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Statistical model for diffusion-mediated recovery of dislocation and point-defect microstructure
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The evolution of the defect microstructure in materials at high temperature is dominated by diffusion-mediated
interactions between dislocations, cavities, and surfaces. This gives rise to complex nonlinear couplings between
interstitial and vacancy-type dislocation loops, cavities, and the field of diffusing vacancies that adiabatically
follows the evolution of microstructure. In our previous work, we developed a nonlocal model for the climb of
curved dislocations and the morphological evolution of cavities during postirradiation annealing of structural
components in nuclear reactors. We now expand the formalism to include the treatment of population of
very small defects and dislocation loops that are below the experimental detection limit. These are taken into
account through a mean field approach coupled with an explicit real-space treatment of larger-scale discrete
defect clusters. We find that randomly distributed small defects screen diffusive interactions between larger
discrete clusters, renormalizing the free diffusion Green’s functions and transforming them into Yukawa-type
propagators. The evolution of the coupled system is modelled self-consistently, showing how the defect
microstructure evolves through a nonmonotonic variation of the distribution of sizes of dislocation loops and

cavities, treated as discrete real-space objects.
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I. INTRODUCTION

In a metal at sufficiently high temperature, the evolu-
tion of its microstructure following irradiation is effected by
diffusion. Point defects, predominantly vacancies, propagate
between dislocations, cavities, grain boundaries, and surfaces,
producing changes in their morphologies. The evolution rate
of each microstructural defect is governed by the imbalance
between the local chemical potential of vacancies in the atmo-
sphere surrounding it, and the chemical potential of vacancies
in the bulk. Each defect, acting as a sink or source of vacan-
cies, introduces a perturbation of the vacancy concentration
in the medium, varying as the inverse distance away from the
defect. Therefore dislocations, vacancy clusters, and surfaces
evolve through coupled diffusive interactions carried by the
vacancy field, and the evolution of each one depends on the
global defect microstructure.

A model for the evolution of an arbitrary configuration
of vacancy clusters and dislocations at elevated temperatures
is needed to predict changes of engineering properties of
materials in nuclear fusion and fission reactors. High energy
neutrons produced by nuclear reactions in fusion plasma, or
emitted by fissile nuclear fuel, impact atoms in the structural
components, generating vacancies and self-interstitials that
aggregate to form prismatic vacancy and interstitial disloca-
tion loops and cavities [1-5]. The accumulation of such de-
fects degrades mechanical and thermal properties of materials.
To design annealing protocols for the recovery of neutron
irradiation damage [2], it is desirable to be able to predict the
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evolution of arbitrary populations of such defects in real space
as a function of time and temperature postirradiation.

Molecular dynamics (MD) simulations have been instru-
mental in understanding the initial stage of defect production
during irradiation due to short-lived (~0.1-1 ps) collision cas-
cades [6-8] and in characterizing the structure and mobility
of small defect clusters [9]. However, the diffusion-driven
evolution of interacting defect clusters involves time scales
(us to years) not accessible to MD simulations.

Two coarse-grained modeling frameworks have risen to
prominence for the treatment of defect cluster evolution in
irradiation conditions and during postirradiation annealing:
mean field rate theory (MFRT) and kinetic Monte Carlo
(KMC) [10,11].

In MFRT spatial distributions of defect clusters are rep-
resented by spatially independent or slowly spatially vary-
ing continuous size distribution functions (SDFs). The time
evolution of SDFs are governed by coupled master equations
involving defect generation rates (when considering processes
during irradiation) and fluxes, in the defect size space, propor-
tional to the rates of point-defect absorption and emission by
various defect cluster types. Reaction rates are assumed to de-
pend on the available populations of point defects, which are
also dynamical quantities of the theory, evolving according to
the average effective sink strength of defect clusters and other
microstructural features [12]. While it is possible to introduce
a degree of spatial information, for instance by considering
multiple subsystems with different but co-evolving cluster
densities, MFRT models fundamentally employ spatially av-
eraged descriptions of defect cluster distributions and hence
they are unable to treat real-space diffusion-driven processes
like the correlated diffusion-mediated evolution of dislocation
loops.
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KMC models treat defect clusters and individual point de-
fects as discrete objects with explicit positions in the simula-
tion cell, while their time evolution is governed stochastically
instead of deterministically. A set of possible transition events
is specified for the various classes of objects, such as migra-
tion, emission or aggregation of point defects from or to clus-
ters, and vacancy-interstitial annihilation. At each time step,
an event is randomly chosen with probability proportional to
the Arrhenius factor with the relevant energy barrier for the
reaction [13]. A particular object able to undergo the reaction
is then randomly selected, the state of the system is updated
accordingly, and time is advanced by an amount inversely
proportional to the total reaction rate. The computational cost
of KMC is generally considerably higher than MFRT, there-
fore simulations are limited to smaller cell sizes, typically
of the order of a few hundred nm, and relatively low [<1
displacements per atom (dpa)] doses [14]. The main limitation
of KMC models is that the method requires choosing the
objects and reaction rules at the start of the simulation. It is
possible to model the evolution of populations of dislocation
loops and vacancy clusters as long as the defect structures
formed as a result of reactions between the existing objects
belong to the same class of objects, for which the rules of
evolution are defined. For example, if the objects defined in a
KMC simulation are circular prismatic dislocation loops, then
a simulation is unable to predict the formation of dislocation
loops with noncircular shapes or the formation of a dislocation
network, such as those often observed in experiment. The
number of individual defects that a KMC simulation can
handle is also limited, as the total reaction rate increases in
proportion to the total number of objects in a simulation cell.
This reduces the simulation time step and makes it difficult
to treat evolution in the high temperature limit where the
concentration of mobile vacancies is high.

In an earlier paper [15] we presented a formalism that
extends the nonlocal dislocation climb model of Gu et al. [16]
to simulate the evolution of discrete dislocation loops and va-
cancy clusters in a finite medium, at high temperatures and in
real space. One of the motivations for developing a real-space
model, in contrast to a spatially averaged MFRT approach,
is that the sizes of clusters of vacancies or self-interstitials
produced by neutron irradiation appear to obey a power-law
probability distribution [6,17] of the form f(n) ~ n™, with
n the number of self-interstitials or vacancies in the cluster.
For s < 2, corresponding to experimental observations [17],
the average size of a defect cluster is not defined, and so
a representative cluster size of a rate theory model remains
undefined. A real-space model can also treat local variations in
the number density of clusters, for instance those arising from
depleted zones [18] at grain boundaries and free surfaces.

The nonhomogeneous spatial arrangement of defects and
dislocation segments in irradiated samples is clearly evident
in transmission electron microscopy (TEM) images of ion
irradiated tungsten foil shown in Fig. 1. Furthermore, the
in situ TEM observations of dynamics of postirradiation an-
nealing have highlighted a strong dependence of evolution of
individual defect clusters on the local defect distribution in
their local environment [2].

In principle, KMC models might allow, subject to the
limitations noted above, the simulation of arbitrary spatial
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FIG. 1. TEM snapshot of in situ annealing of ion-irradiated tung-
sten (2-MeV W ions, 500°C, 10'* W+ /cm?) at 700°C. Adapted
with permission from [2].

distributions of defect clusters. However, the computational
cost of our real-space model is many orders of magnitude
lower, as individual point defects are not explicitly taken into
account as stochastic discrete entities. As a result, we are
able to treat larger simulation cells, higher densities of defect
clusters, and considerably longer time scales. In addition, our
model does not preclude the treatment of arbitrary dislocation
structures outside of circular loops, and in principle can be
integrated in discrete dislocation dynamics (DDD) models.

It is likely that the experimentally determined number of
the smallest defect clusters is always underestimated owing
to detection limits of the instrumentation. The sizes of ex-
perimentally observed defect clusters is usually assumed to
obey a Gaussian-like distribution. Such a distribution can be
understood as a product of the true distribution with a sigmoid
function representing the instrumental sensitivity, as sketched
in Fig. 2. Therefore, experimental data on radiation induced
defect clusters is generally incomplete and the number density
of the smallest “invisible” defect clusters can be much greater
than the observed population, as recently noted by Liu et al.
[19].

It would be useful, therefore, to include a statistical de-
scription of the unknown small-size cluster population, intro-
ducing an effective mean field which evolves self-consistently
with the observable cluster population. This approach would
provide an efficient way to investigate the effect of invisible
clusters on the distribution of sizes of visible clusters. It turns
out that the mean field is governed by only a few low-order
moments of the size distribution of visible clusters, which can
be determined by the experimentally measured evolution of
the observable population. In this paper we present a hybrid
model that couples the evolution of an experimentally visible,
discrete population of defect clusters in real space with a mean
field, representing the experimentally invisible clusters.

In Sec. I we estimate the expected time scales for the evap-
oration of nanometric cavities as a function of temperature
in W, Fe, and Be. In Sec. III we introduce the mean field
formulation by averaging the positions and sizes of the small
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FIG. 2. Qualitative explanation of the observed Gaussian-like
size distribution of defect clusters in neutron irradiated tungsten. The
dashed black line represents the true, power-law like, size distri-
bution. The dotted blue line represents the experimental sensitivity
function plotted as a function of cluster size. The solid black line is
the observed distribution, given by the product of the true distribution
and the sensitivity function. The red shaded area is proportional to
the number density of the observed clusters, while the yellow shaded
area is proportional to the number density of mostly “invisible”
clusters.

clusters, using a technique developed in scattering theory by
Edwards [20]. In this way we obtain a general expression,
Eq. (32), for the coarse-grained vacancy concentration in the
presence of an arbitrary distribution of small clusters.

In Appendix B we present a perturbative approach that
expands Eq. (32) in terms of an increasing number of scat-
tering events, deriving an analog of the self-energy expansion
for condensed matter systems. In the case of homogeneous
and uncorrelated distributions, we provide closed form ex-
pressions for the self-energy up to the third order terms in
Eq. (B11).

By considering the first order approximation to the effec-
tive self-energy, we show that the effective Green’s function
governing the interaction between the observable clusters
takes the form of a Yukawa propagator, Eq. (40). Thus,
we show that diffusive interactions mediated by vacancies
between larger clusters are screened by the mean field of
small clusters. The formalism has similarities to the diffusion
screening theory, originally due to Marqusee and Ross [21]
and further developed by other authors [22-26], which ad-
dresses the issue of divergences in Ostwald ripening theories
for finite volume fractions of particles. In diffusion screening
theory the usual Laplacian diffusive interactions are screened
as a result of coarse-graining second phase particles, which
is analogous to our mean field treatment of invisible defect
clusters. This procedure enables us in Eq. (43) to provide
a closed form expression for the vacancy field where only
observable clusters are treated explicitly.

The rates of growth of cavities can be calculated self-
consistently in the same manner as in our previous model [15]
by evaluating the vacancy field at the cluster positions with
defined boundary conditions. We couple the evolution of the
mean field with large clusters via Egs. (46) and (49).

The theory is developed for an infinite medium. However,
the majority of experimental data on radiation-induced defect
clusters has so far been obtained using thin film samples. In
Sec. IV we present an extension of the theory to a thin film
infinitely extended in the lateral direction, making use of a
variant of Ewald summation developed for Yukawa potentials
[27]. In Sec. V we briefly present a mean field treatment of
all defect clusters. Finally, in Sec. VI we present numerical
simulations to illustrate applications of the theory to the
evolution of distributions of cluster sizes in irradiated thin
films of W, Be, and Fe.

II. PRELIMINARY ESTIMATE OF GOVERNING
TIME SCALES

An estimate of the time scale required for the complete
evaporation of a nanometric defect cluster can be obtained by
considering the isolated cluster in a vacancy atmosphere in
local thermodynamic equilibrium. In general, the characteris-
tic time scales for vacancy equilibration are much shorter than
the time scales for significant morphological changes of defect
clusters. As a consequence, the usual approach in model-
ing dislocation-climb and diffusion-mediated microstructural
evolution consists in assuming instantaneous equilibration of
the vacancy field with respect to the defect cluster morphology
[28-32]. We have discussed the validity of this assumption
quantitatively in our previous work [15]. In particular, in the
case of nanometric dislocation loops or cavities, transient
effects due to vacancy equilibration become important only on
a spatial scale roughly 100 times larger than the defect cluster
size. At such distances, however, perturbations of the vacancy
field arising from the cluster evolution are already negligible
due to the 1/r dependence of the diffusion propagator.

Consider an isolated spherical cavity of radius R. Assum-
ing an adiabatic evolution of the vacancy concentration with
respect to the cavity, we have

L TPt 1)
— =—[cp—c¢ ,

dt RO

where cy is the local vacancy concentration at the cavity
surface and c( is the equilibrium vacancy concentration per
atomic site, given by ¢y = exp(—E,/kpT) where E, is the
vacancy formation energy. cx (R) is determined by the condi-
tion of local equilibrium, i.e., there is no change in free energy
if vacancies attach to or detach from the cavity, which leads to
the Gibbs-Thomson expression:

(R) AL @)
c =coexp| ——= |,
. 0P RipT
where y is the cavity surface energy per unit area and €2 is the
atomic volume. Thefefore, if we consider a system of cavities
of average radius R evolving adiabatically with a vacancy
field in local thermodynamic equilibrium we can estimate the

characteristic time scale for cavity evaporation as follows:

R2 R? (Ev + Em>
o= —————=—=—exp|——
Dylco —cs(R)] Dy kgT
2y Q2 1 -1 3)
x [exp [ = - ,
P\ Rk
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TABLE 1. Material parameters used in the present work. Parameters for Be are averages of basal and nonbasal values. 1 eV/nm? ~

0.16 J/m2.

Material y (eV/nm?) 1 (GPa) v b (nm) Q (nm?) E, (eV) Em (V) DY (nm?/s)]
w 20.4* 161° 0.28° 0.27° 0.016° 3.56¢ 1.78°¢ 4.0 x 102
Fe 15.3? 82b 0.29° 0.29° 0.012° 2.07¢ 0.65¢ 2.8 x 10'4°
Be 12.52 132° 0.03" 0.18" 0.008" 0.95¢ 0.81¢ 5.7 x 1083f

2Reference [34].
bReference [35].
‘Reference [36].
dReference [37].
¢Reference [38].
fReference [39].

where E, and E,, are respectively the vacancy formation and
migration energies, and D? is the pre-exponential factor of the
diffusion coefficient.

In a similar way, we can estimate the characteristic time
scale of dislocation loop evaporation by considering the rate
of change of the radius of an isolated circular prismatic loop
due to nonconservative dislocation climb [16]:

dR " 2n D, R 4

ar = b @R rp 0 T Ok @
where the plus or minus sign denotes respectively the case
of a vacancy or interstitial loop, b, is the edge (out of plane)
component of the dislocation Burgers vector, r, is the radius
of the dislocation core, and c, is the vacancy concentration
infinitesimally close to the dislocation line. The assumption
of local equilibrium between the dislocation loop and the
vacancy field surrounding it leads to the following relation:

fcl(R)Qi|’ 5)

ca(R) = coexp |:— b kT
eB

where, for a circular prismatic loop [33],

_ ub? 8R
fa(R) = :Fm[ln (Z) - 1i| (6)

is the climb force per unit length of the dislocation,' v is Pois-
son’s ratio and u is the shear modulus, and the minus or plus
signs distinguish between vacancy type and interstitial type,
respectively. We can therefore estimate the characteristic time
scale for the evaporation of a dislocation loop of radius R as

b.RIn(8R/ry) E,+E,

Te=t———exp| ———
27TD8 kBT

u€2b,

e ()]

(N
'In this treatment we neglect the additional contributions to the
climb force due to stresses imposed on the system as a whole or
arising from other loops. This is a good approximation because we
are considering very small loops (a few nanometers wide) for which
the self-interaction stress dominates. We have defined the climb force
as the projection of the Peach-Koehler force in the direction of the
cross product between the dislocation line direction and the Burgers
vector. Therefore, the climb force acting on a vacancy loop is the
negative of that acting on an interstitial loop.

The parameters used for the investigated materials throughout
the present work are given in Table I.

We applied Eq. (3) to bcc iron, tungsten, and beryllium,
which are candidate materials for nuclear fusion engineering
applications, with R = 1 nm, which is within the range of
experimentally observed sizes of radiation-induced cavities
and dislocation loops. The computed t. are plotted in Fig. 3
as a function of the homologous temperature 7'/ T;,,, where Tp,
is the melting point. It is evident that 7. can vary over many
orders of magnitude: from milliseconds to years, depending
on temperature and material properties.

We note that although W shares the same crystal structure
as Fe in Fig. 3, there is a systematic difference of at least
one order of magnitude in the time scale 7, for cavities and
dislocation loops, even after scaling the temperature to the
relevant melting point.

In Fig. 4 we plot the dependence of the relative change
of predicted time scales Art./7, for cavity evaporation on
relative changes in the activation energy for diffusion by
vacancy mechanism AE,/E,, where E, = E, + E,, and
relative changes in the surface energy Ay /y, of up to £10%,
at T = 0.4 T,,. In Fig. 4(a) we see that an overestimation of

+ cavities
- cavities
- cavities
- vac. loops3
- vac. loops
- vac. loops|
- int. loops 7§
Fe - int. loops
- int. loops

FIG. 3. Estimated time scales t. for the evaporation and anni-
hilation of ~1 nm cavities (solid lines), vacancy dislocation loops
(dashed lines), and interstitial dislocation loops (solid-dashed lines)
in W (red, circles), Fe (yellow, triangles), and Be (blue, diamonds),
as functions of homologous temperature 7'/ Ty,.
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FIG. 4. Relative change of the estimated time scale t, for cavity evaporation at 7/ T, = 0.4 with respect to small deviations of activation
energy for diffusion by vacancy mechanism E, = E, + E,, (a) and surface energy y (b). In plot (a) the scale of the y axis is linear between

—1% and 1% and logarithmic elsewhere.

E, by just ~2% leads to a relative error of at least 100%
for 7, in all three materials. This extreme sensitivity, arising
from the exponential dependence of t, on the formation and
migration energies of vacancies should be kept in mind when
attempting to compare experimentally observed time scales
with theoretical estimates. Activation energies for diffusion
can be affected by a number of factors which may not be
under experimental control, such as the presence of bound
impurity-vacancy complexes, or a dependence of the entropy
of activation on temperature, which may become significant
at higher temperatures [40]. The sensitivity to errors in the
assumed surface energy is less extreme, but also a source of
uncertainty because the surface energy per unit area of clusters
with radius as small as 1 nm or less may differ significantly
from the surface energies per unit area of larger clusters.

III. DEFINITION OF THE MEAN FIELD FORMALISM

A. Adiabatic vacancy field in the presence
of a small defect cluster

Consider an infinite crystal containing a circular prismatic
dislocation loop of radius R, with its center at the origin
and lying in the x-y plane. The loop may be of vacancy or
interstitial character. Since the loop lies in the x-y plane,
the component b, of the Burgers vector normal to the loop
(i.e., along the z axis) remains constant at all points around
the loop. Let c(x) be the vacancy concentration per atomic
site, i.e., ¢(x) is the (dimensionless) probability of finding a
vacancy at a lattice site at x, and let us assume that vacancies
are the only mobile point defects. If we further assume that
the evolution of the vacancy field is adiabatic with respect
to changes in the loop configuration,> we can write [16] the
following equation:

b Vel (X )

—dl ,
47'[D + Coo

c(x) =

®)

r|x—x|

2This assumption implies that local equilibrium exists between
each dislocation segment and the surrounding vacancy field. For
quantitative bounds on this assumption see [15].

where I' denotes the dislocation line, v (x) is the dislocation
climb velocity, and ¢, is the vacancy concentration at infinity.
We define v (x) as the projection of the velocity of a point
on I' along the vector defined by the cross product between
the tangent vector to the dislocation line at x and the Burgers
vector.

Throughout this paper we adhere to the definition of the
Burgers vector used by Hirth and Lothe [33], i.e., given a
circular path C, drawn around a dislocation line according
to the right hand rule with respect to the dislocation line
direction, the Burgers vector b is defined as

fl —dl

where u is the displacement field arising from the dislocation.
This implies that the cross product between the tangent vector
to the dislocation line and the Burgers vector points inward
toward the center of a prismatic interstitial loop, and outward
away from the center of a prismatic vacancy loop. We warn
the reader that the opposite convention is used by Landau
[41], Trinkaus [42], and others, where the direction of the
Burgers vector is reversed with respect to the direction of
the dislocation line. We also define the normal direction fi to
the surface enclosed by a dislocation loop according to the
right hand rule with respect to the dislocation line direction,
so that b and i are parallel for a prismatic vacancy loop and
antiparallel for a prismatic interstitial loop.

We point out that Eq. (8) is the scalar form of a general
vector equation (see Appendix A for details):

€))

V(X )

= dl' x b
c(x) 471D |x—x| (@l > b) + coe
= j£ G(x —x'v(x) - (dI' x b) + coo,  (10)
r
where G(|x|) = —1/4m D,|x| is the free space Green’s func-

tion of the steady-state diffusion equation, D,V’>G(|x|) =
8(x), v(x') is the vector velocity of a point X' € ', b is the
Burgers vector of the dislocation loop, and the differential dl
is tangential to the dislocation line at x'.

043002-5



I. ROVELLL S. L. DUDAREYV, AND A. P. SUTTON

PHYSICAL REVIEW E 98, 043002 (2018)

By evaluating Eq. (8) on I' and using Eq. (5) we can self-
consistently find an analytical solution for v (x), leading to
a closed-form expression for the vacancy concentration in the
medium:

c(x)= [coo — ca(R)]Al’. (11)

1 1
T In8R/ry) fr X — x|
Let r denote the distance between x and the center of the dislo-
cation loop and let ¢ = cos~!(z/r), where z is the component
of x out of the x-y plane. In the limit of » > R we can expand
the above integrand in powers of R/r to obtain

R T R
— [coo — ca( )]m(7>

2 2 3
2\ r 2 r

where ¢ = cos™!(z/r), and z is the component of x out of the
x-y plane. The above expression shows that to second order
in R/r, a dislocation loop, or in fact any defect cluster, can be
treated as a spherically symmetric vacancy source or sink.

On the other hand, the vacancy field sufficiently far from
an isolated spherical cavity at the origin can be exactly in-
terpreted as originating from a pointlike source. Indeed, at
all r > R, Newton’s shell theorem shows that the vacancy
concentration is a function of the distance to the center of the
cavity r, and is given by [15,43]

c(r, @) = ceo

C(r)=coo_[coo_cE(R)]<§)~ (13)
We note that the above expressions are examples of a more
general equation that admits a clear physical interpretation.
The vacancy field at large distances from any point-defect
cluster situated at the origin, which can be approximated as
an isotropic pointlike source, is characterized by the rate of
change of the volume of the cluster® V:

= dVG 14
¢(0) = e — - GUX)). (14)

This statement can be proven straightforwardly for a spherical
cavity, where

Dew _ 4 (4T ps) _ —47rR2d—R
dt dt 3 dt

= —4n DyR[ce — c2(R)], (15)
which, upon substitution in Eq. (14), leads to Eq. (13).

For a prismatic dislocation loop we prove in Appendix A
that

d Vloop
dt

= - % v(x) - (dl' xb)=— f b- (v(x') x dl)
r r

—fmwmwwc (16)
I

3With the caveat that V is negative for vacancy clusters or voids
because their growth reduces the overall vacancy concentration in
solution, and positive for interstitial clusters because their growth
increases the overall vacancy concentration in solution assuming
there are no free interstitial atoms.

which, assuming constant v, (x") and b,(x") over I, becomes

dVioo 47 RD
Thow oy Ry, = — —F S8
dt In(8R/ry)

giving the leading order term of Eq. (12) upon substitution in
Eq. (14).

To simplify the presentation, we will consider only intersti-
tial dislocation loops forming the invisible cluster population.
This assumption is justified by the fact that the energy gain
associated with the formation of a vacancy cluster is smaller
than that of an interstitial cluster [44,45], and in general a
vacancy cluster has to be of appreciable size to remain stable
at a finite temperature [46].

Also, in general cy, should depend on time, following
adiabatically the evolution of all the clusters in the system.
However, in a real finite system ¢, is governed at equilibrium
by the surface energy and geometry of its external boundaries
(free surfaces, grain boundaries), and can thus be considered
constant in time for practical applications, provided that the
morphology of external boundaries does not change apprecia-
bly during the evolution.

[coo —ca(R)], (17)

B. Representing the invisible dislocation loops by a mean
field fully coupled to the visible clusters

Consider N cavities and n interstitial prismatic loops in
an infinite medium. The cavities are sufficiently large and
they are visible experimentally, but the prismatic loops are
too small to be detected. In the following the evolution of the
cavities will be considered explicitly as discrete objects, but
the evolution of the loops will be treated through a mean field.
The evolution of the cavities and the mean field will be fully
coupled.

Let ¢, (x) be the vacancy concentration field obtained by
considering only the cavities. It is given by the equation

N
D, V2ey(x) = QJy(x) Y S[Zi(1)], (18)
i=1
where X; (¢) denotes the surface of the ith cavity at time ¢, and
J,, is the vacancy current normal to a cavity surface, where
the normal direction is considered pointing from the bulk
towards the center of the cavity, i.e., J,(x) > 0 if vacancies
are entering the cavity at X. 6(X) represents a delta function
evaluated on a surface, defined as

/w(X)3(2)dV=/<ﬂ(X)dS, 19)
Vv z

where ¢(x) is an arbitrary trial function and V is an arbitrary
volume containing the surface X.

Consider the invisible interstitial loops. Let x; and R;
denote respectively the center and the radius of the ith loop.
To simplify the notation and make clear the parametric depen-
dencies of the various functions, we define the following sets:

X={x:i=1,...,n}
R={(R:i=1,...,n},
Xig=1{xj:j=1,...,n5 j#i},
Riy=1{R;j:j=1,....n; j #i},

(20)
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and we introduce the shorthand notations

dX:ﬁdXi, d,R,:l’_l[dRz»
i=1 i=1

dX[,‘] = Hde, dR[,'] :l_[dRi- (21)
J# J#
The total vacancy field obtained by also considering the effect
of the n dislocation loops can then be expressed as [20]

"\ dV,
XX, R) = ap(x) = Y —G(x = xil)

i=1

= cp(X) + ) EA(RIG(IX = x;])

i=1
X [eri(xi3 X, R) — ca(Ri)], (22)
where £5(R) = 4n2RD,/In(8R/r;). The vacancy field ob-

tained by omitting the contribution arising from the ith loop is
ci1(x; X, R), and it is defined by the self-consistent condition:

(X, R) = cp(x) + Y Ea(R)G (X —x;])
J#
x [ej(x;: X R) — ca(R)]. (23)

We define the probability of finding the n dislocation loops
in the n volume elements (x; + dxq, ..., X, + dXx,), and with
loop radii in the ranges (R; + dRy, ..., R, +dR,), as

p(X, R)AXdR. (24)
The average of Eq. (22) with respect to the positions and radii

of each loop can then be expressed as

c(x) = /C(X;X,R)p()(, RYAXdR

— 4@+ Y / [8,06 ¥, R)
i=1

— 8(x;X;, R)|p(X, R)dXdR, (25)

where S;l(x; X, R) and S§(x; X;, R;) are respectively the non-
local and local contributions of the ith loop to the total

concentration field, defined as
Si(x; X, R) = EA(RDG(IX — x; ey (x5 X, R), 26)
S1(X;X;, R;) = EA(R)G(X — x;Dea(Ry).

S; is the perturbation to the vacancy field in the neighborhood
of the ith loop arising from the condition of local thermo-
dynamic equilibrium. The nonlocal term S’ describes the
contribution to the vacancy field near loop i from all the other
loops in the system.

By introducing the one-loop probability density function,

Pl k) = [ P RYNgaR. @D
we can express the average of the local contribution as

§(x) = / Sixixi, ROpi(xi, R)dxid R, (28)

which can be readily calculated without any knowledge of cor-
relations in the positions or radii of different loops, requiring
only the single loop spatial and size distribution p;(x, R).

We now average the nonlocal contribution. Let us define
the conditional probability density p(x;, R;| [}, Ryi)) by the
relation

pi(Xi, Ri) p(xi, Ri|Xji), Riip) = p(X, R) (29)

and the effective averaged vacancy field experienced by the
ith loop as

5[?§f(X;Xi, Ri)=[cin(x; X, R)p(x;, Ri| Xy, Riipd Xjind Ryiy-

(30)

By employing these definitions, we may write the average of
the nonlocal contribution as

S (x) =/§A(Ri)G(|X — xiDE (x:xi, R) pi(x;, R)dx;dR;.

€1y

In summary, the governing equation for the vacancy concen-
tration, averaged over all possible positions and radii of the
invisible interstitial loops, is given by

&(x) = cp(x) +nfsA<Ri>G<|x —xi) pxi: R
x [ed(x:xi, Ri) — ca(R))]dx;dR;. (32)

The integral in this equation is the mean field of the invisible
loops in which the visible clusters sit. Information about
correlations between the positions and sizes of the invisible

loops is contained in the effective field &ff}.

C. The simplest approximation of the field ]

of Eq. (30) and screening

A formal expansion of the effective field defined in Eq. (30)
is derived in Appendix B, which provides the theoretical
foundation to treat correlations between the positions of the
invisible loops to arbitrary degrees of accuracy. In this section
we consider the simplest approximation, which is to neglect
all these correlations. We may then characterize the loops
entirely through the size distribution function f(R), which
is related to the single-loop probability density function as
follows:

pi(x, R) =n"'f(R). (33)

In the above equation, f(R)dR is the number of dislocation
loops per unit volume with radii between R and R + dR.
Provided the concentration of invisible loops is sufficiently
large, it is reasonable to assume that the average vacancy
field seen by dislocation loops is equal to the configura-
tion averaged field, i.e., ¢(x) & Eﬁﬁf. In these approximations
Eq. (32) for the configuration-averaged concentration takes on

the form

&) = cp(x) + / dV'G(x - x) fb EAR)F(R)

x [e(x) — ca(R)IdR, (34)
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where the Burgers vector b acts as a lower bound on the
possible dislocation loop size. We now define the averages:

Ep = / dRf(R)EA(R),
b (35)

Enca = /b dRf(R)Ea(R)cA(R),

where both have the dimensions of inverse time. Equation (34)
then becomes

c(x) =Cb(X)+/dV/G(|X—X/I)[$_A5(X/)—&TA]- (36)

We apply the operator D,V? to both sides of Eq. (36),
obtaining

D,V?E(x)=D,VZcp(x) + / dV'8(x — x)[EaC(X') — Excal,

(37)
which, along with Eq. (18), can be reorganized as

N
(D,V? = En)e(x) = QJy(x) Y | 8[5i(0)] —Eaca.  (38)
i=1
Equation (38) has the mathematical structure of an inhomoge-
neous Debye-Hiickel equation. o
The Yukawa Green’s function, Gy (|x — X'|; &), is defined
by the equation

(D,V? —EA)Gy(x —X[;Ex) =8(x —Xx),  (39)

for which the solution is

; ey SRVEDU =X

y(IXx =X[;64) = oy r— . (40)

Thus, the diffusive interaction between cavities in Eq. (37)

is screened by the mean field of the dislocation loops. The

screening coefficient, /D, /&x, limits the range of direct
diffusional interaction between cavities.

In this continuum treatment, once the effect of the loop
population is replaced by a mean field, the medium between
the cavities becomes a net adsorber for vacancies. This re-
flects the reality at the atomic scale where the mean free
path of propagating vacancies is reduced by the presence
of distributed sinks and sources. An analogous picture was
obtained in the case of diffusion screening theory of Ostwald
ripening [21-26], where similar screened diffusion-mediated
interactions were derived from a coarse-graining of second-
phase particles. In this context, screened diffusive interactions
were originally employed as a tool to avoid divergences for
finite volume fractions of particles due to the infinite-range
Laplacian field.

J

be In (gr—f')Rl

In our case, the coarse grained diffusion field that generates
screened interactions allows us to effectively account for the
limited information about the distributions of small defect
clusters.

In a dilute configuration of cavities, each of them can be
approximated as a point source with an effective sink strength
givenby Q; = 4n RizRi. A formal solution of Eq. (38) is then

N
éx) =Y 0iGy(x —xi|:Ex) — Eaca

i=1
x /dv/GY(|x—xi|;§_A)+coo, 41)

where x; denotes the center of the ith cavity. We note that
~Exea [ dV/Gy(ix - X 1ED)

_ Eaca _ [y AREAR)f(R)cA(R) _
Ea Jy dREA(R)f(R)

where the average (. . .) is defined with respect to the weighted
distribution f(R) = £x(R) f(R).

Thus, we arrive at the following self-consistent relation
between the rates of change of the cavity radii R;, the vacancy
field, and the distribution of the interstitial dislocation loops

f(R):

{ca), (42)

N —/&a Dv — A
B0 = — Z R R expl—y/&a/Dy|x — xi]
i=1

DylX —x;| + Coo + {Ca).

(43)

To solve this equation the vacancy concentration has to be
evaluated at the position of each cavity, satisfying the bound-
ary condition of local thermodynamic equilibrium, i.e.,

expl—/Ea/Dylx; — x;]]

N
_ 2p.
cs(R) = ZRjR] Dol = x|
j=1

J#I

RiR; )
—D—+coo+(cA), i=1,...,N, (49

v

where —% is a finite size correction accounting for the
self-diffusional interaction of a cavity with itself, representing
vacancies propagating between different points on the surface
of the same cavity. As a comparison, we recall the analogous
of the above system of equations for a system where the n
dislocation loops are explicitly considered as discrete objects,
given by the set of N 4 n equations [15]:

bR Ry

Coos i=1,...,N

N 2p 5 N+n
RiR; RiR;
cs(R) = — TR
’ ,Zl D,x; —x;| D, kz,vzﬂ 2D, |x; — x|
j#i
N 2p N+n .
R5R; b RkRk
I R)=— j—j+ ¢
A(R;) ;DU|XI~_X]~| k_XN:-HzDU'Xi_Xk'
' ki

+ Coos i=N+1,...,N +n, 45)

27 D,
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where the indices from 1 to N denote cavities and from N + 1 to N + n denote dislocation loops. By inverting the linear system
defined by Eq. (44), the set of R; can be then calculated provided f(R) is known.

The screening length changes with time because it depends
on the evolution of the distribution of the interstitial loop
sizes. Let the time-dependent size distribution function be
F(R,t). A continuity equation in particle-size space for the
distribution F (R, t) can be written as

OF(R, 1) O[F(R,)va(R,1)] .
o1 + R =n(R,1),

(46)

where n(R,t) is the net rate at which loops of radius R
are created, as a result of coalescence of existing loops and
nucleation of new loops. The growth rate vy (R, t) of a loop of

J

exp[—
X

(

radius R at time ¢ is given by

D,
T (47)
b.In(8R/ry)

where c¢,,,(#) is the spatially averaged vacancy concentration.
Differentiating with respect to R gives

dua(R,t)  2nD, [Cavg(t) — ca(R)]
d9R b, In(8R/ry)| RIn8R/ry)
ub,ScaA(R)

HbeQea(R) | (8RN SN e
+4n(1—v)R2kBT[n<E>_ “ (%)

In the homogeneous mean field treatment, the term ¢,y (#) can
be obtained by averaging Eq. (43) with respect to x:

vi(R, 1) = _[Cavg(t) —ca(R)]

En/Dylx — x;[]

. RAOR(t) [
Cavg(1) = = lim Z VD, /vd

i=1

N —_
= <CA) + Coo — 4@( ! ZRIZ(I)R’(I)> — (CA> T Coo — Vc(_t)pc’
i=1

B \N

where p. denotes the number density of cavities and Vc(t)
denotes the average rate of change of the volume of cavities, at
time 7. It is clear that in the limiting case of £5 = 0 the above
expression diverges, and the integral of the Green’s function
has to be performed up to a suitable cutoff distance.

In summary, while the mean field of interstitial loops
screens the diffusive interaction between cavities, the rate of
growth of cavities also determines the evolution of the mean
field: the cavities and the mean field are coupled. In Fig. 5
we show a flowchart that summarizes a scheme to compute
the system evolution, highlighting the couplings between the
cavities and the mean field.

I.T.----

> Compute cavity

N positions Compute new

o growth rates > - " H

N radii via eq. (44) cavity radii i

)

A | ]

...................................................... ]
Y

Compute effective Compute new

Size

distribution screening constant > size distribution
’_> via eq. (35) via eq. (46) —‘
-------------------- {Mean Field loops|---==========ccuuux

FIG. 5. Flowchart summarizing a scheme to compute the evo-
lution of the coupled mean field of interstitial loops and discrete
cavities.

+ Coo + (CA>
[x — x|

(49)
A

(
D. Numerical estimate of the screening length

In this section we calculate the initial value, at t = 0, of the
screening length of the effective interaction between cavities
in the presence of a mean field of interstitial dislocation loops.
It is helpful to introduce the scaled distribution function:

A¢<§, t) = F(R,1),

where A is a normalization factor with the dimensions of
length—, defined with respect to the size distribution at = 0
as

(50)

-1

A= p(O)(b/oodu o(u, 0)) ,
1

where p(¢) is the number density of the mean field clusters at

time ¢. The screening length Al = +/ D, /éA, attime t = 0, is
given by

(G

—1/2

Al(0) = (/wdR EA(R)F(R, t)/DU>
b

—1/2

1 (52)

T 2nbJA

For the initial loop size distribution we assume a power law
with an exponentially decaying cutoff at small loop radii, i.e.,

(/OO duu ¢(u,0)/ ln(8bu/rd))
1

d(u,0) = e Vy=c, (53)

where ¢ and ¢, are constants. To ensure the existence of the
integrals defining £, and £xc we require ¢; > 2.
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FIG. 6. Plot of the prefactor (277)~'(0(0)b)'/? of Eq. (54) as a
function of loop number density p. The value of the Burgers vector
b is 0.27 nm, which is representative of tungsten.

The screening length can then be recast as

Al(0)

~ 1 [° du exp(—ci/uyu—c
~ 27/pO)D\ [ du exp(—ci /wyu=+/In(8ub/rq)
[l(cy, 2)

NI

where we have separated the dependence on the loop number
density from the shape of the size distribution contained in
T(cy, ¢3). For realistic loop densities of 107°~10~* nm~3
the factor (277+/p(0)B) " is of the order of 10°~103 nm (see
Fig. 6), while I1(cy, c;) is of the order of unity for reasonable
values of c¢; and c;. In particular, with 0.1 <cl <1 and
2 < ¢2 < 4, wehave 0.68 < IT < 1.3. At these loop densities
the screening length is comparable to the separation of the
loops, which may be substantially smaller than the separation
of cavities. Therefore the screening of the diffusive interaction
between cavities by small dislocation loops plays a significant
role in the evolution of the distribution of cavity sizes during
an anneal.

(54)

IV. EXTENSION TO THIN FILM GEOMETRY

Transmission electron microscopy is providing accurate
data on the distributions of radiation defects [2,47]. Since
TEM samples are always thin films we provide in this section
an extension of the theory to infinitely extended thin films.

Consider a region V € R? infinitely extended in the %
and ¥ directions and of thickness H in the Z direction, i.e.,
V:{(x,y,z)e]R3 :xeR,yeR,-H/2 <z < H/2}.
We define a LxLxH cell ro)=
(x=xa;+xay+x3a3: —1/2 <x, < 1/2, 0 = 1,2, 3},
where a; = (L, 0,0), a, = (0, L, 0), and a3 = (0,0, H) are
the three basis vectors defining the cell. The cell I'(0) contains
N spherical cavities and a much larger number of smaller
circular prismatic dislocation loops, with size distribution
function f(R), normalized to the loop number density. The
primitive cell is infinitely replicated in the * and J directions.

2H H

FIG. 7. 2D sketch of the primitive cell structure for the thin film
configuration. The red shaded region is a repeat cell of the thin
film. Image clusters (portrayed with dashed boundaries) of opposite
effective charge are constructed in the yellow shaded regions and the
original primitive cell is extended accordingly. Periodic boundary
conditions are imposed on the dashed boundaries and in the direc-
tions perpendicular to the drawing. The size of cavities with respect
to the simulation cell is exaggerated for clarity.

Let ¥; denote the surface of the ith cavity. We impose the
following boundary conditions on the vacancy concentration
field c(x):

clx,y, —H/2) =c(x,y, H/2) = cs,

55
C(XEE,‘)ZCEI. ( )

i=1,...,N

Using the terminology of electrostatics, each cavity can be
associated with an effective charge Q, related to rate of growth
of the cavity volume V:

dV; L dR;

Q; = P 41 R; TR (56)
where R; is the radius of the ith cavity. As noted in the
previous section, to first order the effect of the mean field of
dislocation loops is to introduce a screened interaction with
screening length ~/D,/&A (), and to displace the resultant
concentration field by an amount

(V1) = JdREA(R)F(R, t)ca(R)
AT T T dREA(R)F(R, 1)

The boundary conditions at c(z = £H/2) = cg can be sat-
isfied using the method of images, by introducing an infinite
number of periodic images of the thin film in the Z directions.
The images are constructed as follows: we extend the prim-
itive cell by H/2 in the positive and negative Z directions;
for each cavity with charge Q in the original primitive cell
located at (x, y, z) we add a virtual cavity of charge —Q at
(x,y,sgn(z)H — z). A new primitive cell may then be de-
fined containing 2N interacting cavities: I'(0) = {x = x;a; +
Xay +x3a3 1 —1/2 < x4 < 1/2, = 1, 2, 3}, with primitive
vectors a; = (L,0,0), a, = (0, L,0), and a3 = (0,0,2H).
A two-dimensional (2D) sketch of such a construction is
presented in Fig. 7. This new primitive cell is charge neutral
by construction, and it is repeated infinitely many times
along z.
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The self-consistent system of equations that determines the
setof {Q;};,—; n attime ¢ is therefore given by

.....

N /
Cy, = Z Qj[ZmGY(lxi —m+x;[;Ex)

Jj=1

J#i
- chuxi—mwﬂ;a)}
m
0;
“AD.R +cs +{ca),
i=1,...,N, 57)

J

where m = ma; +mya, + msaz, my € Z, =1,2,3,X; =
(x;,yj,sgn(z;)H — z;) and primed sums denote that the term
m = 0 is not included when x; = x;.

The sums over m are convergent for finite values of
the screening length. However, it is possible that the mean
field loops disappear during an anneal, leading to an infinite
screening length and therefore to a 1/r diffusive interaction
between the cavities. In that case, the sums over m are only
conditionally convergent.

Since the new primitive cell is charge neutral, we
may use a variant of the Ewald summation technique to
derive an absolutely convergent series for all screening
lengths. This can be achieved by introducing the following
kernel:

—(k* +€%)/4B8%] , o
K(Xi,Xj;E) _ _Zexp[ (k*+€ )/ ,3 ]e,k.x[[e_lk.xj _e_,k.xj]

" VD, (k? + €?)

1

/7

1 €
_ b e X €\ jelxi—x;+m)|
8”Dv{z“‘|xi—xj+m| |:er c<,3|X x_,—l—ml-i-w)e

E —_ S —X
(s e )]

1

€ -
I o S S P %, €\ jelxi—%,+m)|
Z|x,-—>‘c,-+m|[e C(ﬁ'x "’”‘”m)e
m

~|—erfc<ﬁ|x,~ —X;+m|— i)eex,i_ﬁmi“ 4

2B

The set of self-consistent equations to be solved become

. —€2/4p%
45’2) [Zﬂeﬁ —eerfc<%>j|. (58)

Qi

N
cx =) QK& X Ea/Dy) = s testea), =1 N, (59)

j=1
j#i

which is the analog of Eq. (44) for the thin film configuration. A detailed derivation of K (x;, X;; €) is given in Appendix C.
We note that the numerical scheme to compute the temporal evolution of cavities remains the same as that presented at the

end of Sec. III.

By taking the limit in the kernel of an infinite screening length we obtain

lim K (x;, X}, €) = = ) |

2
- V D,k

eXP[—k2/4,32]eik.xi [e=k% _ pmik%))

B 4 D,

which is the usual expression for the Ewald sum
for the unscreened Green’s function G(|x —x/|)=
—@nD,x —x/|)"". Thus the kernel K(x;, X;;€) enables
us to treat within the same set of equations the evolution of
cavities, whatever the screening length.

V. FULL MEAN FIELD DESCRIPTION

In this section we consider both dislocation loops and
cavities as contributors to a mean field. This may be useful
whenever information on cluster distributions at all length

|x; —x; +m|

1 [Z erfc(ﬂ|x,~—xj+m|)_Zerfc(ﬂlx,»—ij+m|)j| , 26

T3 60
IX; —X; + m| ! 4732D, (©0)
m

(

scales is incomplete. Consider the vacancy field generated
by a spherical cavity in an infinite homogeneous medium in
which the vacancy concentration far from the cavity is cso:

R
c(r) = oo — [0 — C):(R)]7
= o +&x(R)G(r)coo — c(R)], (61)
where &5 (R) = 4w D, R and

210
cs(R) = coexp [%BT} (62)

043002-11



I. ROVELLL S. L. DUDAREYV, AND A. P. SUTTON

PHYSICAL REVIEW E 98, 043002 (2018)

Consider the case of a spatially homogeneous, uncorrelated
distribution of loops and cavities. We define the number
density respectively of vacancy loops, interstitial loops, and
cavities, with radii in the range (R +dR), as fy(R)dR,
fi(R)dR, and f.(R)dR.

Following a similar treatment to that used in Sec. III, we
can write a mean field equation analogous to that of Eq. (34):

Ex) = coo + / dV'G(x - x) f dR (Ea(R) fy(R)
b
X [6X) — L (R)] + Ea(R) i R)E(K) — ¢ (R)]
+E(R) £ (R)EX) — ex(R)]), ©63)

where the boundary condition ¢}, (R) for vacancy loops differs
from that for interstitial loops, ciA(R), by the sign in the
exponent, i.e., CVA(R)ciA(R) = c(%.

We define the quantities ¢; = ¢4, c2 = ¢\, c3 = cx, fi =

fo. L=1fi, i=f, & =& =E&x, and & =&5. Equa-

tion (63) then assumes the compact form:
3
E(X) = cCoo Y _ f dV'G(x — X))
a=1

X/ dR &(R) fu(R)[E(X) — co(R)].  (64)
b

We define

g
=Y E Z / AR &,(R) fu(R),

s (65)
Eo=) Euoq= Z f dR&,(R) fu(R)ca(R),
o
so that
E(X) = Coo + E/ dV'G(|x — x'é(x')
—g_c/dv/GqX —x/|). (66)

In momentum space, using the Fourier transform definition
f(x) = (2m)7*? [ dqe'd* f(q), this becomes
&Q) = & + EG(Q)E(Q) — 21)?EcG(@S(Q),  (67)

leading to the solution

' — (21)"*EcG (@s(@)
= 68
éq) = oW (68)

In a homogeneous infinite medium, we have G(|x — x'|) =
—1/(4n D,|x — X'|) leading to

Dycoo + (270)3%Ec/q?

c(q) = 8(q)

D, +&/q?
3255

3(61)D Coo + (27) éC/q (69)
27 Dyg*+§&

and, transforming back in real space,

dq  ex=
/(27_[)3/26‘1 c(q)

1 o i i
_ W/ dq/ sing do | do5(g)

X qu Coo + (27[)3/256‘ ICIrCOb¢ = E:, (70)
Dyg* +§& 3
which implicitly depends on time through the size distribution
functions f,(R). We point out that for f,(R) = 842 f(R) we
recover the result of the previous sections.
The evolution laws for the size distributions are analogous
to Eq. (46), where the growth velocities are given by

_ v 2n D,
vi(R, 1) = [C(f) — CA(R)]bln—(g_R),
27 D,
vi(R, 1) = —[e(t) — c\(R)] (71)

bl()

ve(R, 1) = —[e(t) — CZ(R)]?U’

respectively for vacancy loops, interstitial loops, and cavities.

As a consequence, the average vacancy concentration de-
pends on time through the time-dependent size distribution
functions F, (R, t) as

Ee) _ Yami Jy dRE(RIFu(R, 1)
1) Y0 [T dRE(R)Fy(R, )ea(R)

A numerical scheme for the computation of the cluster size
distribution as a function of time can then be summarized as
follows:

(1) Starting from the size distributions f,(R, tp), fi(R, to),
and g(R, ty), compute c(ty) via Eq. (70).

(2) Compute the new size distributions at time #y + dt
using Eq. (46).

(3) Reiterate from step (1).

VI. NUMERICAL SIMULATIONS

We present simulations of an anneal of an infinite thin
film of thickness H = 200 nm with 30 cavities per periodic
cell, using the technique presented in Sec. IV, for tungsten,
iron, and beryllium. The sizes L of the primitive cell in
both the x and y directions are respectively 133.64, 422.58,
and 2112.89 for the simulations with cavity densities of
1075 nm 3,10 nm—3 and 4 x 10~8 nm—>.

We compared the effect of three mean field conditions:
containing only interstitial loops, or only vacancy loops, or no
loops. The initial size distribution of the loops was ¢(R) =
(b/R)** exp(—c1b/R), c; = 0.2, ¢, =3 and normalization
such that the loop number density at = 0 was 10™% nm~3,
therefore the average separation between loops was ~ 22 nm.

The cavities were assigned to random positions in the
periodic cell, satisfying the number density and a minimum
separation between cavities of 10 nm, with sizes taken from
a Gaussian distribution of mean 1 nm and standard deviation
0.1 nm. No vacancy supersaturation was assumed in the film,
so that its free surfaces were assigned a constant vacancy
concentration equal to the equilibrium value cy.
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FIG. 8. Time taken to remove all cavities in thin films of thickness 200 nm in tungsten (red, circles), bcc iron (orange, triangles), and

-3
p

(b) 107® nm~3, and (c) 4 x 10~ nm 3. In each case there are either no dislocation loops present (solid lines), or only vacancy loops (dashed
lines) or only interstitial loops (dotted solid-dashed lines). Diffusion is assumed to occur by a vacancy mechanism only.

In Fig. 8 we plot the time taken to remove all the cavities,
as a function of homologous annealing temperature 7/ T},,.

We see that the time-scale estimates given in Sec. II are
in broad agreement with numerical simulations, for all three
investigated materials. As already noted in our previous work
[15], we see that as the number density of cavities increases
the time to annihilate all cavities also increases. This is due
to the diffusive interaction between cavities: as the distances
between cavities are reduced, the local vacancy concentration
between cavities increases. The driving force for vacancy
emission from each cavity is then reduced compared to the
case of a dilute configuration of cavities.

The presence of a mean field of dislocation loops, as
previously discussed, introduces a screening of the diffusive
interaction between cavities and increases of the overall back-
ground vacancy concentration. Screening accelerates the anni-
hilation of cavities, while the increased vacancy concentration
has the opposite effect, and can even induce a transient phase
of cavity growth. Whether one effect or the other dominates
depends on the type of dislocation loops that make up the
mean field.

We have assumed that the only mobile point defects are
vacancies. The concentrations of these point defects just out-
side interstitial and vacancy loops are highly asymmetrical
due to the exponential dependence on the climb force and the
change of sign of the Burgers vector between the loops. As a
consequence, the vacancy concentration near interstitial loops
is much less than for vacancy loops. Therefore the rate of evo-
lution of vacancy loops is faster than that of interstitial loops.

The screening factor and the larger background vacancy
concentration provided by vacancy loops suggest that they
might affect the evolution of cavities to a higher degree than
interstitial loops. However, it should also be kept in mind that
the evolution by vacancy diffusion of vacancy loops is faster
than that of interstitial loops with the same initial distributions
of loop sizes, and by the end of the simulation a large fraction
of the initial vacancy loop population has evaporated. To
illustrate this behavior, we plot in Fig. 9 the time required
for the vacancy loops screening coefficient +/£/D, to halve

with respect to its initial value, as a function of simulated tem-
perature. We point out that the “half-lives” of the screening
coefficient are always much shorter than the time required for
all cavities to evaporate. The evolution of the vacancy loops
mean field does not appear to be noticeably affected by the
number density of cavities, at least in the investigated density
range from 4 x 1078 to 10~ nm—3.

In simulations with only interstitial loops as part of the
mean field, on the other hand, the initial size distribution
function, the screening coefficient, and the shift to the back-
ground vacancy concentration are practically constant with
respect to the evolution of cavities.
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FIG. 9. Time taken to halve the screening factor \/&£/D, with
respect to its initial value, in thin films of thickness 200 nm in
tungsten (red, circles), bcc iron (orange, triangles), and beryllium
(blue, diamonds), with a mean field of vacancy loops, as a func-
tion of annealing homologous temperature. The initial cavity and
dislocation loop number densities are respectively 10~ nm~> and
1074 nm~3,
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FIG. 10. Evolution of the radius of a single cavity at z = 0.39H as a function of time for tungsten at 1800 K and for a cavity number
density of 107® nm~3. Results are compared for the case of an interstitial loop mean field (solid red lines), and a vacancy loop mean field
(dashed blue lines). Plot (b) is a magnification of the boxed area of plot (a).

According to our simulations, when the mean field is
made of interstitial loops there is a systematic decrease of
cavity evaporation time scales with respect to the reference
values, for every investigated cavity number density. We must
conclude that the screening effect, partially suppressing the
diffusive interaction between cavities, is the dominant one
for interstitial loops. The opposite holds true for the vacancy
loops mean field simulations, where a systematic and very
pronounced increase in cavity evaporation time scales sug-
gests that the extra background vacancy concentration plays
the most important role.

In order to further elucidate this point, we show in Fig. 10
the evolution in time of the size of a single cavity in tungsten
at 1800 K and with a cavity number density of 107% nm~3.
The cavity is located at z = 0.39H. We note that in the
initial phases of the simulation the additional background
vacancy concentration induced by vacancy loops results in
the cavity rapidly adsorbing vacancies. As the mean field
evolves, vacancy loops decrease in number and the extra
vacancy concentration is reduced until the surface energy
of cavities becomes the dominant driving force, leading to
their evaporation. Due to the initial phase of growth of the
cavity, the total annihilation time with the vacancy loops
mean field is therefore larger than in the case of the inter-
stitial loops mean field. While we found this to hold true
for all investigated cavity densities, the picture is slightly
more complex when only considering the evolution of a
single cavity of the ensemble. In particular, the same cavity
will not always evaporate faster with an interstitial loop
mean field, especially in simulations with a high cavity
density.

To illustrate such a case, we present in Fig. 11 the evolution
of a single cavity at z = 0.65H, with a cavity number density
1073 nm~3 and at a temperature of 1800 K. As we can see,
the vacancy loops mean field still induces an initial phase
of cavity growth (Fig. 11), but the cavity evolves erratically
in the interstitial loops mean field simulation. By comparing
Fig. 11(b) with a real-space view of the simulation ( Fig. 12)
we find this behavior is most likely due to local interaction
between cavities.

In particular, the erratic size increases and decreases of
the cavity seem to be correlated with the evaporation of
cavities in its neighborhood. Such local effects are much
less important with the vacancy loops mean field because,
even though the shift in background vacancy concentration
dominates, the screening coefficient is still substantially larger
than for interstitial loops, as already mentioned. This suggests
that at higher densities local interactions between cavities play
a large role and might lead the dynamics of single cavities to
deviate from the general behavior with respect to mean field
conditions.

VII. CONCLUSIONS

In this paper we derived a hybrid mean field and real-
space model that couples our earlier [15] nonlocal model of
evolution of cavities produced by irradiation with a mean
field representing dislocation loops smaller than the experi-
mental detection limit. The main result is that the mean field
screens the diffusive interactions between cavities and adds
to, or subtracts from, the vacancy concentration depending
on whether the loops are vacancy or interstitial character
respectively. We presented a general scheme to implement
higher order corrections to the model. The model was initially
derived for an infinite medium, but it was then modified
to treat the case of an infinitely extended thin film, which
is more useful for comparing with available experimental
data obtained by transmission electron microscopy. Through
preliminary numerical simulations we discussed some of the
features of the model, highlighting in particular the interplay
between the evolution of the mean field and the cavities,
and the roles of the cavity number density and mean fields
comprising vacancy vs interstitial loops.

Finally, we mention some avenues for development of
the model. In its current state, we have assumed cavities
and dislocation loops are immobile, with only their sizes as
dynamical variables. However, nanometric dislocation loops
in bcc metals have been experimentally observed [48] to
perform fast, one-dimensional diffusion. Theoretical inves-
tigations [49] have also shown that interstitial loops in bcc

043002-14



STATISTICAL MODEL FOR DIFFUSION-MEDIATED ...

PHYSICAL REVIEW E 98, 043002 (2018)

R [nm]

metals might be extremely mobile, with collective diffusion
coefficients comparable to single interstitials. Therefore, it
would be useful to incorporate the mobility of dislocation
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FIG. 11. Same as Fig. 10 but for a cavity number density of 10~ nm~>. The cavity is located at z = 0.65H.

loops in the model. The introduction of elastic interactions
between dislocation loops, cavities, and surfaces would also
be a valuable addition, because they have been shown to

FIG. 12. Snapshots of the evolution of the cavity of Fig. 11, shaded in orange and white in the cell center, and neighboring cavities in blue;
(a) initial configuration, (b) t = 0.208 s, (¢) t = 0.435 s, (d) t = 0.586 s, (e) t = 0.632 s, (f) # = 2.05 s. The plots show only a small portion
of the periodic cell. The sizes of the cavities have been increased by a factor of 2 for greater clarity.
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be a critical factor in determining the large scale spatial
distribution of dislocation loops [50]. Additionally, elastic in-
teractions between large numbers of dislocation loops are also
responsible for partially suppressing their one-dimensional
diffusion, as loops may to be confined in local minima of
interaction energy.

In this work we assumed the mobile point defects are
exclusively monovacancies. It is possible to adapt the model
to the case of interstitial-only diffusion with relative ease.
Doing so would generate similar dynamics, with a perfectly
symmetrical inversion between the behavior of interstitial and
vacancy loops, while cavities would evolve at a considerably
reduced rate. It would be more involved to treat both mono-
vacancies and single interstitials as diffusing species, since
it would require the introduction of reaction rates for the
annihilation of the two species in the bulk. It would also be
necessary to introduce bias factors between cluster-vacancy
and cluster-interstitial interactions because the evolution of
the cluster would no longer be determined by a unique point-
defect absorption or emission mechanism.
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APPENDIX A: RELAXATION VOLUME OF A
DISLOCATION LOOP AND ITS EVOLUTION IN TIME

Let us consider an arbitrarily shaped dislocation loop, not
necessarily planar, with Burgers vector b and bounded by a
piecewise linear dislocation line I divided in N segments.
Given an arbitrary orthogonal coordinate system, let R; and
R;+1 = R; + AL; be the vectors denoting the extremes of the
ith segment on I', with AL; parallel to the dislocation line
direction, and Ry,; = R;. The vector area of the triangle
identified by the origin O, R;, and R;, is given by

Ai = 1R x Ripy). (Al)

Summing the individual contributions given by the N trian-
gles, we obtain the total vector area of the loop:

N |
A= ZA,- =3 Z(Ri x Riy1),
i=1 i=1

which, in order to be a well-defined quantity, has to be
independent from the choice of the origin of coordinates. In
order to prove this statement, let us shift the coordinate system

(A2)

3

R

>

FIG. 13. Sketch of the vectors R;, R, and AL; with respect to
the boundary I" of the dislocation loop. The arrows on I" denote the
direction of the dislocation line.

by an arbitrary vector Ry and compute the new A’

N
A — 3 Z[(Ri +Rp) x (Ri+1 + Ry)]

i=1

N N
1 1
=5 E (R; XRi+1)+§ROX E Ri1 —R) =A.
i =1

0
(A3)

Therefore A is indeed a well-defined measure for the vector
area of a dislocation loop. A formula for the vector area of a
dislocation loop can also be written in the form of a contour
integral, see Eq. (27.11) of Ref. [41], as
A= %%(x x dl), (A4)
where x € T" and dl is everywhere tangential to the dislocation
line. In the notations of Fig. 13 the above equation corre-
sponds to the limit N — oo.
Using the convention for the Burgers vector and the dislo-
cation line tangential vector adopted in [33], we now define
the relaxation volume of the loop as follows:

1 N
V=—(b-A)=—-b- 3 (R xRiyp).  (AS)
i=1

which is correctly negative for vacancy prismatic loops, where
b is parallel to A, and positive for interstitial prismatic loops,
where b is antiparallel to A. We now consider the continuous
limit for |AL;| — 0 and N — o0, leading to the line integral:
1
V:——%waxdl). (A6)
2 Jr
Let us assume that the line I', defining the perimeter of the
dislocation loop, is parametrized by variable ¢ € [0, 1) and

that it evolves with time, so that for x € I" we have x = x(¢, 1)
and dl = g—(’;d<p. We can then write V(t) as

1 1 0x
v<r>=—§b~/ [x(w) < 8—(<p,t>]d¢ (A7)
0 (2
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and its temporal rate of change as

dy 1 'Tdx  ox 1 9 (dx
— =——b- — x = — = ) A
dt 2b {/0 [dt ) Bw}d¢+fo [XX 8¢<dt)}d¢} (A9

Using integration by parts, the second integral in the right-hand side can be rearranged as

f‘ 8 [dx p dx ]! /1 ax  dx p /1 dx  9x p (A9)
XX —| — = | X X — — — X — = — X —
0 dp \ dt ¢ dt {{,o Jo Ld¢ dt ¢ o Ldt d¢ ¢
e e’
0

so that

d 'rax 9 d

_Vz—b~/ XX d¢=—7§b- X al (A10)

dt 0 dt 8<,0 r dt

which is a slightly modified form of Eqs. (4)—(2) (where it was given without proof) found in [33]. We can recast Eq. (A10) in a
form more convenient for our applications:

dy dx
—=—fb~ — xdl =—fb-(vxdl)=—fv(x)(dlxb):—fvcl(x)bg(x)dl, (A11)
dt r dt r r r

where v(x) = dx/dt is the vector velocity of a pointx € I', v is the (scalar) dislocation climb velocity, b, is the edge component

of the Burgers vector, and d! is the differential arc length on I.

APPENDIX B: PERTURBATIVE EXPANSION OF THE FORMAL SCATTERING SERIES

Let us combine Egs. (22) and (23) in order to obtain a formal scattering series for the concentration field:

(X, R) = cp(x) + Y Ea(RIG(X, X)ep(xi) — ca(R;)]

i=1

+ D) G x)EA(RDG (%, X))E(R))ep(X)) — cal(R))]

i=1 j#i
+ ) DY G x)EARDG (X, X)EA(R))G (X, Xi)Ea (Ri)lep (k) — ca(R)] + -+ - (B1)
i=1 j#i k#j

We can now recast Eq. (B1) in a manner similar to classical scattering theory:

c(x; X, R) = cp(x) + Z / dx'dx"dR G(x,x)T;(x, X", R)[cp,(X") — cA(R)]
i=1

+> 3 / dx'dx"dx"dx""dRAR'G(x,x)T;(x, X", R)G(X", X" )T;(x", X", R )[cy(x") — cA(R)]+--- , (B2)
i=1 ji
where 7 is a scattering operator defined by
Ti(x, X', R) = EA(R)S(x — x;)8(X' — X;)8(R — R;). (B3)

Equivalently, in momentum space, using the Fourier transform definition f(x) = (27r)~%? [ dqe'd™ f(q), we have

QX R) = &(q)+ Y / dq'dR G(@)Ti(q —q', R)[E(q) — 2n)?8(q )ca(R)]
i=1

+>°3 f dq'q"dRAR'G(@)Ti(q — ¢, G Ti(@ — 4", RHI[E(@") — 2m)25(q")ca(R)] + -+, (B4)
i=1 j#i
where
Ti(q, R) = EA(R)S(R — Ri)e ™% (BS)
and dq = 2m)~*/?dq.
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We can similarly write a corresponding equation for the configuration-averaged concentration:

c(x) = ¢p(x) + / dx'dx"dR G(x,x)SX', X", R)[c(x") — ca(R)]
= ¢p(X) + / dx'dx"dR G(x,x)SX, X", R)[c,(X") — cA(R)]

+ / dx'dx"dx"dxVdRAR' G (x, x)S(x,x", R)G(x", x")S(x", x'", R)[cp(x'") — cA(RN] + - - -, (B6)

which also serves as a definition for the “self-energy” S, physically representing the interaction of the mean field with itself. An
analogous equation in momentum space takes the form

&q) = &(Q) + / dR G(@8(q, REQ) — @1)25(q)es(R)]
= &(q) + / dR G(@)S(q, R)[E,(q) — 27)/28(q )ca(R)]

+ / dRAR'G(q)S(q, R)G(q)S(q, RN[E(q) — 27)**8(q Yea(R)] + - - - . (B7)

In order to determine the function S(q, R) we now have to perform the configuration average in terms of the scattering operators
T:(q, R), and compare the resulting expression with Eq. (B7), using an approach similar to the one implemented by Marqusee
and Ross [21].

By introducing the notation f = [ (X, R)p(X, R)dXdR, the configuration average of Eq. (B4) takes the form

Q) =@+ f dq'dR G(@)Ti(q - q', R)[E(q) — 27)*8(q )ca(R)]
i=1

+> ) / dqdq"dRAR'G()Ti(q — ¢, RIG()T;(q — q", R)IE(q") — 2m)25(q" )ea(R) + -+ . (BY)
i=1 j#i

Let us define S i(q, R) as the contribution to S containing the product of exactly a number j of 7 operators, i.e., S = Zjo S;.
By comparing Eqs. (B7) and (B8) we can determine each order of the self-energy recursively:

Siq. R =) / dq'Ti(a— g, R),
i=1

S(q, R) = / dq'dq"dR' Y Y " Ti(@—q, R)G@)T(@ —q". R) — / dR'Si(q. R)G(q)Si(q. R).
i=1 j#i

5"3((1, R) = /dq/dq//dq///dR/dR// Z Z Z 77((1 _ q/, R”)G(q/)'f}(q/ _ q//’ R//)G(q//)ﬁ(q// _ q///7 R)
i=1 j#i k#j

- f dR'dR"S\(a, R)G(@S:(a, R)G(@3i(q. B)

- / dR'[Si(q. R)G(q)S:(q, R) + Sx(q, R)HG(@)Si(q, R)] (B9)

and so on.

minus all the possible unique combinations of lower order S and G terms containing exactly a number n of 7 operators. Let us
assume that the loops are homogeneously distributed in space and that there are no correlations either in the positions or radii of
different loops, allowing us to write

pi(x, Ry =n""f(R), (B10)

where f(R)dR is the number density of dislocation loops with radii in the range (R, R + dR). We also consider the
thermodynamic limit of n — o0, with constant number density. The first contributions to S can then be explicitly expressed
as

Si(q, R) = EA(R)F(R), &x(q, R) = —EAG(QEA(R)f(R), S3(q, R) = EAEX(R)f(R) /dq”éz(q). (B11)
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APPENDIX C: EWALD SUMMATION OF THE DIFFUSIVE INTERACTIONS IN A THIN FILM GEOMETRY

Consider a periodic system in three dimensions with N clusters with effective charges {Q,-}fv= , and N “image” clusters with
effective charges {—Qi}fV: , per primitive cell. The primitive cell is defined as I'(0) = {x = xja; + xa; +x3a3 : —1/2 < x4 <
1/2, ¢ =1, 2, 3}, with primitive vectors a; = (L, 0,0), a, = (0, L, 0), and a3 = (0,0, 2H).

Let m = ma; + mpa, + msas, my € 7, and X;j = (xj,yj,sen(z;)H — z;) and Gy(x, x/;g_A):

—eVE/Du(47 D, |x — X'|)"". We want to reformulate the expression

/
K(Xi,Xj,Ep) = ZmGy(xi,m+xj;$_A) - ch(xi,m+i,;s§) i=1,...,N (C1)
m

as an absolutely convergent series in real and reciprocal space.
We first define a “primitive cell effective Green’s function” as follows:

Gy(x:Ex) =Y  Gy(x+m;Ey), (C2)

which satisfies the equation

(D,V? —E0)Gy(x:Ea) =8"(x) = Y _8(x +m). (C3)

We split the primitive cell Green’s function: G, = Gy, . + Gy, ,, where

(DV? —Ep)GY p(x:Ea) = ) hpp(x +m),

o o (4
(D,V? = E0)GY p(x:Ex) = D [8(x+m) — Apg(x +m)],

and pg(x) is a normalized Gaussian distribution:

,32 3”2 2412
Pﬂ(X)=<;) P (C5)

Let us introduce a reciprocal lattice with basis vectors: by = (1/L,0,0), b, = (0,1/L,0), and b3 = (0,0, 1/2H), and the
general reciprocal space vector as k = kb; + koby + k3bs, ky € Z, o = 1, 2, 3. In particular, G; F 1s more conveniently
expressed in terms of reciprocal space functions. By Fourier transforming pg and using the relation ) (x +m) =}, exp(ik -
X), we have

— A exp(ik - x — k*/48?%)
Gy p(x,Ep) = —— — , (C6)
Y.F A % Xk: D k% + &4
where V is the volume of the primitive cell. On the other hand, we have
Gyp(:Ea) = Gy(x:Ea) = Gy p(x:Ea) = ) [Gy(x +m;a) — App(x +m)], 7
m
where the potential ¥ (x) is given by
_ Ea/ADB | p=/Ea/Dulxl Véa/D,
— d /G , /’ / — f =
Yp(x) / X Gy(x, X, §7)pp(X") 4D, 2] erf| BIx| + 25
&r/D, = VEa/Dy
+ erf| B|x| — — sinh(y/&a/ D, |x)erfc| BIx| + (C8)

28 28
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Ea /A2 —EAIN]

The parameter A should be chosen in a way that minimizes the long tail of G; p- In particular, as |x| — 00, ¥g(x) =~ i ,

therefore the optimal choice is A = ¢% /4/* and G}, assumes the form

o P Ea /DAY VE/Do) i
Cr(xsa) = ; VD +Eg - san;|x+m| erfe] ARx+mf+ g Je
= b ~
+ erfc ﬂ|x+m|—i e~ VEa/Duxtmi | (C9)

28

We now have to remove the spurious self-interactions:

’
> Gr(xi,m+x;:85) = lim [Gy(x, x:82) — Gy(x,x:€a)]

-y expl—(k + €/ Dy)/4p°]

- V(D& +Ea)

Loy Ll erte| piml +
— — | €riIC m
87 D, oot |m| 28 28

1 1 VEéa/Dy \ eVes/Dur

I D, }13(1) - erfc| Br + 28 7 + erfc| Br — 28

V&a/De eVEa/Diml 4 erfe| Blm| — Va/D”)e—«/sA/Dvlm}

2

Expanding to first order with respect to r,

\/E_A/Dv eVEa/Dur

VE&/Dy | eV

erfc| Br + 25 7 + erfc| Br — 25 > e
p— — N
N Qe 4Dup?
~ E—Aerfc 5 _ = r+ O(rz). (C1D)
D, 2./D,B JT

We can now combine all the terms, yielding to an absolutely convergent series in real and reciprocal space:

expl—(k* + €)/4B%] ent —ikx,
Ko xjse) == —— B N[N — e
k v

—ik-)_(,-]

/

1 1 €
— f i — X m - €|X,'7Xj+m|
8an{Zm|xi—xj+m| [erc(mx X; + |+2,3)e

6 —_ LY
+erf0(ﬁ|x,- —X; +m|— ﬁ)e elx x,+m|]

1 =
N Z —— | erfel Blxi —X; +m| + < e€Ixi—%;+m|
— |x; —X; +m| :

2B
62
€ < 8ij | 2Be # €
terfe BIx; —X; +m| — — Je e XAm L 4 Y TP cerfe| — ) . C12
(’3" s+m 2/3) D, | 7 2% 2
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