
PHYSOR 2020: Transition to a Scalable Nuclear Future
Cambridge, United Kingdom, March 29th-April 2nd, 2020

Benchmarking of the Serpent 2 Monte Carlo Code for Fusion Neutronics Applications

A. Valentine1, B. Colling1, R. Worrall1 and J. Leppänen2

1UK Atomic Energy Authority
Culham Science Centre, Abingdon, Oxon, OX14 3DB

2VTT Technical Research Centre of Finland Ltd.
Kivimiehentie 3, Espoo, FI-02044 VTT, Finland

Contact Author’s e-mail adress: Alex.Valentine@ukaea.uk

ABSTRACT

Analyses of radiation fields resulting from a deuterium-tritium (DT) plasma in fusion de-
vices is a critical input to the design and validation of many aspects of the reactor design,
including, shielding, material lifetime and remote maintenance requirements/scheduling.
Neutronics studies, which perform in-depth analysis are typically performed using ra-
diation transport codes such as MCNP, TRIPOLI, Serpent, FLUKA and OpenMC. The
Serpent 2 Monte-Carlo code, developed by VTT in Finland, is the focus of this work
which seeks to benchmark the code for fusion applications. The application of Serpent
2 in fusion specific analysis requires validation of the codes performance in an energy
range, and a geometrical description, which significantly differs to conventional nuclear
fission analysis, for which the code was originally developed.

A Serpent model of the Frascati Neutron Generator (FNG) Helium Cooled Pebble Bed
(HCPB) mock up experiment has been prepared and the calculated results compared
against experimental data, as well as the reference Monte Carlo code MCNP. The anal-
ysis is extended to a model of DEMO with HCPB blanket concept. For this model, the
flux, nuclear heating, tritium production and DPA are calculated, all of which are integral
nuclear responses in fusion reactor analysis. In general, a very good agreement is demon-
strated for both of the benchmarks, with any discrepancies pinpointed to different physics
models implemented.
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1. INTRODUCTION

Monte-Carlo N-particle (MCNP) [1] is a comprehensive code for reactor safety and shielding anal-
ysis, and is, at present, the most commonly adopted code by the fusion neutronics community.
This code has been extensively validated and actively maintained over its ˜40 year history. There
is a specific set of requirements that a radiation transport code must demonstrate to be applica-
ble to fusion relevant analysis: neutron and photon coupled radiation transport using point-wise
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cross section libraries, able to provide a geometric representation of the modelled system in all
its complexity, capable of employing acceleration techniques, accommodate complex plasma neu-
tron source definitions, and have parallelisation capability for deployment on high performance
computer architectures stemming from the computer intensive nature of Monte-Carlo simulations
[2]. MCNP complies with this list of fundamental requirements hence its prevalence in fusion
neutronics and as the benchmark code for the work presented herein.

The development of Serpent began in 2004 as part of a doctoral thesis at the VTT technical research
centre, Finland. The code now supports many of the fundamentals highlighted above, prompting
detailed investigations and extensive benchmarking of the code in the nuclear fusion domain. The
current version of the code, Serpent 2 [3], has been applied to ITER and DEMO analysis in previ-
ous studies [4][5]. To generate Serpent models, the current methodology is to use a script which
automates the conversion from an MCNP input [6]. The ensuing process of Monte Carlo code
validation is then performed using published experimental data. SINBAD ∗[7] provides a large
database of experiments which cover accelerator shielding, fission reactor shielding and nuclear
fusion. In this paper, focus is given to one such experiment [8], the Frascati Neutron Generator
(FNG), Helium Cooled Pebble Bed (HCPB) mock up. FNG is a 14 MeV neutron source used to
simulate the deuterium tritium reaction, the favoured nuclear fusion reaction. The HCPB blanket
concept is one of the selected designs under Test Blanket Module (TBM) framework in ITER,
which will test the feasibility of this particular concept against others. The SINBAD distribu-
tion includes an MCNP model of the experimental set up with tallies for direct comparison to the
experimental data.

Subject to the demonstration of its viability, the HCPB blanket concept will potentially be adopted
in EU DEMO, the European successor to ITER. As such, radiation transport models of DEMO
with this blanket geometry have been created for simulation purposes. In the mapping of the
radiation environment during both operation and in the shutdown phase, nuclear responses must
be demonstrated to adhere to specified limits dictated at a higher level by the regulating authority.
The neutronics assessment is therefore an integral part of the complete integration design process.
At the time of writing, validation of Serpent 2 for this application is confined to within the vacuum
vessel beyond which the statistical uncertainty is too high with analog transport.

2. Methodology

All calculation results were performed using MCNP6v1 [1] and Serpent v2.1.31 beta [3]. Serpent
was originally developed as reactor physics code for performing burnup calculations, spatial ho-
mogenisation and modelling of research reactors. Its application now extends to coupled neutron-
photon multiphysics, and more recently radiation transport, particularly in the sphere of nuclear
fusion. As the scope of the code evolved, new features were implemented aligned with the ex-
panding list of requirements. One such example is support for CAD based geometry types. This
is potentially a more efficient method for CAD-centric work flows with complex models such as
those in fusion reactor analysis. The conversion of such models to constructive solid geometry
(CSG) can be error prone and time consuming. It is nonetheless the representation used here on
the basis that the MCNP CSG model is the reference starting point.

∗Shielding Integral Benchmark Archive Database
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The reference nuclear data library used for neutron transport for the FNG HCPB benchmark is
FENDL-2.1 [9]. For all DEMO analysis, the neutron transport library is JEFF-3.2 [10]. Dosimetry
cross section libraries were used for the activation foils, namely IRDFFv1.05 [11]. The adopted
photon library in all cases is MCPLIB04/84 [12].

The parametric plasma source description for DEMO was re-written as a C routine. This is called
in Serpent as a user defined source. Similarly, the MCNP FNG source routine is written in Fortran
and therefore can not be directly invoked by Serpent. Instead, a list of starting source particles with
position, direction, energy and weight was generated in MCNP and subsequently called in Serpent.
All simulations were performed to 109 histories on an Intel Xeon E5-2665 cluster, using coupled
neutron-photon particle transport.

3. Results and Discussion

3.1. FNG HCPB mock up

In the mock-up experiment, the tritium production in breeding cassettes and reaction rate in a set
of activation foils was determined. A comparison of the computed results in MCNP and Serpent
against the experimental data, aims to validate both the implemented particle transport model as
well as the nuclear data. An illustration of the Serpent model detailing the experimental config-
uration of the mock up can be seen in Figure 1. The Serpent model of the HCPB mock up was
produced through automatic conversion of the MCNP input file.

Figure 1: Serpent model of the HCPB mock up experiment (left), detailing the configuration
of the activation foils, 1-4 (centre), and the Li2CO3 pellets (right)

Beryllium is included in the model as the neutron multiplying medium, shown in light blue/cyan
in Figure 1. Nb, Au, Al and Ni activation foils were located at increasing distance from the source
through the mock-up. The reaction rates for the following activation reactions were determined ex-
perimentally: 93Nb(n,2n); 197Au(n,γ); 27Al(n,α); and 58Ni(n,p). The tritium production rate (TPR)
was also determined in breeder cassettes, again positioned at different depths in the mock-up, each
containing 12 individual pellets of Li2CO3 powder. At each of the foil locations, the reaction rate
was calculated in MCNP and Serpent. The most notable differences between the calculated and
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experimental results, as plotted in Figure 2, occur in the centre of the block. The experimental er-
rors include counting statistics, detector uncertainty and FNG source calibration. In general there
is very good agreement between the two calculated responses, with the largest deviation equal to
˜1.5%. To try and understand the differences to the experimental results and assess the sensitivity
to different dosimetry cross sections, the calculations were repeated using the previous IRDFF re-
vision, IRDFF 2002, and the LLDOS library [13]. For all isotopes, the two IRDFF libraries agreed
within the bounds of uncertainty. For LLDOS, only Aluminium demonstrated agreement with the
IRDFF libraries, with on average a factor of 2 discrepancy for all other elements.

Figure 2: Comparison of calculated and experimentally determined reaction rates (Ratio)
for different activation foils

The total activity of tritium in each of the Li2CO3 pellets is the sum of the activities of the respective
nuclides, 6Li and 7Li. The production channel for tritium following neutron irradiation of these
two nuclides is via two key pathways:

n + 6Li → t + α
n + 7Li → t + α + n

The calculation results are appropriately normalised to factor the total neutron production rate,
mass of each pellet and the decay of tritium. For the purposes of this comparison, the lower
stack of pellets was chosen, nominally ENEA 2 through ENEA 8, corresponding to increasing
distance from the source. Figure 3 compares the computed results in MCNP and Serpent against
the experimental data.
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Figure 3: Comparison of Serpent, MCNP and experimental evaluations of tritium activity
in Li2CO3 pellets in the HCPB mock up

Excellent agreement in the calculated responses is seen for all of the pellet stacks. As for the
activation foils, larger deviations are seen towards the geometric centre of the mock up, which
requires more detailed investigation. The codes are consistent in under predicting the experimental
data, which is a possible artefact of the transport library used - more recent revisions of the FENDL
library are available [14].

3.2. DEMO HCPB

To reduce the computational load, fusion reactor analysis takes advantage of the toroidal symmetry
of tokamaks by modelling a single repeating sector. Serpent requires that the sector is housed in
a universe which is unfolded into a 360◦ model. This is analogous to the reflecting boundary
implementation in MCNP (see Figure 4). The DEMO HCPB MCNP neutronics model is a 10◦

sector and includes a heterogeneous representation of the blanket modules, with the breeder zone,
cooling plates, and neutron multiplier modelled explicitly. A universe lattice implementation in
MCNP was replicated in Serpent to model this repeating structure.
The conventional method to quantitatively validate the conversion of the model, and ensure that
transport critical masses are preserved, is to perform a volume comparison. One can then be
confident that all deviations in nuclear responses are inherent to the physics models (and nuclear
data called) in the code itself. Both codes include a stochastic method for estimating the geometric
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Figure 4: Plot of the 360◦ DEMO HCPB Serpent model at Y=0

volumes. The largest deviation was 3.5% in the total mass of SS3316. On looking more closely
at a cell-wise comparison of the volumes, it was determined that the deviation is an artefact of the
statistical error on the volume of smaller features and not an error in conversion.

Figure 5: Neutron flux (neutrons cm−2 s−1) and relative error for Serpent 2 model of DEMO
HCPB at Y=0

Serpent calculations were performed using a hybrid MPI-OMP parallelisation to optimise memory
consumption and simulation time. A map of the relative error is given in Figure 5, where it is visible
that results are converged for the blankets and divertor region only. Low statistical uncertainty for
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nuclear responses in the ex-vessel region necessitates the use of variance reduction methods -
an active area of development of Serpent of which a robust implementation is integral to fusion
applications.

The neutron and photon spectrum in 175 energy groups was determined for a cell in the plasma
facing layer of the divertor, plotted in Figures 6 and 7 respectively. For the the ratio of the two
calculated values, a metric is provided for highlighting data points where the deviation exceeds
two times the standard deviation on the result.

Figure 6: Neutron spectrum (neutrons cm−2 s−1) comparison for MCNP and Serpent in
DEMO. The plot details the points within 1σ, 2σ and >2σ

Figure 7: Photon spectrum (photons cm−2 s−1) comparison for MCNP and SERPENT in
DEMO. The plot details the points within 1σ, 2σ and >2σ

For both neutrons and photons, the general shape of the raw spectrum is in good agreement with
no conspicuous outliers. There is however a notable number of photon spectrum data points where
the deviation is not within the 2σ bounds, particularly for energies below 1 MeV. This is a re-
sult of the different photon physics models used in the two codes. An example is for the thick
target bremsstrahlung approximation, where Serpent correctly accounts for a higher photon yield.
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Further, both codes have different predictions for photon annihilation.

Further in-vessel nuclear responses (Figure 8) have been tallied and compared to the MCNP cal-
culated results. The nuclear heating is significant for many tokamak components, the DPA for
material lifetime, and the tritium production assesses the rate at which tritium fuel can be recycled
in the reactor. These responses are typically calculated for the blanket modules where globally,
peak values are observed.

Figure 8: Comparison of calculated nuclear responses in the DEMO divertor and selected
inboard and outboard blanket modules

Large deviations are seen in the neutron nuclear heating in the tungsten layers of the divertor. After
further investigation it was noticed that there is a significant number of negative cross section values
in the ACE files in the energy range, 1-15 MeV. This stems from non-physical data in the original
data evaluation prior to any processing. The issue of negative entries in ACE files is reported [15]
to extend to DPA cross sections, however only iron was considered here. The two codes employ
different routines for handling negative values which translates to the different reported values,
however, significantly, only Serpent notifies the user of the erroneous data.

4. Conclusions and Further Work

The Serpent 2 Monte-Carlo code has been benchmarked against MCNP and experimental data in
the SINBAD database. Serpent inputs for the FNG HCPB mock up experiment and the EU DEMO
HCPB model were generated using a script which converts the MCNP model.

The tritium specific activity and reaction rates in activation foils have been calculated in Serpent
and compared against both experimental data and MCNP calculated results. LLDOS and IRDFF
versions 2002 and v1.05 are applied as dosimetry libraries, the latter giving much better agreement
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with experimental data for the foils considered here. The FNG source term used for calculation in
Serpent was developed based on sampling the directional energy and weight parameters of a fixed
number of MCNP starting particles - development is ongoing into an interface with the Fortran
source routine which can be called directly in Serpent.

The comparison of nuclear responses in DEMO serves an important demonstration of the appli-
cability and validity of Serpent to fusion reactor analysis. Typical responses were selected in the
breeder blanket including neutron spectrum, nuclear heating, displacements per atom (DPA) and
the tritium production. In general, very good agreement is observed between MCNP and Serpent
for all nuclear responses considered. The one anomalous value was observed in the nuclear heating
in tungsten. The origin of this is non-physical data at the nuclear data source, the processed result
of which is handled differently by MCNP and Serpent. The erroneous data was only flagged by
Serpent, which serves as a minor motive for exploring alternative transport codes.

The statistical uncertainty increased significantly through the vacuum vessel necessitating vari-
ance reduction methods to tally ex-vessel responses. Weight window based variance reduction
techniques are currently an active area of development in Serpent and a robust implementation is a
fundamental inclusion for most radiation transport applications. Current testing is focused on the
built in response matrix solver method [16] which can potentially provide a highly efficient means
of generating weight windows.
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