
|v‖|

〉 〉 〈h(θ)
∂

∂θ

(
1
|v‖|

)
〉
]
〉 . (14)

We can show that I2 vanishes automatically, independently of
h(θ). To evaluate the integral I over λ, we introduce

k2 = 2
r
R

λB0

1 − λB0
(
1 − r

R

) ; v‖ = vu(θ);

u =

√
1 − k2 sin2 (θ/2)

. (15)

Although h(θ) can be quite a general periodic function of θ,
we first consider the two explicit cases: case (a), h(θ) = cos θ
which is up–down symmetric; and case (b), h(θ) = sin θ,
which is in-out symmetric.

4.3. Case (a) h(θ) = cos θ

We obtain

I =
4
π

√
2r
R

∫ 1

0

k2dk2(
2r
R + k2

(
1 − r

R

))5/2

×
[(

1 − 2
k2

)
K(k) − 2

k2
E(k) − π2

2E(k)

(
1 − 2

k2

)]

+
4
π

√
2r
R

∫ ∞

0

k2dk2(
2r
R + k2

(
1 − r

R

))5/2

1
k

×
[(

3 − 4
k2

)
K

(
1
k

)
− 2E

(
1
k

)]
, (16)

where K and E are the complete elliptic integrals of the first and
second kind, respectively [38]. One can take the limit r/R → 0
and still obtain a convergent integral. While the first term
requires numerical integration, yielding −0.086

√
(2r/R), the

second can again be calculated analytically using proper-
ties of the complete elliptic integrals [39], which yields
−20/9π

√
(2r/R) = −0.707

√
(2r/R). Consequently

δ jbs = 0.42

√
r
R

qR
(Te + Ti)

B0

d
dr

(n0(r)γ(r)) . (17)

4.4. Case (b): h(θ) = sin θ

Here I1 vanishes exactly. The trapped region contribution also
vanishes. Consequently, jbs = 0 for case (b). Because I1 van-
ishes for h(θ) = sin θ, a corollary is that for a sinusoidal
variation of h(θ) centred on an arbitrary angle, θ = β,

δ jbs = 2.54

√
r
R

qR
(Te + Ti)

B0

d
dr

(n0(r)γ(r)) cos β. (18)

9
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4.5. Case (c): h(θ) = δ(θ − α)

In this case we set h(θ) = δ(θ − α), where α is the poloidal
angle of the neutral influx, to calculate the incremental boot-
strap current. We can calculate the integral I1 in equation (12)
for passing particles without difficulty. (The term arising from
the azimuthal drift gives rise to derivatives of the δ-function,
but these lie under double integrals and do not pose a problem,
yielding a contribution which is in fact smaller than the one
arising from the radial drift in the steep pedestal gradient.)
However, employing the previous method is problematic for
the trapped particle contribution. This is because the deeply
trapped particles only respond to a limited range of pitch
angles, depending on the angle α. The end-point contribution
in the integration by parts in λ that arises from the maximum
value of λ, λMax, which is no longer at λ = 1

BMin
, does not van-

ish—it is, in fact, singular, and is cancelled by a corresponding
contribution from the integral term. It is therefore more con-
venient to calculate the contribution to the bootstrap current
from trapped particles directly, as a straightforward integration
over λ, rather than employing the integration by parts. This
approach requires the distribution function g in the trapped
region, which is a constant, and was not needed for the inte-
gration by parts method. In fact, g = 0 in the trapped region, to
satisfy continuity at λMax. Of course, this needs to be accom-
panied by a boundary contribution evaluated at the trapped-
passing boundary, to compensate for the integration by parts
over passing particles which it is still convenient to retain. This
boundary term dominates the integral one by a factor 1/2ε, as
can be readily understood physically: while the trapped parti-
cle pitch angle integration over k introduces a factor (2ε)1/2,
another from the trapped particle current, which involves the
‘banana’ width, ∼ (2ε)1/2a, and the typical trapped particle
velocity v‖ ∼ (2ε)1/2vthe as a third. Thus, this contribution
can be neglected, leaving to a simpler calculation of just the
trapped passing boundary term, Ib(α). We define

G(α, k) =
[
E − E

(α
2

, k
)
/2

]
, 0 < α < π, (19)

G(α, k) = E
(
π − α

2
, k
)
/2, π < α < 2π, (20)

with E(α/2, k) the incomplete elliptic integral of the second
kind [38]. Thus

I1(α) =

√
2r
R

∫ 1

0
dk

sin α(
1 − k2 sin2

(
α
2

))3/2

×
[

1 − α

2π
− G(α, k)

E(k)

]
. (21)

I1(α) is invariant under the substitution α→ 2π − α, so is
symmetric about α = π (i.e. it is up–down symmetric, as is
to be expected). There is also a contribution from the trapped
region and, as discussed above, this is dominated by the contri-
bution from the flux-surface-averaged, trapped particle current
density evaluated at the trapped—passing boundary. Calculat-
ing this from f 0 as given by equation (8) with g = 0, requires

the evaluation of

Ib(α) = 4

√
2r
R

〈
∫ θ

θ0

dθ δ(θ − α)
∂

∂θ
(u1/2)

− 1
〈u−1/2〉

∫ θ

θ0

dθ u−1/2 〈δ(θ − α)
∂

∂θ
(u1/2) 〉 〉 |k=1

(22)

on the range −π < α < π. This can be evaluated to yield

Ib(α) = − 1
2π

√
2r
R

[
θ2 − α− (θ2 + θ1)

2

]

=
1
π

√
2r
R

sin(α/2)α, (23)

since θ2 = −θ1; this contribution is also symmetric about
α = π, in the range 0 < α < 2π. Therefore, combining the
result of a numerical evaluation of equation (21) and the
analytic expression (23):

I(α) =

√
2r
R

[∫ 1

0
dk

(1 − α
2π − G(α,k)

E(k) ) sin α

(1 − k2 sin2(α/2))3/2
+ F(α)

]
, (24)

F(α) =
1
π
α sin

(α
2

)
, 0 < α < π,

F(α) =
1
π

(2π − α) sin
(α

2

)
, π < α < 2π. (25)

We notice that this remains finite at α = π, the bounce point
for just trapped particles, although the distribution function f 0

vanishes there; this is because the magnetic drift is singular
there and the integration over θ with h(θ) = δ(θ − α) remains
finite in the limit α→ π. (This can be seen more clearly by
taking this limit after the integration.)

A plot of I(α) = I(α)/
√

(2r/R) against α is shown in
figure 7. I(α) vanishes at α = 0 and 2π, peaking at α = π; in
between it spans the range 0 < I(α) <

√
(2r/R). Finally, we

have

δ jbs =
3
8

(Te + Ti)
Bθ

d
dr

(n0(r)γ(r))I(α). (26)

Although this result is itself significant, the bootstrap current
response to the δ-function source also provides a Green’s func-
tion for a general poloidal density perturbation specified by
γ(r)h(θ).

4.6. Green’s function

A consequence of modifying the approach to calculating the
bootstrap current that we adopted in the case of the δ-function
source was that calculating the trapped particle contribution
could be achieved more simply for a general h(θ) by just con-
sidering the trapped particle current density at the trapped-
passing boundary, rather than requiring an integration over
trapped values of k. Thus, both passing and trapped contribu-
tions involve integrations over the full range of θ: 0 < θ < 2π,
rather than the limited range sampled by the trapped parti-
cles. This facilitates the demonstration of a Green’s function
approach based on our solution for the δ-function case, since,

10
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Figure 7. The variation with localisation angle, α, of the integral I(α) = I(α)/
√

2r/R for the δ-function, case (c). The dashed line is the
dominant trapped particle contribution.

as we shall see, the integrations over α and δ that are involved,
commute, so one can readily change the orders of these inte-
grations. Thus, we see that the δ-function source provides a
Green’s function for a poloidal density perturbation specified
by h(θ) = δ(θ − α), where we utilise the replacement

h(θ) →
∮

δ(θ − α) dα h(α) (27)

in equations (12)–(14).

4.7. General axisymmetric, toroidal geometry

We introduce an axisymmetric toroidal co-ordinate system,
ψ, θ,φ, where ψ is the poloidal flux, θ is a poloidal angle such
that the magnetic field lines are straight, and φ is the toroidal
angle. The magnetic field is given by

B = I(ψ)∇φ+∇φ×∇ψ. (28)

We now define the operator 〈〉 by 〈A〉 =
∮

R2 dθ A/
∮

R2 dθ.
Because of these relations, the solution for f 0, given in
equation (8), still pertains, provided we use the new definition
for 〈〉, as does the solution for g. From the current continuity
equation∇. j = 0, it follows that the appropriate object to con-
sider in general geometry is the flux-surface average quantity
〈δ jbs/B〉 and we obtain

〈δ jbs

B
〉 = −3

8
I(Te + Ti)

qBMax

d
dψ

(n0(ψ)γ(ψ, θ))I. (29)

We follow a parallel set of steps to those used for the large
aspect case to obtain a passing contribution

I(α) = 2vBMax
∂

∂α

(
1
|v‖|

[∫ 2π
α dθ R2∮

dθ R2
−

∫ 2π
α dθ R2|v‖|∮

dθ R2|v‖|

])
.

(30)

For the trapped contribution we find

I(α) = F(α)

= 4
BMax

v

∂

∂α

(v‖
B

)
|λ=BMax

[∫ 2π
α dθ R2∮

dθ R2

]
, 0 < α < π,

(31)

I(α) = F(2π − α), π < α < 2π. (32)

In the following section we need to extend the collision model
to include electron–electron collisions, but this is only com-
pletely justified in the limit of a small number of trapped
particles, so the general equilibria discussed above are then
constrained to satisfy this condition.

4.8. The effect of a poloidal variation in the temperature

If the perturbed pressure is to vanish on a flux surface as
required by MHD equilibrium, then

δp = (Te + Ti)δn + n0(δTe + δTi) = 0 (33)

assuming quasi-neutrality. We also assume equipartition
between ion and electron temperatures,

Ti = Te, δTe = δTi ≡ δT, so δT = −δn
n0

Te. (34)

Alternatively, rapid parallel electron thermal transport
removes the electron temperature perturbation requiring the
ion temperature perturbation to facilitate pressure balance,
when

δTe = 0; δTi = −(Te + Ti)
δn
n0

. (35)

If the plasma density source is sufficient to prevent equalisa-
tion of pressure a more complex equilibrium must be consid-
ered. The analogous results to those for the large aspect ratio
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case will be equivalent to those for the usual calculation of
the bootstrap current driven by equilibrium gradients across
constant density flux surfaces with a Lorentz collision oper-
ator, apart from the effect of the geometrical factor I. The
same situation will be true if we consider the effects of δT
with like-particle collisions and energy-dependent collision
frequencies, when we can exploit the corresponding results
given in reference [37]. These calculations give

jbs = −1.46
( r

R

)1/2 n0Te

Bθ

×
[(

1 +
Ti

Te

)
1
n0

dne

dr
+

1
Te

dTe

dr
− 0.17

Te

dTi

dr

]

(36)

for the Lorentz model and

jbs = −1.46
( r

R

)1/2 n0Te

Bθ

×
[

1.66

(
1 +

Ti

Te

)
1
n0

dne

dr
+

0.47
Te

dTe

dr
− 0.29

Te

dTi

dr

]

(37)

when electron–electron collisions and the energy dependence
of the collisions are included. Now the effective ‘density
gradient’ term in the case of the Lorentz collision model must
be multiplied by a factor 1.66 and expressions (33) and (34) or
(35) used for the temperature gradient contributions. Thus, in
the first case for example, we obtain

δ jbs = 2.16
n0Te

Bθ

(
1 + 1.22

Ti

Te

)
1
n0

d(n0 γ)
dr

I, (38)

where we note I = −
√

(2r/R)c, with the constant c depending
on the function h(θ) describing the poloidal variation of the
plasma density.

4.9. Conclusions

We have investigated the effect of poloidal variations of the
plasma density, δn = γh(θ)n0, on the bootstrap current in a
large aspect ratio tokamak equilibrium, such as might arise
in gas-puffing experiments, recycling neutral influxes or as a
result of toroidal rotation. The calculation has assumed that the
lowest order distribution function is Maxwellian for simplicity,
although it may be distorted from a simple Maxwellian in real-
ity. A more realistic distribution function might produce addi-
tional effects on the bootstrap current, but it would be much
more difficult to obtain this function and calculate the con-
sequences. The effect of the poloidal temperature variations
resulting from this density variation has also been addressed,
as has the generalisation to an arbitrary axisymmetric toroidal
geometry. Three explicit cases for the density variation have
been considered: case (a) which is sinusoidal and up–down
symmetric and is also relevant to the effect of toroidal rotation;
case (b) which is sinusoidal and symmetric in the inboard-
outboard direction (the effect of sinusoidal symmetry about
any other poloidal angle could be deduced simply from decom-
posing it into a combination of the cases (a) and (b)), and

case (c) which is a very localised poloidal variation, approxi-
mated by a δ-function in poloidal angle. In case (b) we find
the incremental current vanishes exactly, while for case (c)
the results naturally depend on the poloidal angle α, describ-
ing the location of the neutral influx. We find that the largest
effect in this case does occur for localisations near the inboard
side of the plasma column. Whether and by how much the
bootstrap current increases or decreases depends on both the
magnitude and sign of an integral, I, specific to each poloidal
density variation, h(θ), and the amplitude and sign γ, of
this variation.

The result for case (c) also serves as a Green’s func-
tion for calculating the bootstrap current response to an
arbitrary poloidal distribution for the density perturbation
numerically by a simple quadrature; it also clearly demon-
strates why the current vanishes in case (b), or indeed in
any up–down symmetric case. Furthermore, it facilitates the
treatment of a general, axisymmetric toroidal geometry, albeit
requiring there to be only a small number of trapped par-
ticles to justify the use of the simple pitch-angle collision
operator. We also limit ourselves to up–down symmetric equi-
libria to simplify the calculation. Although we employed a
Lorentz collision operator, appropriate to electron–ion colli-
sions, we demonstrate that our results can be readily adapted
to allow for the effects of electron–electron collisions, energy-
dependent collisions and the poloidally varying electron and
ion temperature perturbations, δTe,i(θ), that would ensure
pressure remains constant on a flux surface (and restores
the usual poloidally varying Pfirsch–Schluter current as a
consequence).

One can expect this poloidal density variation to be
linked to the location of any neutral influx or, perhaps, gas-
puffing. Thus, an up–down symmetric case may be related to
case (a), while symmetric vertical locations near upper and
lower X-points may relate to case (b). Case (c) appears to
provide a good representation of the results of gas-puffing
experiments.

The differences in the magnitude and sign of the incre-
mental bootstrap current caused by the nature of the poloidal
density variations may have implications for type 1 ELMs and
their control, since their onset is believed to be triggered when
PB modes, whose stability is affected by edge plasma currents,
become unstable.

The impact of this contribution to the bootstrap current can
be significant if the gradient d(γn0)/dr can compete with the
equilibrium gradient, dn0/dr. Data on pedestal widths from
MAST CDN discharges with inboard gas-puffing suggests that
there might be up to 50% effect [40]. The effect of, say, a
50% modulation in the poloidal variation of the bootstrap cur-
rent on the stability of low-n modes could be investigated with
JOREK.

5. QH mode

5.1. VMEC equilibrium modelling

Candidate modes which may explain the QH-mode are inves-
tigated using the VMEC [41] non-axisymmetric equilibrium
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Figure 8. Pressure and safety factor profiles for the pressure and current driven modes.

code and the linear ballooning stability code COBRAVMEC
[42, 43]. Previous work has investigated how such a saturated
MHD mode may appear at the plasma edge [15]. It has been
shown that such a mode can appear due to the q profile being
just below a rational value at the plasma edge. This is the exter-
nal kink mode, see figure 8(a) showing the q profile. VMEC
models the plasma as a current carrying plasma column with a
vacuum region outside. This allows the q value at the plasma
edge to be well defined. In reality these are diverted plas-
mas and so formally the q will go to infinity at the plasma
edge. This would mean that external kink modes are unlikely
to form. However, error fields and other non-axisymmetric
fields may well create a stochastic layer at the plasma edge
so that there is a maximum edge q. An improved understand-
ing of the physics of the separatrix and external kink modes
is required.

A saturated MHD mode can also appear as a result of a
pressure driven mode and a flattening of the q profile which is
caused by the bootstrap current, see figure 8(c) showing the q
profile for this mode. Note that the q profile is above four at
the edge which removes drive for the current driven mode. We
call this second type of mode the exfernal mode (after Brunetti
[44]). We expect this pressure driven mode to appear at low
collisionality as it requires a significant bootstrap current to
flatten the q profile at the edge.

We investigate the differences between the external kink
mode and the exfernal mode to help to understand which
of these modes we see experimentally. It has been noted by
Solano et al [13] that in JET a current ribbon appears at the
plasma edge. We have processed the external kink mode and
exfernal mode equilibria to see if a current ribbon is in evi-
dence. Figure 9 shows the parallel current for the external kink

13



Nucl. Fusion 61 (2021) 096013 C.J. Ham et al

Figure 9. Parallel current density (in A m−2) for the current and pressure driven modes. A much broader current ribbon appears for the
current driven mode than for the pressure driven mode.

Figure 10. Linear ballooning mode growth rates for the external kink and pressure driven modes.

mode and the exfernal mode. We see that the external kink
mode has a current ribbon in the pedestal region while the
exfernal mode only has a current perturbation at the very edge
of the plasma.

5.2. Linear ballooning stability

We now investigate the local linear ballooning stability using
the COBRAVMEC code. This calculates the growth rate of
the local ballooning mode on a given fieldline. It can also be
thought of as the infinite-n ballooning mode. This is of inter-
est because it captures some of the instability drive of the
KBM. The KBM is thought to drive particle transport, rather
than heat transport, which is an important element of the QH-
mode [45]. We first calculated the ballooning stability for an

axisymmetric sister equilibria for the cases that are unstable
to external kink mode and exfernal mode. Ballooning modes
are found to be stable in these axisymmetric equilibria. In con-
trast, for the 3D equilibria corresponding to the external kink
saturated state, strong ballooning instability is found over a
large fraction of the edge region, see figure 10. The 3D equi-
librium corresponding to the exfernal mode saturated state is
only weakly unstable to ballooning modes, and only very near
the edge. Ideal MHD infinite n ballooning instability in the
external kinked 3D equilibria could imply ballooning related,
or KBM related, density transport. It has been suggested that
3D neoclassical transport may play an important role in the
increased density transport when RMPs are applied to a toka-
mak plasma. However, preliminary studies using a VMEC
equilibrium and the SFINCS code [46] indicated that neoclas-
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sical transport was not significantly enhanced in the pedestal
[47]. Further work is required to confirm the generality of this
result.

This result may have been expected since it is well known
from the physics of resonant magnetic perturbation (RMP)
ELM suppression and mitigation that density pump out is only
seen when the plasma response is external kink like (i.e. largest
around the X-point) rather than ballooning-like [48] (where
ballooning-like in this context means pressure driven exfernal
like). In RMP cases we would expect not to see the current rib-
bon at the plasma edge as this effectively comes from the coils
around the plasma.

5.3. Conclusions

We examined two types of MHD mode which can produce sat-
urated free boundary states: an external kink mode and a pres-
sure driven, exfernal, mode. We have shown that the external
kink mode produces a perturbed current ribbon at the plasma
edge in line with experimental observations. We have also cal-
culated the linear local ballooning stability of these saturated
modes. The external kink mode significantly destabilizes the
ballooning modes while the pressure driven mode does not.
This result matches expectations from the results of RMP ELM
control experiments which show that density pump out only
occurs for plasmas with an external kink mode response. The
hypothesis is that the KBM produces sufficient particle trans-
port such that the pedestal never reaches the PB boundary and
so no ELMs occur.

6. Summary and directions for future work

We have completed various strands of work to improve our
understanding of potential tokamak reactor pedestals. While
we have some understanding of what sets the pedestal height
and width there is still much to understand. We have inves-
tigated a method to improve the EPED model by trying to
remove assumptions about the density. We have tried to deter-
mine if a gyrokinetic calculation of the heat flux could help
us to determine the density profile. Unfortunately, the linear
gyrokinetic results (and probably the nonlinear results too)
are not able to discriminate between differing pairs of density
and temperature profiles. We believe that this comes from the
pedestal transport criterion assumed in EPED. This transport
assumption, Δ = Cβ1/2

p, ped, should be a target for future work
from the community.

It has been observed that density is not a flux surface func-
tion in many plasmas due to, for example, plasma rotation or
plasma fuelling. We have calculated the effect of non flux sur-
face density on the bootstrap current analytically in this paper
and numerical investigations using ELMFIRE have also been
completed [9]. This changed bootstrap current will also change
the stability of the PB modes and so the ELM stability. We
have calculated the effect of non flux surface density using
JOREK within the project. This indicated that the low n modes
became more unstable and the high n modes were unaffected.

This was preliminary work and further confidence in the equi-
librium is needed before this can be regarded as a final result.
Indeed improving our understanding and measurements of the
bootstrap current is still an important topic of research. The
effect of plasma turbulence on the bootstrap current is yet to
be determined and will require a code such as ELMFIRE to be
resolved.

Type I ELMs will not be allowable in reactors due to
the damage they will cause to plasma facing components.
We will therefore need to develop our confidence in small
and no ELM regimes. We investigated the QH-mode using
the non-axisymmetric equilibrium code VMEC. In this paper
we built on work looking at current and pressure driven
modes. Linear ballooning stability analysis indicates that the
QH-mode is a saturated external kink mode rather than a
pressure driven mode. A gyrokinetic analysis of these equi-
libria would allow us to understand the effect on transport of
non-axisymmetric saturated instabilities. This would also be
an important step in understanding RMP ELM control exper-
iments. Work was carried out on other small ELM regimes
within this collaboration which will be reported elsewhere.
There are lots of avenue for further work including use of the
gyro-landau-fluid model implemented in BOUT++ to model
I-mode.

A final aspect of this collaboration is the use of neural net-
works to produce fast surrogate models. This will be important
if we hope to use these models to design reactors and to scan
large regions of parameter space for favourable reactor relevant
conditions.

These various strands of work allow us to improve our
physics understanding of the pedestal which will give confi-
dence as we extrapolate towards a reactor pilot plant. They
will also provide tools and methods to integrate these complex
models into design optimization loops.
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