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Athermal swelling and creep of heavily irradiated iron under uniaxial stress
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The athermal irradiation-induced swelling and creep in iron under the influence of external uniaxial stress
were investigated through atomic scale simulations using the creation-relaxation algorithm. The defect relaxation
volume density tensors (or eigenstrains) were evaluated as a function of external uniaxial stress. When the dose
exceeded the level at which isolated defects were formed, interstitial-type defect clusters were formed with
polarization, resulting in crystal growth in the direction where tensile stress was applied, and growth in the other
two perpendicular directions when compressive stress was applied. The concentration of vacancies, isolated
self-interstitial atoms, Laves phases clusters, and dislocations in the microstructure were largely unaffected by
external stress up to ±1 GPa. Biased crystal growth was primarily attributed to the anisotropic formation of new
lattice planes through the coalescence of interstitial defect clusters, leading to plastic deformation depending on
the direction and magnitude of the external stress.
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I. INTRODUCTION

Iron and steel are versatile materials with numerous ap-
plications in both domestic and industrial settings. Reduced
activation ferritic-martensitic (RAFM) steels are chosen as the
structural materials of advanced fission and fusion reactors
[1,2]. RAFM steels have a body-centred cubic (bcc) crystal
structure, which is the same as pure iron. A main reason for
choosing RAFM steels is because they show less swelling
under neutron irradiation compared to austenitic steels with
face-centered cubic (fcc) structure [3]. Commercial ferritic
steels are highly resistant to swelling even at extreme exposure
to irradiation, showing less than 2% volume change under
irradiation at 420◦C up to 200 DPA [4].

Inside a fission or fusion reactor, nuclear reactions gen-
erate high-energy neutrons which can penetrate deep inside
reactor components. These neutrons are scattered by atoms
constituting the component, during which they transfer a
fraction of their kinetic energy to the recoiling atoms. If suf-
ficient energy is transferred, a recoil atom becomes a ballistic
particle in itself, initiating a cascade of atomic collisions.
The total exposure of a material to irradiation is measured
in units of displacement per atom (DPA) [5], which is the
number density of atoms ballistically displaced by collision
cascades. In metals, accumulation of atomic displacements
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results in the formation of complex microstructures contain-
ing defects, such as self-interstitial atoms (SIA), vacancies,
voids, dislocation loops, and dislocation lines [6–12]. Evo-
lution of microstructure can alter both the thermal [13–15]
and mechanical [16,17] properties of materials, shortening the
lifetime of components.

Neutron irradiation experiments of RAFM steels up to 70
DPA in a fission reactor at 330–340◦C [18] show irradia-
tion causing hardening and embrittlement, with saturation of
these effects occurring at high doses. Dislocation loops with
Burgers vector of a

2 〈111〉 and a〈100〉 are commonly observed
[4,19], with their relative abundances depending on irradiation
condition and alloy composition. RAFM steel will be used
as the first wall material of the demonstration fusion plants,
known as DEMO, which are expected to experience lifetime
neutron irradiation doses between 1 to 10 DPA [20]. Also,
Gilbert et al. [21] performed neutron transport calculations.
Depending on the design and position of the first wall made
of Eurofer, the rate of damage accumulation can range from 8
to 20 DPA per full power year.

In real operating conditions, components of fission and fu-
sion plants can be subjected to applied tensile or compressive
stresses due to gravity or magnetic fields. Misalignment of
components due to human operation or swelling of materials
in limited space can also cause enormous stress to materials,
leading to stress-induced anisotropic dimensional changes re-
ferred to as creep [22]. Numerous phenomenological models
[23,24] based on assumed microstructural evolution were pro-
posed to explain irradiation-induced creep and swelling.

As it is technologically challenging to monitor changes
in materials’ properties in an extreme radiation environment
in situ, computer simulations have the potential to improve
our understanding of materials’ behavior under irradiation.
While state-of-the-art molecular dynamics (MD) simulations
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of consecutive collision cascades can feasibly reach doses of
1 DPA [25,26], these types of simulations are computationally
intensive. For system sizes that can accommodate the forma-
tion of extended dislocation microstructure, requiring to the
order of a million atoms [27], it is prohibitively expensive
to conduct a comprehensive collision cascade study across
a parameter space with multiple stochastically independent
simulations.

Furthermore, although MD collision cascade simulations,
in principle, enable studying thermal-activated relaxation pro-
cesses, the simulated time (∼ns – μs) is typically at least eight
orders of magnitude shorter than experimental time scales
(∼min – year). Hence it remains a challenge to study tem-
perature and dose-rate effects using this method. A notable
exception occurs in cases where the thermal diffusivity of
defects is suppressed due to factors such as low temperature
and impurities; in this athermal limit, evolution of irradiated
microstructure is driven by the competing effects of defect
production and defect recombination, with recombination oc-
curring either through the mutual elastic interaction of defects,
or in the case of larger primary recoil energies, by melting and
recrystallization of the cascade heat spike region [28].

Recent atomic scale simulations adopted the creation-
relaxation algorithm (CRA) [29], which is an accelerated
simulation method for simulating irradiated microstructure
specifically in the athermal limit. In CRA, an atomic displace-
ment is generated by choosing a random atom and moving
it to an arbitrary position, generating a Frenkel pair in the
process and incrementing the dose by 1/N DPA, where N is
the number of atoms in the system. Subsequently, the atomic
configuration is relaxed through minimization of the total
energy. CRA presents a simplified picture of the generation
of Frenkel pairs by low recoil energy collision events in the
athermal limit, achieving a considerate speed-up over con-
ventional collision cascade simulations by replacing explicit
time-propagation of recoil atoms with successive displace-
ment and energy minimization steps. We note that simulations
using collision cascades, CRA, or a mixture of both methods,
have shown qualitative and even quantitative agreement with
experiments in the athermal limit [28,30–33].

Using CRA, Derlet and Dudarev [29] studied the saturation
of defects production in Fe and W. They also studied the
spatial fluctuation of stresses and the spontaneous reorgani-
zation of microstructure. Tian et al. [34] and Warwick et al.
[35] studied the anisotropic swelling of zirconium due to the
formation of a- and c-type dislocation loops. Mason et al.
[31] explained the negative lattice strain being detected by
spatially resolved x-ray Laue diffraction in self-ion irradiated
tungsten. Using a combination of CRA and MD, Mason et al.
[32] accurately estimated the deuterium retention capacity in
heavily irradiated tungsten. Chartier and Marinica [36] used
the Frenkel pair accumulation (FPA) method to study high-
dose irradiation damage in bcc iron. FPA is similar to CRA,
but it relaxes the atomic configuration through dynamic evo-
lution. They observed nucleation of C15 clusters at an early
stage, which can transform into a

2 〈111〉 and a〈100〉 dislocation
loops.

Recently, Reali et al. [37] suggested that one can compute
the macroscopic stress and strain on the component scale
using the defect relaxation volume density tensor ω, which

can be obtained from atomic scale simulations, such as CRA
or MD. They proved analytically that the relaxation volume
density tensor is equivalent to the eigenstrain ε∗ of defects
[38]. Since the spatially varying eigenstrain can be interpreted
as a source of an effective body force [37], one can solve the
constitutive equation, and calculate the dimensional changes,
through the finite element method (FEM).

In this work, we adopted the CRA to study the effect
of external uniaxial stress on defect production and crystal
growth in pure iron under athermal irradiation conditions that
is realized as a particular form of irradiation-induced swelling
and creep. We chose iron as it is the major component of
steels and has the same crystal structure as RAFM steels.
We will examine the effect quantitatively by calculating the
defect relaxation volume density tensor ω (or eigenstrain ε∗).
We will also study the microstructural changes in detail. The
anisotropic changes of ω will be explained through observa-
tion of the microstructural evolution and the deformation of
simulation cells.

II. THEORY

A. Simulation setup

The simulations were performed using cells comprising
1 024 000 atoms. Within each cell, a total of 80 × 80 × 80
bcc unit cells were present, with each unit cell containing 2
atoms. The interatomic potential developed by Ackland et al.
[39] was used to describe the potential energy of the iron
atoms.

Our objective was to simulate the condition of a material
experiencing external uniaxial stress. However, in a simula-
tion cell with periodic boundary conditions, there exists no
free surface onto which external forces can be directly ap-
plied. To address this limitation, the simulation cells were
deformed to simulate such a condition, thereby driving the
Virial stress [40] to reach specific values. This approach, in
principle, achieves equivalence to the application of external
uniaxial stress, provided that the Virial stress is equivalent to
the Cauchy stress.

Under uniaxial stress, the simulation cells were gradually
deformed by initiating an energy minimization process us-
ing the conjugate gradient method. The orthogonal nature of
the cell vectors was maintained throughout the deformation
process. The cells were deformed until the stress in the z di-
rection reached values of 0, ±0.00001, ±0.00002, ±0.00005,
±0.0001, ±0.0002, ±0.0005, ±0.001, ±0.01, ±0.02, ±0.05,
±0.1, ±0.2, ±0.5, or ±1 GPa, while the stresses in the x
and y directions remained at zero. A positive stress value
indicates tensile stress in the z direction, while a negative
value indicates compressive stress.

All simulations were performed using LAMMPS [41]. Ir-
radiation damage was simulated according to the CRA.
Throughout the entire simulation process, simulation cell vec-
tors are allowed to deform under the constraints of keeping the
initial uniaxial stress unchanged, and of keeping the cell vec-
tors orthogonal. For each uniaxial stress value, we performed
three identical simulations using different random numbers as
seeds for the stochastic process of choosing random atoms and
moving them to random locations. Data are presented as the
average of three samples.
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B. Creation-relaxation algorithm

The meaning of DPA here is different from the conven-
tional definition of NRT-DPA by Norgett, Robinson, and
Torrens [5]. In CRA, the meaning of DPA is taken literally as it
incrementally introduces damage in the form of Frenkel pairs
by displacing random atoms to random positions. In some
previous works, it was denoted as canonical DPA (cDPA).

Our results obtained by CRA are essentially simulating
conditions where thermal diffusion of defects is suppressed,
for instance, because the temperature is low or by the presence
of impurities. Albeit the difference of definition, Derlet and
Dudarev [29] and Warwick et al. [33,35] showed in Fe, W,
and Zr, respectively, that the saturation behaviors of swelling
due to accumulation of defects can be obtained quantita-
tively through rescaling, although the scaling relations are not
straightforward. Quantities obtained from CRA simulations
and experiments can also differ by a factor of 10 [31]. On
the other hand, collision cascade simulations with low recoil
energies (∼100 eV) can reach defect contents comparable to
CRA [28], hence part of the mismatch can be attributed to
the lack of defect recombination arising from higher-energy
recoils present in realistic irradiation conditions. The CRA
allows us to infer the principal mechanisms underlying certain
phenomena at a fraction of the cost of conventional cascade
simulations.

In the work by Derlet and Dudarev [29], CRA was imple-
mented such that upon displacement of an atom, a dose of
1/N DPA is accumulated, where N is the number of atoms
in the simulation cell. Frenkel pairs were created one by one,
and after each creation of a Frenkel pair the atomic configu-
ration was relaxed through energy minimization. Subsequent
work using CRA [31–35] showed that the creation of multiple
Frenkel pairs per relaxation step, corresponding to a dose
increment of 10−3 DPA per relaxation step or more, can speed
up the simulation and have little effect on the results.

In our implementation, Frenkel pairs were generated to
correspond with a dose increment of 10−3 DPA per relaxation
step. During each relaxation step, the atomic configuration
was initially relaxed without altering the simulation cell’s
shape. Subsequently, the atomic configuration and the simula-
tion cell were relaxed together until the Virial stress achieved
the desired target values. This approach ensured numerical
stability in the energy minimization procedure. The described
procedure was repeated until all samples reached a cumulative
dose of 3 DPA.

C. Defect relaxation volume density tensor

The concept of eigenstrain ε∗ was introduced by Mura [38].
Eigenstrain is a generic term referring to nonelastic internal
strain. Reali et al. [37] proved analytically that the defect
relaxation volume density tensor ω is equivalent to the eigen-
strain of defects. In the absence of other sources of nonelastic
strain, one can write

ε∗
i j (x) = ωi j (x). (1)

The defect relaxation volume density tensor can be defined
as [37]

ωi j (x) =
∑

a

�a
i jδ(x − Ra), (2)

where �a
i j is the relaxation volume tensor of a defect situated

at Ra. The relaxation volume tensor, together with the elastic
constants, can describe the elastic properties of a defect in
the asymptotic limit far from the defect. The values of �i j of
various defects can be obtained using density function theory
calculations [42–46] and molecular statics [47,48].

Knowing the spatially varying ω(x), one can calculate the
effective body force [37,49]:

fi(x) = −Ci jkl
∂ωkl (x)

∂x j
. (3)

where Ci jkl is the elastic stiffness tensor. This body force
can be supplied to a continuum model, such as FEM, for
calculations in the component scale.

Notably, component-scale simulations using FEM describe
spatial scales many orders of magnitude larger than atomistic
simulations. Assuming a component having a dimension of
1 m3, if one considers 1 million elements, the linear dimension
of an element is 1 cm, which is much larger than atomic
scale simulations using Å or nm as units. As a result, in
engineering simulations, it suffices to obtain homogenized
information pertaining to each element, without requiring in-
tricate knowledge of the underlying microstructure. However,
from a scientific perspective, our interest remains in compre-
hending how macroscopic properties evolve as a consequence
of microstructural changes.

Following Mura [38], the total strain is expressed as the
sum of eigenstrain and elastic strain:

εi j (x) = ε∗
i j (x) + εe

i j (x). (4)

Assuming linear elasticity, the stress is related to the elastic
strain through Hooke’s law:

σi j (x) = Ci jklε
e
kl (x). (5)

Since eigenstrain equals to the relaxation volume density ten-
sor, one can write the stress:

σi j (x) = Ci jkl (εkl (x) − ωkl (x)). (6)

Taking the average over the whole simulation cell, the average
stress is

σ̄i j = Ci jkl (ε̄kl − ω̄kl ). (7)

After rearranging terms, one can write

ω̄i j = ε̄i j − Si jkl σ̄kl , (8)

where Si jkl is the elastic compliance tensor, which is the in-
verse of the elastic stiffness tensor Ci jkl [50]. In this work, Ci jkl

is calculated from the interatomic potential. The average strain
ε̄i j can be obtained according to the change of the simulation
cell vectors. The average stress σ̄kl is the applied stress.

Our applied stress only has one nonzero component in
the z direction. Using the compliance tensor appropriate for
bcc crystal symmetry, the average relaxation volume density
tensor can be simplified to

ω̄ =

⎛
⎜⎝

ε̄11 − S1133σ̄33 0 0

0 ε̄22 − S2233σ̄33 0

0 0 ε̄33 − S3333σ̄33

⎞
⎟⎠.

(9)
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Using the above expression, we can obtain the values of ω̄ as a
function of uniaxial external stress at different levels of dam-
age or dose. Such homogenized information can be applied to
continuum models directly due to the different length scales
being considered.

The total defect relaxation volume equals the total defect
formation volume, as the total number of atoms is conserved.
Therefore, the magnitude of volumetric swelling is readily
obtained from the trace of ω̄.

D. Crystal growth

The crystal growth under irradiation can be understood by
examining the changes in simulation cell vectors [27]. One
can write the matrix of cell vectors as

L = (Lx, Ly, Lz ) =

⎛
⎜⎝

Lxx Lyx Lzx

Lxy Lyy Lzy

Lxz Lyz Lzz

⎞
⎟⎠. (10)

In the case of a perfect lattice, this can be separated into two
parts:

L = PN, (11)

where P is the primitive cell vector matrix, and N represents
the repetition of the primitive cell.

For the bcc lattice, the primitive cell vector matrix is

P = a

2

⎛
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎠. (12)

By inverting P, one can get

N =

⎛
⎜⎝

nxy + nxz nyy + nyz nzy + nzz

nxx + nxz nyx + nyz nzx + nzz

nxx + nxy nyx + nyy nzx + nzy

⎞
⎟⎠, (13)

where ni j = Li j/a represents the repetition of primitive cells
in Cartesian coordinates.

In an orthogonal cell, we can write

N =

⎛
⎜⎝

0 nyy nzz

nxx 0 nzz

nxx nyy 0

⎞
⎟⎠, (14)

where nxx, nyy, nzz is the number of unit cells in the x, y, and z
directions, respectively.

In the case of a purely elastically deformed simulation cell,
the primitive cell vector matrix can be written approximately
according to linear elasticity as

P′ = (I + εe)P, (15)

where εe = Sσ. On the other hand, we can also obtain the elas-
tically deformed primitive cell from numerical calculations,
which include nonlinear contributions, where

P′ = 1

2

⎛
⎜⎝

ax 0 0

0 ay 0

0 0 az

⎞
⎟⎠ ·

⎛
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎠, (16)

FIG. 1. The average strains of simulation cells subjected to ex-
ternal uniaxial stresses. Linear elastic approximations are plotted for
comparison.

and ax, ay and az are the mean lattice parameters of an
elastically deformed orthogonal unit cell in Cartesian coor-
dinates. The three lattice parameters can be obtained from
the deformed perfect simulation cell. We used this in our
calculations.

When a simulation cell is subjected to irradiation, the
crystal structure evolves. Assuming one can still identify the
dominant crystal structure, we can estimate the number of
repeating cells or planes along x, y, or z direction from:

N′ = P′−1L′, (17)

where L′ is the matrix of deformed cell vectors. The change
of N′ over the course of irradiation is attributed to the plastic
deformation caused by the accumulation of defects.

III. RESULTS

A. Change of macroscopic quantities

The change of the average strain ε̄ and the average relax-
ation volume density tensor ω̄ as a function of irradiation dose
in units of DPA will be examined at different levels of uniaxial
stress. The average strain under various conditions can be
calculated from the simulation cell vectors by referencing the
perfect crystal lattice under stress-free conditions at 0 DPA.

Figure 1 shows the ε̄ of simulation cells subjected to dif-
ferent stress values at 0 DPA. The corresponding linear elastic
approximations are also included in the plot. It is observed that
even at stress levels as high as ±1 GPa, linear elasticity offers
an accurate description of the elastic strain. This validates the
use of Eq. (9) for estimating ω̄.

The change of ε̄ due to the application of external stress as
a function of DPA is shown in Fig. 2. For visual clarity, only
curves corresponding to significant stress values are plotted.
Although the initial values of ε̄ differ, all components of ε̄

exhibit linear growth up to approximately 0.01 DPA, followed
by nonlinear growth up to around 0.03 DPA.
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FIG. 2. The change of average strains as a function of dose in units of DPA.

Similarly, one can observe the change of ω̄ in Fig. 3. All
components increase linearly up to about 0.01 DPA, and non-
linearly to about 0.03 DPA, regardless of the applied stress.
We note that all values now start from zero, meaning there
are initially no defects in the system. The linear increment at
low dose is due to the generation of isolated SIAs and vacan-
cies [29]. We will further verify this point in the following
sections.

Beyond about 0.01 DPA, the values of ε̄ and ω̄ become
stress dependent. For compressive stress in the z direction, the
ε̄11, ε̄22, ω̄11, and ω̄22 increase, whereas ε̄33 and ω̄33 decrease.
For tensile stress, the behavior is the other way around. Ac-
cording to previous CRA works [27,29,31,32,34,35], beyond
about 0.02 DPA, SIAs start clustering, forming dislocation
loops, which is eventually followed by lattice plane formation.

Since the elastic field of a defect does not need to be
isotropic, external stress σ ext

i j can affect the energy of a sys-
tem containing a defect, where the elastic energy of a defect
subjected to an external stress field [45] can be written as
Eel = −σ ext

i j �i j , where �i j is the defect relaxation volume
tensor. This means that the preferred orientation of de-
fect clusters is biased by external stress, which affects the
orientation of subsequently formed lattice planes. By in-
specting the change of ω̄, we expect lattice planes to form
preferentially with respect to the direction and value of stress.
Mason et al. [31] show that in the case of a thin film, if

the x and y dimension are constrained, lattice planes will
form perpendicular to the z direction, which is similar to the
tensile stress condition. We suggest a similar phenomenon is
happening here, with further investigation following.

Figure 4 shows the average strain ε̄ against external uniax-
ial stress. One can observe the ε̄11 and ε̄22 decrease and ε̄33

increase almost linearly with respect to stress. After eliminat-
ing the linear elastic effect, one can observe similar behavior
of ω̄ in Fig. 5. The main difference is that all the slopes are
less steep. At 0 DPA, it is correctly observed that all ω̄ = 0.

At low dose below 0.2 DPA, components of ω̄ show an
almost linear relation to the external stress. However, when the
dose is larger than 0.2, and when the uniaxial stress is small,
within ±0.1 GPa, fluctuations in data can be observed. There
are two possible reasons. First, the fluctuations mean that sim-
ulation cells deform without preferential direction. Second,
we cannot observe the bias properly due to insufficient sim-
ulations. Both reasons imply that external stress is not strong
enough to significantly affect the change of microstructure of
current simulations.

We note that the dislocation density peaks at 0.2 DPA,
at which point the microstructure contains larger dislocation
loops due to the coalescence of smaller loops, at which point
the dislocation network starts forming (we will discuss the
microstructure below). The formation of dislocation networks
reduces the ability of the system to respond to external stress
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FIG. 3. The change of average relaxation volume density tensor as a function of dose in units of DPA.

since the energy barrier of changing the morphology of a
dislocation network is much higher than for individual small
loops and other localized defects.

The spatial fluctuation of stress could be inspected through
the von Mises stress (VMS). VMS is often used in engineering
to predict if a material will yield or fracture. The VMS σvms is
related to the Cauchy stress tensor σi j by

σ 2
vms = 1

2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

+ 6
(
σ 2

23 + σ 2
31 + σ 2

12

)]
. (18)

The atomic VMS is defined according to the atomic Virial
stress, which allows us to examine the spatial distribution of
VMS.

Figure 6 shows the spatially average and standard deviation
of VMS. We can see there is little difference between large
compressive stress, tensile stress, and stress-free conditions.
On the other hand, at a dose larger than 0.2 DPA, the ω̄ show
clear preferential behavior only when the absolute value of
external stress is larger than 0.5 GPa, at which point its mag-
nitude is comparable to the VMS. One possible explanation
is that in order to affect the microstructural evolution of a
dislocation network as it is forming, external stress needs to
be able to induce an energy change comparable to the energy
scale of the network as a whole, rather than to the energy

scale of individual defects. Consequently, the response of
the system changes for a dose larger than 0.2 DPA.

We attempt to map ω̄ to simple functions. This may help
develop other continuum models, such as FEM. We assume
ω̄11 and ω̄22 are degenerate, i.e., ω̄11 = ω̄22. We found that ω̄11

and ω̄33 can be fitted to simple functions of dose and external
stress, such that,

ω̄11(φ, σ̄33) = m1(φ) σ̄33 + c1(φ),

ω̄33(φ, σ̄33) = m3(φ) σ̄33 + c3(φ), (19)

where φ is the dose in units of DPA. After performing least-
squares fitting to all data, we get

m1(φ) = −φ

37.57527287 + 51.30537329φ
GPa−1,

c1(φ) = φ

8.50780179 + 92.60261486φ
,

m3(φ) = φ

16.73788571 + 24.20713517φ
GPa−1,

c3(φ) = φ

10.03662945 + 90.76207731φ
. (20)

Figure 7 shows the corresponding three-dimensional plot of
the two fitted functions. Error is shown as a heat map projected
on the floor.
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FIG. 4. The average strains as a function of stress at different
doses in units of DPA.

We acknowledge that Eq. (19) provides a simplified rep-
resentation of ω̄ solely depending on the dose and a single
stress component. Generally, the behavior of ω̄ is governed by
multiple parameters, such as temperature, dose rate, and all
components of the stress tensor σ. However, in this particular
case, we are assuming irradiation conditions consistent with
the athermal regime of microstructural evolution, where the
dose rate is much higher than the rate for defect migration.

FIG. 5. The average relaxation volume density tensor as a func-
tion of stress at different doses in units of DPA. Dotted lines are
plotted according to fitting functions [Eq. (19)].

Consequently, the temperature and time parameters are irrele-
vant [28,29].

B. Irradiation-induced swelling and creep

In general, swelling is represented by the volumetric strain

εv = V − V0

V0
, (21)
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FIG. 6. Spatially average and the standard deviation of the von
Mises stress (VMS) as a function of dose in units of DPA.

where V and V0 are current and initial volumes. Here the
initial volume V0 is that of the cell at 0 DPA deformed by
external stress, not that of the stress-free cell. We plotted
the change of the average atomic volume and the volumetric
strain as a function of dose in Figs. 8 and 9, respectively.
The swelling saturates to about 3% at a high dose, showing
only minor dependence on stress, which is compatible with
previous work by Derlet and Dudarev using other interatomic
potentials [29].

One can see that even before irradiation, the atomic vol-
umes are not the same at different stress values. This can be
understood by considering that even in isotropic materials, the
elastic deformation of the volume due to an externally applied
uniaxial stress is in general not zero, because

εe
v = Tr(εe) = εe

11 + εe
22 + εe

33 = 1 − 2ν

E
σapp, (22)

where E is Young’s modulus and ν is Poisson’s ratio. We
observe that for ν < 0.5, when σapp is positive, the volumetric
elastic strain represented by εe

v should be positive. This is
consistent with what we can see in Fig. 8.

In fact, in the general case where a total strain with elastic
and plastic components is acting on the cell, we can rewrite

FIG. 7. The 11 (or 22) and 33 components of the relaxation
volume density tensor fitted as a function of stress and dose. The
error is visualized as a heat map on the floor.

Eq. 21 using (anisotropic) linear elasticity theory into

εv = (1 + Tr(ε))V p − (1 + Tr(εe))V p

(1 + Tr(εe))V p
, (23)

where V p is the volume of stress-free unirradiated perfect
lattice cell. One can simplify it into

εv = ωv

1 + Tr(εe)
≈ ωv, (24)

FIG. 8. The average atomic volume as a function of dose.
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FIG. 9. The volumetric strain as a function of dose. The swelling
at 3 DPA is about 3%.

where ωv = Tr(ω̄) = ω̄11 + ω̄22 + ω̄33 is the volumetric
eigenstrain. The elastic strain does not contribute to the
volume change to first order, and higher-order terms are
negligible in the linear elastic regime of deformation. Con-
sequently, the volumetric eigenstrain is given by the plastic
deformation only. See Fig. 10 for a plot of the eigenstrain,
which at high dose is also found to saturate to about 3%. As
expected, we can see that volumetric strain and eigenstrain are
very close to each other.

Both εv and ωv are mildly stress dependent. We inspected
their dependence on stress in Figs. 11 and 12, noting a
seemingly linear relationship where the swelling increases
as tensile stress increases. Linear fits were performed to de-
termine the slopes. We should note that ωi j is calculated
assuming linear elasticity according to Eq. 9. The values of ωi j

at ±1 GPa may not be very accurate due to a slight departure
from the linear elastic regime, see Fig. 1. In Fig. 13, the
slopes of linear fits of Fig. 11 and 12 and other similar data
are shown. We can see the slopes saturate at about 8 × 10−4

GPa−1. The effect of stress on volumetric swelling exists but
is small.

FIG. 10. The volumetric eigenstrain as a function of dose.

FIG. 11. The volumetric strain as a function of stress at different
doses.

From the experimental perspective, irradiation-induced
creep is commonly separated into two parts; these are creep in
the absence of swelling, and swelling-enhanced creep [22,24].
In the linear regime, these two contributions are described by
a phenomenological equation:

ε p/σapp = B0φ + Dεv, (25)

where ε p is the deviatoric plastic strain, σapp is the applied
stress, B0 is the deviatoric creep compliance for irradiation
creep deformation, and D is the creep-swelling coupling coef-
ficient for irradiation creep deformation. This equation applies
to cases where the plastic strain increases as the dose in-
creases, and swelling is comparatively small.

According to Zinkle [22], experiments typically determine
values for B0 and D within the range of 0.2 to 0.45 of the melt-
ing temperature. The phenomenological equation is used to
quantify creep under irradiation conditions where the thermal
diffusion of defects is active. The expression is not an appro-
priate choice for describing athermal irradiation conditions,
where thermal diffusion of defects is entirely suppressed.

FIG. 12. The volumetric eigenstrain as a function of stress at
different doses.
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FIG. 13. The slope of linear fit to the volumetric strain or eigen-
strain versus stress as a function of dose.

Here, we shall only present an order of magnitude estimate
of the creep rate in the athermal limit in the linear regime, and
compare the value of B0 to values reported from experiments
at finite temperatures. Since the value of D is related to the
climb-controlled glide of dislocations involving the diffusion
of point defects, it is reasonable to exclude its contribution
within this context.

First, we separate the eigenstrain ω̄ into two parts, namely
the hydrostatic volumetric swelling ωv and volume conserved
creep ω′, such that

ω′
i j = ω̄i j − δi j

3
ωv, (26)

which is shown in Fig. 14. The ω′
33 is monotonic increasing

or decreasing according to the sign of external stress. At high
stress, it is clearly seen that ω′

11 and ω′
22 have opposing sign

to ω′
33. The external stress is clearly responsible for creep,

though we note that the plastic strains are not increasing or
decreasing linearly; in the limit of high dose, they instead
saturate. Only at a low dose below 0.2 DPA can we observe
near-linear behavior.

We plotted in Fig. 15 the value of ω′
33/σ33 against the

dose φ below 0.2 DPA. The slopes of the curves yield a
creep rate of about 0.3 GPa−1 DPA−1, compared to values
of B0 reported as 0.5 × 10−3 GPa−1 DPA−1 in ferritic steels
[3]. Our simulations in the athermal regime find a deviatoric
plastic strain developing at a rate of three orders of mag-
nitude faster than in conventional irradiation-induced creep
experiments. Further, we note that the deviatoric plastic strain
saturates at high dose, which is associated with the develop-
ment of a steady-state microstructure saturated with immobile
vacancies. In the steady-state, further irradiation does not
generate more defects [28], and as such no more plastic

FIG. 14. The change of average strains minus 1/3 of the volumetric strain as a function of dose in units of DPA.
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FIG. 15. The change of strains minus 1/3 of the volumetric strain
divided by the apply stress as a function of dose in units of DPA.

deformation can occur in the absence of thermally activated
mechanisms.

Regarding the numerical accuracy of the simulations, first
we note that thermal diffusion of defects is entirely suppressed
in the athermal regime of microstructural evolution: Defects
with high migration barrier O(1 eV) (such as vacancies)
are immobile, while defects with smaller migration barrier
O(0.1 eV) (such as interstitials) can be driven to move by the
stress fields developing in the system as defects accumulate
[29,32,35]. The mechanisms underlying irradiation creep at
low temperatures are therefore expected to be very different
from those at intermediate or high temperatures. We expect
our simulations to be qualitatively comparable to experiments
in irradiation conditions at which vacancies are immobile,
with a quantitative accuracy on the order-of-magnitude scale,
as seen in similar work on tungsten [28,31]. Further, we note
that we are simulating pure iron, and therefore alloying and
impurity effects are omitted, which act to slow down defect
mobility. We conclude that current results remain a plausible
way to examine the underlying mechanism of swelling and

FIG. 16. Vacancy and isolated self-interstitial concentrations at
1, 0, and -1 GPa

FIG. 17. Laves phases cluster size distribution as a function of
dose at (top) 1, (middle) 0, and (bottom) -1 GPa.

creep due to irradiation in the athermal limit, and should
provide sensible predictions at temperatures below the onset
of vacancy migration.

C. Microstructural evolution

The change of the microstructure under different external
uniaxial stresses was examined. The analysis and visualiza-
tion of the samples were performed using OVITO [51].

First, the content of point defects is analyzed. Point defects
were identified by Wigner-Seitz analysis, which is imple-
mented in OVITO. In each Voronoi volume of the reference
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FIG. 18. Volume concentration of Laves phases clusters at −1,
0, and 1 GPa.

lattice site, one can count the number of atoms corresponding
to the displaced configuration. The reference configuration is
the initial defect-free simulation cell at 0 DPA. A Voronoi
volume having no atom is considered as a vacancy, while a
volume with two atoms occupancy is considered as an SIA.
Voronoi volumes with three atoms occupancy or higher are
rare, so we can safely discard them.

Similar to the work by Derlet and Dudarev [29], we fur-
ther identify the isolated and nonisolated SIAs, but we used
different criteria. We classify an SIA as belonging to a cluster
if there is another SIA within a specified cutoff distance. We
used a cutoff of 3.2 Å, which is a distance between the second
and third nearest meighbors of an atom in the perfect iron bcc
lattice. Since Wigner-Seitz analysis places SIAs on reference
lattice sites, which are lattice points of the perfect crystal, our
results remain the same for any cutoff distance between a and√

2a, or 2.9 Å and 4.0 Å, respectively.
In the work of Derlet and Dudarev [29], they identified the

isolated SIAs if there is no other atom sitting within a cutoff
of 0.93 of

√
3a/2, which is approximately 2.3 Å for bcc iron.

However, we should remember that two atoms sit within a
Voronoi volume of a reference lattice site, it only has 1 SIA.
It is ambiguous to tell which one is the SIA, and so is the
atomic position. If both are considered as SIA, it is double
counting the total number of SIA. Instead, if we only con-
sider the reference lattice site, we know the exact location of
an SIA.

Figure 16 shows the vacancy and isolated SIA contents.
Interestingly, we can see there is little difference between sam-
ples at ±1 GPa and stress-free conditions. All of them reach
a maximum isolated SIA concentration at around 0.03 DPA.
The vacancy and isolated SIA concentrations start diverging at
around 0.01 DPA, where larger defect clusters such as dislo-
cation loops and SIA clusters are forming. At high doses, the
vacancy and isolated interstitial contents reach a steady state
with concentrations of 4.2% and 0.8%, respectively. They are
in quantitative agreement with work by Derlet and Dudarev
[29] using two other interatomic potentials.

Then, we analyzed the Laves phases cluster size. We identi-
fied the Laves phases using the polyhedral template matching

FIG. 19. Dislocation density for different Burgers vectors at (top)
1, (middle) 0, and (bottom) -1 GPa.

(PTM) method [52]. According to Chartier and Marinica [36],
one could identify the C15 Laves phases by finding the icosa-
hedral structure. Essentially, C14, C15 and C36 Laves phases
are made of Z12 and Z16 Frank-Kasper clusters. Z12 means
icosahedral arrangement with 12 neighboring atoms. Z16 is
a similar arrangement but with 16 neighboring atoms. PTM
can only identify icosahedral arrangements, but since C15 is
expected to stabilize in irradiated iron, they argued that the
identification of Z12 is equivalent to C15, where independent
analysis [53] confirmed this. We note that another method
to identify different Laves phases was developed by Xie
et al. [54].
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FIG. 20. Isolated self-interstitial atoms, vacancies, dislocations, and Laves phases clusters at different irradiation doses.

Cluster analysis is used for the analysis of the sizes of
Laves phases clusters. Cluster analysis uses a cutoff distance
similar to the coordination analysis. For any given particle,
they are iteratively added to a particular cluster. Finally, we

got the cluster sizes and know which particle belongs to which
cluster.

In Fig. 17, we plotted the cluster size against the dose
in units of DPA. The counting of clusters is shown as color
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FIG. 21. Nonisolated self-interstitial atoms forming clusters and extra lattice planes.
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map. One can observe a bright spot at around 0.1 DPA, cor-
responding to the peak quantity. Our results are in qualitative
agreement with the work by Chartier and Marinica [36]. We
obtained a larger number of Laves phases clusters, where the
sizes of clusters are smaller than the results by Chartier and
Marinica. A possible reason is that they are using a differ-
ent interatomic potential and working at finite temperatures.
Figure 18 shows the volume concentration of clusters as a
function of dose. Similarly, we see a peak in cluster con-
centration at around 0.1 DPA, after which the concentrations
drop and eventually reach steady values. It is because some
of the clusters are transforming into dislocation loops [36].
Interestingly, we found external stress to have little effect on
the cluster content.

Finally, we analyzed the dislocation density. Dislocation
analysis [55] being implemented in OVITO is used to identify
the length and nature of dislocations. Fig. 19 shows the dis-
location density for different Burgers vectors. The dislocation
content peaks at around 0.2 to 0.25 DPA, after which it drops
gradually. Only dislocations of a

2 〈111〉 and a〈100〉 type are
observed, where a

2 〈111〉-type dislocations have significantly
higher content. These observations agree with similar simu-
lations [29,36]. The relative formation energy of a

2 〈111〉 and
a〈100〉 dislocations and C15 clusters [56] explains the relative
densities as well as the point at which Laves phases cluster
concentration starts to drop while dislocation density starts to
rise, where Laves phases clusters nucleate dislocation loops
[36,56].

Again, we do not see any evidence that external uniaxial
stresses in the range of ±1 GPa affect the dislocation density
and type in comparison to stress-free conditions.

Figure 20 shows the microstructural content of isolated
SIAs, vacancies, dislocations and Laves phases clusters side-
by-side. It gives us a better idea of the spatial distribution of
defects. Since we found they behave similarly under different
external stress, we only plotted the stress-free samples. We
can observe clearly that the content of isolated SIAs drops
and vacancies increases starting from 0.01 DPA. On the other
hand, the Laves phases clusters peak at 0.1 DPA, where dislo-
cations peak at 0.2 DPA. It is corroborated by the explanation
that Laves phases clusters are transforming into dislocation
loops [36].

According to what we found here, it appears that the
microstructure in relation to isolated SIAs, vacancies, Laves
phases clusters, and dislocations is not much affected by the
external uniaxial stress. These defects are not the main cause
of the change and polarization of the ω̄ under external uniaxial
stresses.

D. Anisotropic planes formation

The anisotropy of ω̄ is indicative of the polarization of
defects formed during irradiation. As we found the content of
isolated defects to be unaffected by the application of external
uniaxial stress, we expect the anisotropy of ω̄ to be caused
by anisotropic crystal growth. The ω̄ of different stresses
start diverging at around 0.2 DPA, at which point dislocations
start coalescing, forming dislocation networks and eventually
lattice planes [29]. Experimentally [24], the number and size
of dislocation loops in AISI 316 stainless steel under stress

FIG. 22. Total number of repeating unit cells as a function dose
at (top) 1, (middle) 0, and (bottom) −1 GPa.

have been studied. The loop number density increases in the
lattice planes normal to the applied stress, with a decrease
in the number of loop orientations parallel to stress, but the
loop size distributions are not changed by applied stress. This
suggests microstructural evolution under irradiation can be
affected by external stress. In our case, we argue that the
external applied stress leads to a preferential orientation of
lattice plane growth, leading to the anisotropic changes in ω̄.

To test this hypothesis, nonisolated SIAs were identified
and visualized, as shown in Fig. 21. It is evident that un-
der tensile stress, planes form perpendicular to the direction
of uniaxial loading. This observation aligns with the results
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obtained from CRA simulations conducted by Mason et al.
[31,32], where the formation of interstitial planes normal to
the z direction was observed when the cell dimensions were
constrained in the x and y directions to mimic a scenario
where the sample is attached to a fixed substrate. Conversely,
when our samples were subjected to compressive stress, the
orientation of plane growth exhibited less obvious patterns.

The quantification of changes can be achieved by consider-
ing the relationship between cell vectors and the repetition of
unit cells. Figure 22 illustrates the alterations observed in nxx,
nyy, and nzz. Under a tensile stress of 1 GPa, the value of nzz

increases from 80 to slightly above 83. This can be compared
with the findings depicted in Fig. 21, where approximately
three planes are observed. In the case of compressive stress,
both nxx and nyy reach 82, while nzz decreases to 78.5. It can be
inferred that planes are forming in a manner that contributes
to growth in the x and y directions while experiencing a
reduction in the z direction.

Based on the data presented, it can be concluded that the
anisotropy of ω̄ under external stress can be attributed to the
stress-dependent orientation of the interstitial planes that are
formed.

IV. CONCLUSION

The influence of external uniaxial stress on athermal irra-
diated iron was investigated using atomic-scale simulations
employing the creation-relaxation algorithm. This approach
enabled the examination of irradiation-induced swelling and
creep by inspecting the changes in defect relaxation volume
density (or eigenstrain) at high irradiation doses.

Analysis of the eigenstrain of defects revealed anisotropic
changes when external stress is applied. The polarization ef-
fect was observed to commence at approximately 0.1 to 0.2
DPA, where self-interstitials form dislocation loops, followed
by the subsequent development of dislocation networks.

Further investigation of the microstructure unveiled that the
anisotropic changes in the eigenstrain were attributed to the

anisotropic growth of interstitial planes driven by the external
stress. The application of external stress exhibited minimal
impact on the density of isolated SIAs, vacancies, Laves phase
clusters, and dislocations, and vice versa.

However, under tensile stress, a preferential formation of
planes with normals parallel to the loading direction was ob-
served, while compressive stress resulted in a more complex
pattern of planes with normals perpendicular to the loading
direction.

The obtained findings elucidated the significant role of
external stress in the behavior of heavily irradiated iron. The
simulations provided valuable insights into the underlying
mechanisms governing irradiation-induced swelling and creep
in iron. These insights hold the potential to inform the design
and optimization of advanced reactors.
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