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Abstract
The Grad–Shafranov (GS) equation is a nonlinear elliptic partial differential equation that
governs the ideal magnetohydrodynamic equilibrium of a tokamak plasma. Previous studies
have demonstrated the existence of multiple solutions to the GS equation when solved in
idealistic geometries with simplified plasma current density profiles and boundary conditions.
Until now, the question of whether multiple equilibria might exist in real-world tokamak
geometries with more complex current density profiles and integral free-boundary conditions
(commonly used in production-level equilibrium codes) has remained unanswered. In this work,
we discover multiple solutions to the static forward free-boundary GS problem in the MAST-U
tokamak geometry using the validated evolutive equilibrium solver FreeGSNKE and the
deflated continuation algorithm. By varying the plasma current, current density profile
coefficients, or coil currents in the GS equation, we identify and characterise distinct
equilibrium solutions, including both deeply and more shallowly confined plasma states. We
suggest that the existence of even more equilibria is likely prohibited by the restrictive nature of
the integral free-boundary condition, which globally couples poloidal fluxes on the
computational boundary with those on the interior. We conclude by discussing the implications
of these findings for wider equilibrium modelling and emphasise the need to explore whether
multiple solutions are present in other equilibrium codes and tokamaks, as well as their potential
impact on downstream simulations that rely on GS equilibria.
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1. Introduction

1.1. Motivation and aims

The solution to the static forward free–boundary Grad–
Shafranov (GS) problem describes the magnetohydrodynamic
(MHD) equilibrium state of a magnetically-confined, toroid-
ally symmetric plasma in a tokamak fusion device. Obtaining
accurate solutions to this problem is a critical requirement
for experimental tokamak plasma design and operation. The
GS equation is a nonlinear elliptic partial differential equation
(PDE) that can be solved in different tokamak geometries
with a wide range of plasma current density parametrisa-
tions. Due to its nonlinearity, the GS problem may support
multiple, isolated solutions. However, computational methods
used for the simulation or reconstruction of free–boundary
GS equilibria almost always return only a single solution to
the problem. This solution is then used in a computational
plasma simulation pipeline (e.g. in stability analysis, scenario
modelling, and tokamak optimisation), without consideration
of other possible solutions and how they might impact sub-
sequent analyses.

In this paper, we build upon the work of Ham and Farrell
[17], which identified multiple numerical solutions to a con-
trived fixed-boundary GS problem. We demonstrate the exist-
ence of multiple solutions to the static forward (integral) free-
boundary GS problem for real-world plasmas in the MAST-U
tokamak. We aim to:

(i) Find multiple solutions to the static forward GS problem
on MAST-U using FreeGSNKE and the deflated continu-
ation algorithm;

(ii) Investigate how they change (and possibly bifurcate) when
certain parameters in the GS equation are varied.

The presence of multiple GS solutions in real-world toka-
maks could have significant implications for a number of dif-
ferent areas across plasma simulation. For example, this may
also occur during the integrated modelling of plasma scenarios
[26], such as those on ITER or STEP [9], which require the
time-dependent evolution of an equilibrium alongside coil
currents and plasma profile parameters (e.g. using transport
codes). Missing bifurcations points and therefore the presence
of multiple solutions during such a simulation could poten-
tially undermine scenario design and operational planning.
These implications highlight the need to explore and identify
different solution branches during forward/inverse equilib-
rium simulations.

To solve the forward GS problem here, we will make use
of the Python-based, dynamic free–boundary toroidal plasma
equilibrium solver FreeGSNKE [3]. This solver has the ability

to carry out both (static/dynamic) forward and (static-only)
inverse free–boundary GS equilibrium calculations. The static
forward solver has previously been validated against the equi-
librium codes Fiesta [12] and EFIT++ [7, 23, 24] on MAST-U
plasma discharges [25] and has been used to emulate plasma
scenarios for plasma control [1]. Most importantly, and like
almost all other equilibrium codes, FreeGSNKE currently
returns a single solution to the GS equation upon simulation.

To systematically search for multiple solutions to the GS
problem, we will use the deflated continuation algorithm [14].
This algorithm is able to identify multiple solutions to a
PDE (when varying a parameter) by modifying the nonlin-
ear problem to guarantee non-convergence to known solutions,
under certain conditions. This means that when the nonlinear
solver (e.g. Newton’s method) is applied again, if the solver
converges then it has discovered another, distinct solution.
This algorithm enables the user to construct (possibly dis-
connected) bifurcation diagrams, which show how the num-
ber of solutions change with the PDE parameter being var-
ied. It has already proven successful in a number of differ-
ent application areas, identifying hundreds of new stable/un-
stable equilibria for magnetic rotors [10] and discovering
multiple experimentally-observed solutions in smectic liquid
crystals [35]. We will explore the static forward GS problem,
FreeGSNKE, and deflated continuation in more detail below.

By harnessing the capabilities of both FreeGSNKE and
deflated continuation, we will search for multiple solutions
by varying certain parameters in the (toroidal) plasma current
density function of the GS equation. We also assess whether
varying the current in one of the active poloidal field coils (that
control the shape of the plasma) also affects the number of
solutions found. We will do this for a single time slice during
the flat-top (steady state) phase of a MAST-U shot and gener-
ate bifurcation diagrams for these varying parameters.

1.2. Related work

Early studies of the GS equation primarily focused on prov-
ing the existence and uniqueness of solutions in simpli-
fied domains, under restricted boundary conditions, and with
reduced plasma current density profiles. Under these restric-
tions, one can formulate an eigenvalue problem from the
GS equation with a free boundary4 to prove solution exist-
ence, uniqueness (for cases with small eigenvalues), and non-
uniqueness (for cases with larger eigenvalues). This was work
initially carried out by Temam [32, 33] and Schaeffer [27],
then, in a slightly more general setting, by Ambrosetti and

4 These problems typically assign a free, but constant, value to the flux on
the computational boundary, whereas in real-world GS problems, the flux is
allowed to vary (spatially) on the boundary, see (2.2).
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Mancini [2] and Berestycki and Brezis [6]. Similar problems
were later revisited by Bartolucci et al [5] and Jeyakumar et al
[22].

In slightly more real-world settings, some work has been
done to provide analytical derivations of multiple GS equi-
libria (again, under simplifying conditions and with constant
unknown flux on the boundaries). For example, in a cylindrical
plasma with polynomial current profiles (similar to those used
in modern equilibrium codes), Turnbull [34] identified settings
in which variations in certain parameters (e.g. plasma current,
flux on the conducting wall, wall radius) yield up to two GS
solutions.

In a similar setting, but with stepped current density pro-
files, Ilgisonis and Pozdnyakov [19] demonstrate that vari-
ations in the magnitude and location of the stepped profile
leads to a fold bifurcation, resulting in up to three solutions.
Furthermore, they suggest that bifurcations in GS equilibria
may not appear in numerical simulations due to the current
density normalisation process (present in almost all equilib-
rium solvers for numerical stability), which they say restricts
the poloidal flux values that solvers can identify. In section 2,
we discuss this process and provide an experiment in section 4
that demonstrates this statement might hold for Picard-based
solvers but not for Newton-based solvers.

Other works include that of Solano [30] in which
the criticality (bifurcation) of GS solutions is dis-
cussed for polynomial current density profiles. Similarly
to Ilgisonis and Pozdnyakov [19], Schnack [28] also finds
evidence of up to two GS equilibria in the case of a tall thin
plasma column with stepped current density profiles.

Despite these theoretical studies and the widespread use of
various equilibrium codes, there has been surprisingly little
numerical investigation into the existence ofmultiple solutions
to the GS equation for free–boundary equilibria in settings
relevant to real-world tokamak operations. A step towards
this goal was made by Ham and Farrell [17], in which they
identify multiple solutions to a fixed–boundary GS problem
numerically. Using the Firedrake finite element package [18],
they are able to use deflated continuation to consider much
more physically realistic plasma boundary shapes and system-
atically search for multiple solutions by varying parameters
such as the aspect ratio, elongation, and triangularity. Despite
this progress, we still lack an investigation for truly free–
boundary GS formulations that incorporate the integral bound-
ary conditions, more realistic internal plasma current profiles,
and external conductor currents used in real-world tokamak
experiments.

1.3. Paper structure

The rest of this paper is organised as follows. In section 2
we present the static forward GS problem, how it is solved
in FreeGSNKE, and which parameters we will vary during
the search for multiple solutions. In section 3 we outline the
deflated continuation algorithm, remarking on a number of
algorithmic parameter choices that need to be made in order to
efficiently search for solutions. The multiple solutions found

using FreeGSNKE and deflated continuation will be presented
and analysed in section 4. Finally in section 5 we discuss what
these results mean for the future of GS equilibrium simulation
and propose some ideas for future work in this area.

2. The static forward free–boundary
Grad–Shafranov problem

The GS equation is a nonlinear elliptic PDE used ubiquitously
in plasma equilibrium modelling for describing the (static,
time-independent) balance between magnetic and plasma
pressure forces in ideal MHD equilibria [16, 29]. It governs
the poloidal flux ψ(R,Z), which has units [Weber/2π], within
a two-dimensional cross-section of a toroidally (ϕ) symmetric
tokamak device and is given by

∆∗ψ =−µ0RJϕ (ψ,R,Z) , (R,Z) ∈ Ω, (2.1)

where ∆∗ := R∂RR−1∂R+ ∂ZZ is a linear elliptic operator
and µ0 = 4π × 10−7 [N/A2] is the magnetic permeability of
free space. Here, (R,ϕ,Z) denotes the cylindrical coordinate
system.

The poloidal flux ψ is the sum of two terms ψ := ψp+ψc,
where ψp and ψc are contributions from the plasma and the
(toroidally symmetric) conducting metal structures external
to the plasma,5 respectively. The toroidal current density
Jϕ(ψ,R,Z) := Jp(ψ,R,Z)+ Jc(R,Z) also contains contribu-
tions from both the plasma Jp and the external conductors
Jc. The dependence on ψ is where part of the nonlinearity
in the static forward GS problem originates. The computa-
tional domain is a pre-specified rectangular grid denoted by
Ω := Ωp ∪Ω ′

p, where Ωp defines the plasma region (whose
boundary is to be determined) andΩ ′

p refers to its complement
(see figure 1).

An integral (Dirichlet) free-boundary condition accompan-
ies (2.1):

ψ

∣∣∣∣
∂Ω

=

ˆ
Ω

G(R,Z;R ′,Z ′)Jϕ (ψ,R
′,Z ′) dR ′dZ ′, (2.2)

which gives the flux on the computational boundary ∂Ω pro-
duced by all non-zero toroidal current sources in Ωp and Ωc

(see (2.7) for external conductor currents). The function G
is the (analytically) known Green’s function for the operator
∆∗ and links points on the boundary with the toroidal current
sources. Refer to Takeda and Tokuda [31, section 3.1] for fur-
ther details on G and to Jardin [20, chapter 4.6.4] for how this
integral can be calculated efficiently.

It should be noted that the plasma boundary ∂Ωp is defined
by the (last) closed (R,Z) contour of ψ that passes through the
X-point closest to the magnetic axis of the plasma6. The (non-
linear) identification of ∂Ωp is required in order to calculate Jp

5 The external conductors are the active poloidal field coils (whose currents
are used to shape and control the plasma) and the passive conducting structures
(whose currents are induced by the plasma and the active coils).
6 The X-point and magnetic axis (sometimes referred to as an O-point) are
identified by finding the critical points of ψ (see Jeon [21, section 5]).
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Figure 1. FreeGSNKE-simulated equilibrium of MAST-U shot
45272 (t= 0.79854s) with ψ contours (see colour bar) shown in
domain Ω= [0.06,2]× [−2.2,2.2]. Key features include the plasma
region Ωp, which is enclosed by the last closed flux surface (solid
red), the X-points (red dots), and the magnetic axis (green cross).
Also shown are the twelve active poloidal field coils (dark blue), the
passive structures (dark grey), and the wall/limiter (solid black).

(see (2.3)) and therefore solve the forward GS problem (2.1)
and (2.2).

2.1. The toroidal current density

Here, we outline how the plasma and external conductor cur-
rent density contributions to Jϕ are defined and, more cru-
cially, highlight which of their parameters we vary later on
in deflated continuation to identify multiple GS equilibria.

2.1.1. Plasma current density. The plasma current density
is governed by the distribution of charged particles within the
plasma and generates a poloidal magnetic field that contributes
to the confinement of the plasma. It is non-zero only withinΩp,
taking the form

Jp (ψ,R,Z) = R
dp
dψ

+
1
µ0R

F
dF
dψ

, (R,Z) ∈ Ωp, (2.3)

where p := p(ψ) is the plasma pressure profile and F :=
F(ψ) = RBϕ is the toroidal magnetic field profile (Bϕ is the
toroidal component of the magnetic field).

The full specification of the forward GS problem (2.1)
and (2.2) requires specifying p′ and FF′ to determine the
internal profiles of the pressure and toroidal current within the

Figure 2. Plasma current density profiles p′ (top) and FF′ (bottom)
used to simulate the equilibrium in figure 1. Shown are the original
tension spline profiles obtained from the EFIT++ reconstruction
(solid black) and the profiles fit using the Lao polynomial
parameterisation (2.4) (red dots). The inset plots display the relative
error between the two different parameterisations.

plasma7. For real-world tokamak plasmas, these can take vari-
ous nonlinear forms, making analytical progress difficult and
numerical computation challenging.

Here, we use the (Lao) polynomial profile parametrisation:

dp

dψ̃
=

np∑
i=0

αi ψ̃
i − ᾱψ̃np+1

np∑
i=0

αi,

F
dF

dψ̃
=

nF∑
i=0

βi ψ̃
i − β̄ψ̃nF+1

nF∑
i=0

βi (2.4)

where αi,βi ∈ R are coefficients, ᾱ, β̄ ∈ {0,1} are Booleans
(governing edge conditions at ψ̃ = 1), and np,nF ∈ N∪ 0 dic-
tate the polynomial orders [24]. Also note

ψ̃ =
ψ −ψa
ψb−ψa

∈ [0,1] , (2.5)

defines the normalised poloidal flux (ψa and ψb being the flux
on the magnetic axis and plasma boundary, respectively).

In the numerical experiments with deflated continuation
(to follow in section 4) we will vary the coefficients αi,βi.
Figure 2 displays the profiles used to obtain the equilibrium
in figure 1. In addition, we will vary the total plasma cur-
rent Ip, whose value is not strictly required as an input to
solve (2.1) and (2.2), but is often prescribed to normalise (2.3).

7 Fitting these profiles is part of solving the GS equilibrium reconstruction
problem—see Jardin [20, section 4.7] for an introduction.
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This simply involves multiplying the right hand side of (2.3)
by

Ip

(ˆ
Ωp

Jp (ψ,R,Z) dRdZ

)−1

. (2.6)

2.1.2. External conductor current density. To close the sys-
tem we must also specify the current density Jc within the
metal conductors external to the plasma in the tokamak, i.e. the
active poloidal field coils and the passive (non-active) struc-
tures, as shown in figure 1. These conductors generate mag-
netic fields for shaping and controlling the plasma position
and stability. The current density produced byNc external con-
ductors is modelled as

Jc (R,Z) =
Nc∑
j=1

Icj (R,Z)

Acj
, (R,Z) ∈ Ω,

Icj (R,Z) =

{
Icj if (R,Z) ∈ Ωc

j ,

0 elsewhere,
(2.7)

where Ωc
j , I

c
j , and Acj are the domain region, current, and

cross-sectional area of the jth conductor, respectively. Note
that this term can be calculated explicitly before solving (2.1)
and (2.2).

In section 4, we will investigate how the equilibrium solu-
tions vary as we change a current in one of the active poloidal
field coils in MAST-U.

2.2. Numerical solution

Solving (2.1) and (2.2) with FreeGSNKE requires a number
of different inputs specific to the MAST-U machine. Firstly,
we require a machine description of MAST-U that includes
the position, size, orientation, and polarity of the active pol-
oidal field coils, passive structures, and the limiter/wall (that
will confine the boundary of the plasma during the simu-
lation). Then, to simulate a specific equilibrium (at a given
time slice of a shot) we require the plasma profile coeffi-
cients/parameters for (2.4), the total plasma current Ip for
the normalisation in (2.6), and the currents measured in the
external conductors for (2.7). The input data required to do
this comes from an EFIT++ reconstruction of the plasma
equilibrium.

In this paper, we use data obtained from a magnetics plus
motional Stark effect EFIT++ reconstruction. This reconstruc-
tion code uses measured coil currents, plasma current, mag-
netic fields, and motional Stark effect data in order to find the
‘best’ fit for the aforementioned parameters [11]. We should
note that this type of EFIT++ reconstruction actually fits para-
meters to the tension spline parameterisation of the p′ and FF′

profiles (see Pentland et al [25, appendix A]), however, these
parameters are difficult to use within the deflated continuation
framework. To suit our needs, we instead fit theα and β coeffi-
cients of the Lao polynomial profiles (2.4) to the tension spline
profiles from EFIT++—this fit (and the relative errors) can be

seen in figure 2. For profiles of this complexity, we required
polynomials up to order np = nF = 9.

In FreeGSNKE, the static forward GS problem (2.1)
and (2.2) is solved in its residual form

F(ψ;λ)≡∆∗ψ +µ0RJϕ (ψ,R,Z;λ) = 0, (2.8)

where we have slightly abused notation by omitting the bound-
ary condition (though it is indeed applied). Here λ denotes the
(scalar) parameter in Jϕ that we will vary when searching for
multiple solutions with deflated continuation.

Once discretised (using fourth-order finite differences),
(2.8) is solved using a Jacobian-free Newton–Krylov (NK)
method (see Amorisco et al [3, appendix 1]) with an appro-
priate initial guess for the plasma flux ψp (recall ψc is known
a priori to simulation). If no initial guess for ψp is provided,
FreeGSNKE generates one by default with ellipse-shaped flux
contours, the magnitude of which are adaptively scaled up
such that the total flux produces a magnetic axis and an X-
point within the confining limiter geometry. The NK method
then iterates until a relative convergence tolerance

max |F(ψ;λ) |
max(ψ)−min(ψ)

< ε, (2.9)

is met, returning a single solutionψ = ψp+ψc to the problem.
Searching for multiple solutions to (2.8) by using a set of

different initial guesses ψp is difficult for a number of reasons.
Firstly, it is difficult to efficiently generate such a set and, even
if we could, there is no way to guarantee that the input space
would be well covered by a given number of them. Secondly,
many of these initial guesses wouldmost likely converge to the
same solution and many may not converge at all. This task is
both cumbersome and computationally inefficient, hence we
now explain how we can systematically search for multiple
distinct solutions while varying the parameter λ in (2.8) using
the deflated continuation algorithm.

3. Deflated continuation

To search for multiple solutions to the static forward GS prob-
lem, as well as potential bifurcation points in parameter space,
we use the deflated continuation algorithm first proposed by
Farrell et al [14].

3.1. How it works

For simplicity we consider the discretised problem. The pur-
pose of deflated continuation is to locate solutions u ∈ Rm to

F(u;λ) = 0, (3.1)

where F : Rm×R→ Rn is a nonlinear function that represents
the residual of a PDE problem (e.g. (2.8)) and λ ∈ R is a para-
meter in the equations. More specifically, it will locate a set
of distinct solutions {u∗1 ,u∗2 , . . .} to (3.1) for each of the para-
meter values considered, typically L+ 1 equally spaced (∆λ)

5
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values of λ in a chosen interval [λ0,λL]. An important advant-
age over other methods for computing multiple solutions (e.g.
pseudo-arclength continuation and branch switching) is that
deflated continuation is able to compute disconnected bifurc-
ation diagrams in which solutions on different branches may
not meet at bifurcation points (see Farrell et al [14, figure 1.2]
for an example). It can do this by combining the power of both
deflation and continuation.

Suppose we have found a solution u∗1 to (3.1), for fixed λ,
using a suitable nonlinear root findingmethod (e.g. NK). To try
to identify more solutions, we can use the deflation technique
[8, 13] to modify the operator (3.1) such that we instead
solve

M(u;u∗1)F(u;λ) = 0, (3.2)

where

M(u;u∗1) =

(
1

∥u− u∗1∥
p
2

)
+σ, (3.3)

is the deflation operatorwith power and shift parameters p> 0
and σ> 0, respectively (∥ · ∥2 denotes the Euclidean norm).
Under mild regularity conditions, solving (3.2) ensures the
nonlinear solver does not return the known solution u∗1 (using
the same initial guess as before) but rather a distinct solution u∗2
(if the method converges, which is not guaranteed). The prob-
lem in (3.2) can subsequently be deflated again using known
solutions {u∗1 , . . . ,u∗N} such that

N∏
i=1

M(u;u∗i )F(u;λ) = 0, (3.4)

is solved until no more are found within a specified number of
nonlinear iterations.

To initialise the algorithm at the first λ, (3.1) is solved
using the chosen nonlinear solver and the solution(s)8 recor-
ded. Then, for λ+∆λ, deflated continuation carries out two
separate stages for solving (3.1): continuation and exploration.

Continuation stage: Each known solution (from step λ) is used
as an initial guess in the nonlinear solver to try to find the
corresponding solution at λ+∆λ. For each solution success-
fully continued,9 the new solution is used to deflate the residual
function as in (3.4).

Exploration stage: Again, each known solution (from step λ) is
used as an initial guess to solve (3.4) to try to locate additional
new solutions (at λ+∆λ). Again, if any new solutions are
found, they are used to deflate (3.4) before considering the next
initial guess.

8 If any other solutions are known or found, they can also be used at this stage.
9 The implicit function theorem states that a solution branch should only cease
to exist if the Fréchet derivative of the residual function (at that state) is zero.
If not, then it suggests that the nonlinear solver has failed due to lack of iter-
ations, instability, etc.

All solutions found for λ+∆λ are then stored, ready for
use when considering the next value of λ.

3.2. Numerical implementation

The original implementation of deflated continuation [15]
is built using the Firedrake [18] and FEniCS [4] libraries.
Here, we use a purpose-built Python implementation, tailored
specifically for use with FreeGSNKE. This is necessary as
FreeGSNKE uses its own finite difference scheme and its own
purpose-built NK solver for tackling (3.1).

Before each simulation, we need to choose a few key para-
meters within both deflated continuation and FreeGSNKE.
When solving (3.1) (or (3.4)) with the NK solver, we use a rel-
ative convergence tolerance of ε= 10−6 in (2.9), a maximum
of 150 NK iterations, and a scaled Newton step size of 1.2
(all other settings are FreeGSNKE defaults). Given there is no
systematic way of choosing the free parameters (p,σ) in (3.3)
(see [13] for a discussion on this), we set them independently
for each experiment in section 4 depending on which com-
bination works well—the best default choice was found to be
(p,σ) = (1,0.05). For each parameter λ under consideration,
the interval [λ0,λL] and the chosen step size ∆λ will vary. In
addition, we explore each side of the starting value λ0, i.e. we
explore [λ−L,λ0] using step −∆λ.

4. Searching for multiple solutions

In this section, we carry out our search for multiple solu-
tions to the static forward GS problem laid out in section 2
using deflated continuation. Here, we solve (2.8) at time
t= 0.79854s of MAST-U shot 45272 using m= 652 = 4425
spatial grid points (recall the equilibrium in figure 1 and pro-
files used in figure 2). This is a double-null plasma with
a flat-top current of approximately 750 kA (heated by two
neutral beam injection systems) and a conventional divertor
configuration.

The inputs required to solve for the equilibrium at this time
slice are described in section 2.2 andwill be used as the starting
parameters (λ0) in our deflated continuation experiments. The
parameters we can vary for this equilibrium are the:

• Coefficients αi, βi in the 9th order Lao polynomials (2.4);
• Plasma current Ip in (2.6);
• Coil currents Icj , j ∈ {1, . . . ,12}, in (2.7).

We will investigate whether any bifurcations occur when vary-
ing some of these parameters (separately) over a suitable
interval. To initialise deflated continuation at λ0, we use the
plasma flux ψp found by FreeGSNKE during a standard solve
(i.e. what we find in figure 1).

To plot bifurcation diagrams for vector solutions (e.g.
ψ), it is common to calculate scalar-valued functionals
related to the solution. While many functionals of ψ
are available (e.g. inner/outer midplane radii, strikepoints,

6
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Figure 3. Bifurcation diagrams for ψa (top) and ψb (bottom) when
varying plasma current Ip. Different solution branches are indicated
by different colours and the initial λ0 value is indicated by the black
dot on the x-axis. The solutions in figure 4 are plot in the same
colours at the values of Ip indicated by the black crosses (and the
dot) on the x-axis.

X-points), we find that the most informative are ψa and ψb
(recall (2.5)).

4.1. Experiments

4.1.1. Varying Ip. The first parameter we test with deflated
continuation is λ= Ip. Starting with the initial value λ0 ≈ 756
kA, we run deflated continuation both ‘forward’ and ‘back-
ward’ to cover a range of Ip values up to 10% either side of
λ0. In figure 3, we can see that deflated continuation reveals
two distinct solution branches that diverge from one another
as Ip decreases away from λ0 and converge together above it.
The lower panel (displaying ψb), shows the branches merging
around Ip ≈ 806 kA and the remaining solution branch being
lost beyond Ip ≈ 814 kA.

This process can be seen more clearly when we plot the
separatrices of the solutions ψ at a number of different Ip val-
ues in figure 4. For λ0, the centre panel displays both a deeply
confined diverted plasma equilibrium (i.e. the one found ini-
tially by FreeGSNKE in figure 1) and a more shallowly con-
fined limited plasma on the outboard side. Each separatrix cor-
responds to the respective solution branch colour shown in
figure 3. As Ip increases from left to right in figure 4, we see the
size of each plasma core increasing dramatically until the out-
board limited solution merges into the diverted solution caus-
ing a bifurcation. Beyond this point, the diverted equilibrium
exists only for a small increase in Ip, expanding further until it
can no longer be contained by the limiter/wall and is lost. For
Ip ⪅ 700 kA, the deeply confined equilibrium switches from a
diverted plasma to a limited one.

We should note here that we also ran the same experiment
(not shown) without the plasma current normalisation process

(recall (2.6)) and found identical results to those shown here.
This demonstrates that multiple solutions can indeed persist
with or without the current normalisation process when using
a Newton-based solver.

4.1.2. Varying αi or β i. In figure 5, we vary the coefficient
α2 in the p′ profile (2.4) by up to 175%—notice the large mag-
nitude of α2 in the left panels. As before, we can see the two
co-existing solutions we saw when varying Ip (see right panel)
and we observe that the outboard limiter solution is lost for
α2 ⪅−0.03× 106. We can also see the upward curve on the
lower branch (of the ψa panel) for α2 ⪅ 0.25× 106 indicating
the transition of the diverted solution into an inboard limited
plasma. In addition, we see that the two solutions co-exist with
almost exactly the same ψb value at α2 ≈ 1× 106 (in the ψb
panel). Note that we do not see any bifurcations in this case.

In figure 6, we vary the β5 parameter and, again, see the
two same solutions coexisting before bifurcating in a manner
very similar to what we saw in with Ip in figure 3(though the
solutions merge and are then lost as β5 is decreases).

4.1.3. Varying a coil current Icj . In this experiment, we run a
deflated continuation simulation in which we instead vary the
current in one of the poloidal field coils, specifically the D1
coil—see Pentland et al [25, figure 1]. As shown in figure 7,
the two solutions are present once again but do not vary signi-
ficantly, even when varying the coil current by up to 175%. In
other experiments (not shown), varying currents in the other
coils had a similar (lack of) effect on the two solutions.

4.1.4. Picard-based solvers and Ip normalisation. Many
widely used equilibrium codes rely on (possibly stabilised)
Picard iterations rather than Newton-based solution schemes.
It is therefore worth carrying out a brief investigation into
whether the two solution branches identified here can be detec-
ted using a Picard scheme. Here we do not use deflated con-
tinuation and instead fix the plasma profile parameters and
coil currents (as in section 2). Figure 8 displays the Euclidean
norm of the residual (3.1) against the iteration number when
using either FreeGSNKE’s NKmethod (solid lines) or a Picard
scheme (dashed lines). For the NK method, we initialise the
solver with two different guesses for ψp, each of which con-
verges to either the diverted (left panels) or limited solution
branch (right panels). We also explore the impact of enabling
(upper panels) or disabling (lower panels) Ip normalisation, a
typical setting in most equilibrium codes which fixes the total
plasma current—recall (2.6). In all four cases, we see that the
NK method converges to a solution, in line with the previ-
ous results. We use intermediate solutions provided by the NK
method to initialise the Picard method (black crosses). Given
an initial guess ψ0, the k-th Picard iteration is given by

ψk+1 (R,Z) = ψk (R,Z)− 1
2

[
F
(
ψk (R,Z)

)
+F

(
ψk (R,−Z)

)]
,

where we symmetrise the residual update to mitigate the typ-
ical instability of the Picard iterations.
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Figure 4. Separatrices of the multiple equilibria (red and blue) at increasing values of Ip (whose values are indicated by the black crosses
and dot on the x-axis of figure 3). A dashed separatrix line indicates that the plasma is limited (i.e. touching the wall) while a solid line
indicates it is diverted.

Figure 5. Left: bifurcation diagrams for ψa and ψb (left) when varying α2. Different solution branches are indicated by different colours
and the initial λ0 value is indicated by the black dot on the x-axis. Right: separatrices of the multiple equilibria (red and blue) at increasing
values of α2 (whose values are indicated by the black crosses and dots on the x-axis of the left panel). A dashed separatrix line indicates that
the plasma is limited (i.e. touching the wall) while a solid line indicates it is diverted.

While not an exhaustive study, figure 8 suggests that only
one of the two branches is a stable fixed point of the Picard
iterations. With Ip normalisation enabled, the Picard method
consistently converges to the diverted solution for a range of
left-biased guesses but fails to converge to the limited solu-
tion when the initial guess is biased to the right. Conversely,
when Ip normalisation is disabled, the Picard method instead
converges to the limited solution and fails to find the diver-
ted one. This supports earlier studies [19] (recall section 1),
which had mentioned the role of Ip normalisation in Picard
iterations. This also suggests that, in practice, the impact of
multiple solutions may vary across studies, depending on the
equilibrium code and the nonlinear solver in use.

5. Discussion and future work

We have demonstrated that the static forward GS problem can
exhibit multiple solutions when solved in a physically-relevant
setup, with an integral free-boundary condition, realistic
plasma current density profiles, and external conductor cur-
rents in the MAST-U tokamak. By utilising both FreeGSNKE
and deflated continuation, our numerical experiments revealed
that two distinct solution branches exist when varying para-
meters such as the plasma current (Ip), plasma current dens-
ity profile coefficients (αi, βi), or coil currents (Icj ). The solu-
tions identified had significantly different shapes and posi-
tions, with one being more deeply confined (and for the most

8
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Figure 6. Left: bifurcation diagrams for ψa and ψb (left) when varying β5. Different solution branches are indicated by different colours
and the initial λ0 value is indicated by the black dot on the x-axis. Right: separatrices of the multiple equilibria (red and blue) at increasing
values of β5 (whose values are indicated by the black crosses and dot on the x-axis of the left panel). A dashed separatrix line indicates that
the plasma is limited (i.e. touching the wall) while a solid line indicates it is diverted.

Figure 7. Left: bifurcation diagrams for ψa and ψb (left) when varying current in the D1 coil. Different solution branches are indicated by
different colours and the initial λ0 value is indicated by the black dot on the x-axis. Right: separatrices of the multiple equilibria (red and
blue) at increasing values of D1 current (whose values are indicated by the black crosses and dot on the x-axis of the left panel). A dashed
separatrix line indicates that the plasma is limited (i.e. touching the wall) while a solid line indicates it is non-limited.

part diverted) while the other was more shallowly confined
(and always limited).

One key difference between the results presented here and
in prior studies investigating the presence of multiple GS solu-
tions is the restriction imposed by the integral boundary con-
dition (2.2). Unlike boundary conditions where the solution
takes a constant (but free) value on the domain boundary, (2.2)
globally couples the boundary flux values with those on the
domain’s interior. Consequently, this significantly constrains
the solution space for ψ and not only restricts the boundary
flux values but also strongly influences the internal structure
of possible solutions. This perhaps makes the emergence of

even more equilibrium solutions more difficult, though we
would not rule out their presence without wider study on
free-boundary equilibria in other tokamaks (and perhaps using
other forward equilibrium codes).

These findings suggest that care must be taken when using
forward GS solvers as they do not currently account for the
presence of multiple equilibria and may converge to either
of the equilibria we have seen here (depending on the inputs
and the initial plasma flux guess). As hinted in section 4.1.4,
only one solution branch appears to be a stable fixed point for
Picard-based solvers in our experiments. While, on the one
hand, this suggests that Picard solvers may be less prone to
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Figure 8. Euclidean norm of GS residual (3.1) against iteration
number when using FreeGSNKE’s NK method (solid black) or a
Picard scheme (dashed black). The NK simulations are initialised
using a ψp guess biased to the left (left panels) or biased to the right
(right panels). The Picard simulations are initialised using a ψp

guess from an intermediate iteration of the NK simulation (black
crosses). The simulations either have Ip normalisation switched on
(top panels) or off (lower panels).

multiple solutions, it also further highlights that care is needed
when comparing solutions between different codes, as, in the
presence of multiple solutions, the adopted solver may affect
which solution is identified. In particular, while the outboard
limited equilibrium may not appear to be a ‘physically valid’
solution, the GS solver by itself cannot determine this. One
way to select the appropriate equilibrium could be to ‘bias’ the
initial plasma flux guess more toward the inboard side (in this
particular case), however, this is not systematic and is not guar-
anteed to return the inboard diverted solution. A more com-
plex but robust approach would be to incorporate some form
of deflation into GS solvers to identify any possible equilib-
ria before selecting the ‘correct’ one based on experimental
measurement data (e.g. from magnetic probes or fluxloops).
We note this process may, however, become more challen-
ging in situations when the two solutions obtained become
less distinguishable (for instance, at larger Ip as in figure 4)
and in predictive modelling when experimental data is
unavailable.

Along similar lines, the presence of distinct solution
branches may also affect time-dependent equilibrium calcu-
lations in which the poloidal flux is evolved alongside cur-
rents in the conducting metal structures. These evolutive solv-
ers play an important role in predictive ‘feed-forward’ and
‘feedback’ plasma scenario and control modelling. Depending
on the algorithm being used (for example, the one imple-
mented in FreeGSNKE), each time step of the evolution
may require solving tens of static GS problems. If any
of these internal GS solver were to select the ‘incorrect’

branch—or ‘flicker’ back and forth between branches—
it could undermine the stability/validity of the overall
simulation.

Having identified multiple solution branches in MAST-U
with FreeGSNKE, we think it would be of interest in the
future to investigate whether or not these (and perhaps other)
branches exist when using alternative equilibrium codes, toka-
mak geometries, and plasma conditions. Further study will
aid in the development of more robust algorithms for plasma
control and scenario forecasting and help avoid convergence
issues in future equilibrium calculations.
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