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Critical current density of superconducting-normal-superconducting Josephson
junctions and polycrystalline superconductors in high magnetic fields
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We investigate the in-field critical current density Jc(B) of superconducting-normal-superconducting (SNS)
Josephson junctions (JJs) and polycrystalline superconducting systems with grain boundaries modeled as
Josephson-type planar defects, both analytically and through computational time-dependent Ginzburg-Landau
(TDGL) simulations in two and three dimensions. For very narrow SNS JJs, we derive analytic expressions for
Jc(B) that are high-field solutions for Jc(B) for JJs across the entire applied field range up to the effective upper
critical field B∗

c2. They generalize the well-known (low-field) exponential junction thickness dependence for Jc

from de Gennes, often used in the Josephson relation. We then extend our analytic expressions to describe wider
junctions using physical arguments, and we confirm their agreement with TDGL simulations. These results are
then compared with the current densities found in superconductors optimized for high-field applications. They
provide an explanation for the Kramer field dependence and inverse power-law grain size dependence widely
found in many low-temperature superconductors, and the power-law field dependence Jc(B) ∼ B−0.6 found
at intermediate fields in some high-temperature superconductors including powder-in-tube Bi2Sr2Ca2Cu3Ox

and RBa2Cu3O7 tapes (R = rare earth). By reanalyzing critical current density data using the mathematical
framework derived here and confirmed using TDGL, we enable an analysis of Jc data that provides the local
properties of grain boundaries in high-field superconductors and hence a deeper understanding of how grain
boundaries influence Jc in high magnetic fields.
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I. INTRODUCTION

Probably the most important challenge in high-field super-
conductivity is to understand and control the critical current
density Jc of superconducting materials in high magnetic
fields. The enormous dissipationless currents that technolog-
ical superconducting materials can carry have made them
essential components in large-scale high-field magnet sys-
tems, such as those used for high-resolution nuclear magnetic
resonance (NMR) or to confine fusion plasmas [1].

However, a quantitative description of Jc in high fields
for these materials is limited by our understanding of the
so-called “grand summation problem”: the problem of how
the local vortex-vortex and vortex-pin interactions should be
summed in order to obtain the macroscopic average Jc. For
example, the proportion of vortices that are pinned at pinning
sites, or how vortices relax after being depinned, remains
unknown. Without such knowledge, our understanding of
the vortex pinning and Jc remains qualitative at best and
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has prevented us from relating Jc to the underlying spatially
varying properties of superconductors with strong pinning,
which is needed to further optimize these materials. Here, we
follow those approaches that have used Josephson junctions
(JJs) as analogs of grain boundaries for the basis of descrip-
tions of flux flow and pinning in polycrystalline materials,
computationally [2], and experimentally in both low and high-
temperature superconductors [3–5]. There have been some
high-field approximations proposed for very narrow junctions
that lack vortices in the junction region [6,7]. However, to
our knowledge, there are no detailed analytic expressions
for Jc for JJ in high fields up to the effective upper critical
field B∗

c2 (of any width) that can address the complexity of
vortices entering the superconducting electrodes [8,9]. Here,
we provide an analytic framework that describes Jc in high
fields up to B∗

c2 for systems that have many vortices both
inside the junctions and in the superconducting electrodes.
Necessarily, our work solves the grand summation prob-
lem within the critical Josephson junction region itself, by
including the nonuniform distribution of vortices in the junc-
tions at Jc [8,10]. Our approach is to derive one-dimensional
(1D) results for very narrow junctions and then use physi-
cal arguments to find expressions that describe Jc in wider
junctions. In both cases, we confirm the validity of the ex-
pressions produced using time-dependent Ginzburg-Landau
(TDGL) simulations. TDGL theory has been used to model
the critical current density as a function of applied field for
a wide range of superconducting systems that contain normal
material [2,11–14].
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We first outline the computational method used to obtain
critical current density as a function of applied field and
validate it against the canonical low-field expressions for the
critical current density of junctions. We then present our an-
alytic solutions for the critical current density of very narrow
superconducting-normal-superconducting (SNS) junctions in
all applied magnetic fields up to the upper critical field of
the system, by extending the approach of Fink used in low
fields [15] and developing the methodology of Refs. [16,17]
to account for the suppression of superconductivity in the su-
perconducting electrodes in high fields. Next, we use physical
arguments to extend these very narrow width in-field expres-
sions for critical current density to describe wider, so-called
narrow JJs, up to the scale of λs, and confirm their agreement
with TDGL. Finally, we present 3D TDGL simulations and
visualizations of equiaxed polycrystalline systems with grain
boundaries that are SNS Josephson junctions. We discuss the
qualitative agreement between the 3D TDGL simulations, the
analytic expressions derived, and the widely observed experi-
mental results for Jc(Bapp), namely, the Kramer dependence
[18] for low-temperature superconductors such as Nb3Sn
[19,20], Nb3Al [21], and PbMo6S8 [22] throughout most of
the magnetic field range, and the power-law dependence [i.e.,
Jc(Bapp) ∼ B−0.6

app ] observed at intermediate fields of several
teslas for several high-temperature superconductors such as
powder-in-tube Bi2Sr2Ca2Cu3Ox [23] and RBa2Cu3O7 tapes
[5].

II. TIME-DEPENDENT GINZBURG-LANDAU THEORY

In this paper, we analyze Josephson junction systems
entirely within the framework of the TDGL equations for
gapless s-wave superconductors in the dirty limit [24], which
can be written as [25,26]

η(∂t + ıμ)ψ =
[ ∑

i

(∂i − ıAi )m
−1
i (r)(∂i − ıAi )

+ α(r) − β(r)|ψ |2
]
ψ, (1)

∂t Ai + ∂iμ = −κ2mi(r)(∇ × ∇ × A)i + Im[ψ∗(∂i − ıAi )ψ],
(2)

where ı = √−1 is the imaginary unit; we take the (real) dirty-
limit value of η = 5.79 obtained by Schmid [27], and all other
parameters have their usual meaning. For simplicity, we shall
take mi(r) and α(r) to be the only spatially varying material-
dependent parameters and assume the nonlinearity parameter
β to be constant across the system. The condensation term α is
expressed in terms of the system temperature T and the local
critical temperature Tc(r) relative to the critical temperature of
the reference superconductor Tc,s as

α(r) = T − Tc(r)

T − Tc,s
(3)

such that α is unity in the reference superconductor and nega-
tive in normal (nonsuperconducting) materials. The associated

boundary conditions are

(∇ × A − Bapp) × n̂ = 0, (4)

(∇ − ıA)ψ · n̂ = −	DGψ, (5)

where the surface parameter 	DG is the reciprocal of de
Gennes’s extrapolation length in units of the coherence length
[28] and has the limiting values of 0 for an interface with an
insulating surface (or vacuum) and ±∞ for the interface with
a highly conductive surface [29].

However, for many systems of experimental interest that
operate in high magnetic fields, Eqs. (1) and (2) are com-
putationally expensive to solve, and a further mathematical
simplification is needed for 3D simulations. Fortunately, in
all high-field materials, the (effective) penetration depth is
often much larger than all other length scales in the system,
and the self-field can be neglected relative to the applied
magnetic field and current densities, such that the TDGL
equations in the high-κ limit apply [25]. In this high-κ approx-
imation, for an applied magnetic field Bapp in the z direction,
the normalized magnetic vector potential in the Coulomb
gauge (∇ · A = 0) is expressed as A = −Bapp(y − w/2)î − K,
where K = K (t )î is a spatially invariant parameter required to
enforce the Coulomb gauge constraint and w is the width of
the system in the y direction. The gauge constraint K can be
used to determine the average electric field across the domain,
since ∂t K = 〈E〉. The only spatially dependent material pa-
rameter in this model is α(r). This formulation is particularly
useful for our 3D simulations of superconducting systems as
the time dependence of the electromagnetic fields is coupled
only through the spatially invariant gauge parameter K, reduc-
ing the computational cost of developing the superconducting
state in time [25].

III. NUMERICAL METHODS FOR SOLVING THE TDGL
EQUATIONS FOR JUNCTION SYSTEMS

In this paper we use two main simulation codes to solve
the TDGL equations for SNS junction systems in simple
geometries. For small system sizes in 2D, we will solve the
general equations (1) and (2) using our TDGL-2D code, based
on the algorithm developed by Refs. [30,31]. We apply the
“link variable” approach used in the explicit method [32]
together with the semi-implicit spatial discretization scheme
for the TDGL equations [31] that is generalized to include
a spatially dependent effective mass. However, although the
time evolution of the order parameter ψ is carried out using
an adapted version of the Crank-Nicolson algorithm [31], the
two components of the magnetic vector potential are then
developed in time simultaneously for greater stability when
simulating systems with low κ . For larger systems, and in
3D, we shall solve the simplified TDGL equations in the
high-κ limit, on a graphics processing unit (GPU) using our
TDGL-HIκ code, an implementation of the 3D TDGL solver
developed in Ref. [25]. For evolving {a, ψ} (where a is a
link variable associated with the magnetic vector potential),
the adapted Crank-Nicolson algorithm [31] is known to be
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FIG. 1. Schematic of the 2D computational domain of width w and periodic length l used to model the junction system. The domain is
subdivided into three sections; the main superconducting region, S, in which the normalized Ginzburg-Landau temperature parameter α = 1
and normalized effective mass m = 1, a normal region, N, described by the normalized Ginzburg-Landau temperature parameter and effective
mass αn and mn, respectively, and a coating region, marked in light gray, in which α = −10.0 and m = 108 when modeling junctions with
insulating coatings. The applied field Bapp and current I are controlled by fixing the local magnetic field at the edges of the computational
domain in the y direction. The junction thickness in the direction of current flow is denoted d , and the junction width is denoted ws. Exploded
view: the discretized order parameter ψi, j and modified link variables ax

i, j and ay
i, j relative to the underlying computational grid. Unless

otherwise stated, the grid step size is typically taken to be hx = hy = 0.5ξs in these simulations.

unconditionally stable for purely linear sets of equations [33],
although stability is not guaranteed in the nonlinear case.
Unlike the explicit scheme of Gropp et al. [32], which uses
the computational variables {U } = {exp (−ıa)} instead of {a}
directly, numerical errors of schemes based on Ref. [31] will
increase for long simulations of periodic systems in resistive
states, as the magnitude of {a} can grow large over time
and slow or even prevent convergence. However, as we are
predominantly interested in the critical current density Jc and
the onset of persistent resistive states in the system, this does
not significantly limit the simulations presented here, and this
consideration is outweighed by the reduction in simulation
time possible using the longer time steps that the Crank-
Nicolson approach permits as a result of its greater stability
properties. Computation efficiencies were achieved by solving
Eq. (1) directly in two steps using the method of fractional
steps. We also avoided solving Eq. (2) in two iteration steps
[31], as the timescales for the evolution of {ax} and {ay} are of
similar magnitudes, and in these calculations led to oscillatory
behavior of the iteration scheme with a block Gauss-Seidel
approach and unreliability of convergence [33]. Convergence
was considered satisfied when changes in the normalized
link variable and order parameter were < 10−7 at each time
step.

Typically, TDGL-2D is used to solve the TDGL equa-
tions for systems that are periodic in the direction of current
flow in the x direction with periodicity l , and bounded in the y
direction with a width w such that y ∈ [−w

2 , w
2 ], at the extrem-

ities of which we impose the insulating boundary condition
	DG = 0 using Eq. (5). A schematic of the computational grid
and the relevant dimensions used are presented in Fig. 1 for
the system used to model a typical periodic array of SNS
junctions each of thickness d . Inside this domain, we specify
three regions: a superconducting region of width ws where
(|y| < ws

2 , |x| > d
2 ) and in which α(r) = mi(r) = 1; a junction

region (|y| < ws
2 , |x| < d

2 ) in which α(r) = αn and mi(r) =
mn; and a coating region ( ws

2 < |y| < w
2 ) of width wcoat =

(w − ws)/2 either side of the junction in which α(r) = αcoat

and mi(r) = mcoat. For the 2D simulations presented in this
paper, wcoat = 5.0ξs, αcoat = −10.0, and mcoat = 108ms unless
otherwise specified.

In order to extract values for the critical current density
Jc, we followed the experimental approach [34] and used
an arbitrary electric field criterion Ec written in terms of
ED, which corresponds to the average electric field in the
system when the superconductor is normal and carrying the
zero-field Ginzburg-Landau depairing current density JD, such
that

ED = κ2ρx
avJD, (6)

where

ρx
av = w

ws

1

nx

nx∑
i=1

ny∑ny

j=1

[
(m−1)x

i, j

] , JD = 2

3
√

3
J0, (7)

where ρx
av represents the average resistivity of the system

in the x direction, normalized to the resistivity of a system
in the x direction containing only the superconductor in its
normal state. The supercurrent Js is normalized in units of
J0 = Bc2/κ

2μ0ξs, where μ0 is the permeability of free space,
and the electric field is normalized in units of J0ρs. As the
critical current density of the superconductor can be highly
hysteretic, the system was always first initialized in the Meiss-
ner state throughout (ψ = 1, A = 0) for all simulations. The
external magnetic field B(y = ±w

2 ) was then increased at a
rate of 5 × 10−2Bc2τ

−1 up to the desired value Bapp. Following
this magnetic field ramp, for our 2D (3D) simulations the
applied current density Japp was increased (decreased) in a
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FIG. 2. Typical simulation data used to extract Jc at the applied field Bapp = 0.3Bc2. Bottom: distribution of the normalized Cooper pair
density |ψ̃ |2 at the critical current Jc, for a simulated junction with periodic length l = 100ξs, thickness d = 0.5ξs, junction width ws = 16.0ξs,
and Ginzburg-Landau temperature parameter in the normal region αn = −20. Top left: The applied current density Japp normalized by the
depairing current density JD vs time t normalized in units of the characteristic timescale τ . Top center: The average electric field in the x
direction 〈Ex〉 normalized by the characteristic electric field ED as a function of time t . Top right: The normalized average electric field in the x
direction as a function of the applied current density. The applied current density when E < Ec = 10−5ED, and Jc is determined as the lowest
current at which E > Ec for a duration exceeding thold = 5 × 103τ .

series of logarithmically spaced steps, starting from 10−6JD.
If the average electric field in the system exceeded the electric
field criterion, typically Ec = 10−5ED, the applied current was
held constant. When the average electric field continued to
persist above Ec for longer than the hold time thold, typically
taken as 5 × 104τ , the system was determined to have entered
a persistent resistive state, and Japp at this point is taken to be
the critical current density of the system.

An example of the time evolution of the applied current
density and average electric field used to extract Jc from the
simulation is displayed in Fig. 2. The rapid jumps in the
average electric field in the system 〈Ex〉 below the critical
current (t < 1.1 × 104) are associated with the imposed cur-
rent steps and the associated steps in the rate of change of the
magnetic field in the system. To make the generation of a full
Jc(Bapp) characteristic more efficient, we also simulate Jc at
different applied fields in parallel, since the simulations for
the critical current at given applied fields are independent of
one another.

For the computationally expensive 3D systems, we use
TDGL-HIκ using the scalable GPU accelerated algorithm
developed in Ref. [25]. The order parameter ψ , the electro-
static potential μ, and the gauge parameter K are updated
successively at each time step, with ψ and μ solved for itera-
tively as described in Ref. [25] until |ψn+1 − ψn|2 < 10−5 and
|∇2μ − ∇ · Im[ψ∗(∇ − ıA)ψ]|2 < 10−5 at every mesh point.
K is integrated forward in time using a second-order Runge-
Kutta algorithm [35]. Local order parameter fluctuations were
also included and set to be sufficiently small so as to minimize
creep effects that may complicate the determination of Jc

and correspond to nearly zero thermal noise for vortex flow
[36], but sufficiently large to speed up relaxation of the order
parameter when the system is out of equilibrium, such as

immediately after initialization. Insulating or (quasi)periodic
boundary conditions can be applied at the edges of the sim-
ulation domain in any (or all) spatial dimensions [25]. For
a periodic domain of size Lx, Ly, Lz in the x, y, and z di-
mensions, respectively, with a magnetic field applied along
the z axis, periodic boundary conditions can be applied to
ψ at the edges of the domain in the x and z dimensions,
and quasiperiodic boundary conditions (QBCs) on ψ in the
y dimension, as described in Ref. [25] (and not implemented
in previous work [37]), were used to eliminate surface effects
from masking bulk critical currents. For 3D simulations, we
follow the Jc determination method employed in Ref. [38],
and ramp the applied current down in steps from the resistive
to the superconducting state. At each current step, the current
is held for thold, and the spatially averaged electric field in
the superconductor Ex is averaged over the second half of the
hold step, after transient effects from stepping the current have
decayed away. Typically, thold = 10.0τ . The critical current
density Jc is then taken to be the highest current at which
the time-averaged and spatially averaged Ex is less than the
electric field criterion Ec = 10−5ρJ0.

IV. WEAKLY COUPLED SNS JUNCTIONS IN MAGNETIC
FIELDS (αnd � ξs )

Following Clem’s consideration of films, Eqs. (1) and (2)
can be rewritten in terms of gauge-invariant variables: the
Cooper pair density |ψ |2, the (super)current density Js, and
the gauge-invariant phase γ [8]. When mi(r), α(r), β(r) are
only functions of x, and solutions for the order parameter are
considered in the form ψ = |ψ |eiθ , where θ is the (non-gauge-
invariant) phase of the order parameter, the time-independent
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Ginzburg-Landau (GL) equations are [16][∑
i

(
∂i

[
m−1

i (x)∂i
] − m−1

i (x)(∂iγ )2)

+ α(r) − β(r)|ψ |2
]
|ψ | = 0, (8)

Js = m−1
i (x)|ψ |2∇γ , (9)

where

∇γ = ∇θ − A. (10)

Although Clem’s original work was developed for thin
films, it remains valid for the narrow 2D systems considered
here since in both cases, ψ is independent of z and the local
magnetic field can be taken to be equal to the applied field
as w < λs. Clem’s low-field solutions for the gauge-invariant
phase difference �γ (y) and average critical current density
across a narrow junction [8] are given by

�γ (y) = �γ (0) + Bappydeff + 8Bapp

ws

∞∑
n=0

(−1)n

k3
n

× tanh(knls/2) sin(kny), kn = (2n + 1)π/ws,

(11)

Jc = max
ϕ(0)

{
1

ws

∣∣∣∣ ∫ ws/2

ws/2
dy[JDJ(0) sin[�γ (y)]]

∣∣∣∣}, (12)

where JDJ(0) is the current density in zero field. In this case,
γ (0) = ±π/2 when the current through the junction is maxi-
mized for all ratios of ls/ws [8]. In order to improve agreement
between our computation and Eq. (11), we have included a
term for the effective junction thickness deff (which we find
below to be deff ≈ 2ξs in the weak-coupling limit). This term
accounts for the finite size of the junction and the reduction
in the order parameter on a length scale of order ξs close to
the junction. This addition better describes thin junctions (i.e.,
the limit considered in Ref. [8]). For consistency, we define
the effective length of the S regions in the direction of current
flow to be ls = l − deff.

To identify the fraction of the width contributing to the net
critical current, we suggest that the maxima of Eq. (12), Jpeak

c ,
can be approximated using

Jpeak
c ≈ c0

(
φ0

Bw2
s

)c1

JDJ(0). (13)

We find empirically that over a large range of aspect ratios,
the field dependence of Jpeak

c most closely follows the Bessel
function field dependence, where, for example, when ws ≈ ls,
c0 ≈ c1 ≈ 0.6, the distance between the cores of the vortices
in the junction, aJ, is given by aJ ≈ 1.84φ0/Bappws and over a
range of aspect ratios for the electrodes, c0 ≈ 0.35/c1 is quite
robust. As noted in Refs. [10,39], the reduction of the critical
current with applied field when many vortices are present
in the junction is slower when ws � ls and the asymptotic
behavior is a Bessel-like function where Jc ∼ B−1/2

app , com-
pared with when ls � ws and a sinc-like behavior Jc ∼ B−1

app
is found.

A comparison between the critical current density deter-
mined from Eqs. (11) and (12) and the critical current density

FIG. 3. Simulations of Jc(B) of narrow, very thin, weakly cou-
pled junctions with different widths ws. The system size in the x
direction is l = 6.0ξs (a) and 100.0ξs (b). The junction thickness d
was taken to be dmin = 0.5ξs, αn = −20.0, and κ = 40.0. (a) Jc(B) as
calculated using the TDGL-2D code (circles) and TDGL-HIκ code
(triangles), with the hold time and time step for the TDGL-2D simu-
lations set to thold = 5 × 103τ and δt = 0.5τ , and for the TDGL-HIκ
simulations set to thold = 10τ and δt = 0.1τ , respectively. (b) Jc(B)
as calculated using the TDGL-2D code with hold time thold = 103τ

and time step 0.1τ . Dashed lines in both panels are given by Eqs. (11)
and (12) with deff = 2ξs.

obtained from our 2D TDGL simulations is shown in Fig. 3 for
a system with ws � ls [Fig. 3(a)] and ws � ls [Fig. 3(b)]. In
both cases, we take deff ≈ 2ξs. The 2D TDGL simulations Jc

from both TDGL-2D and TDGL-HIκ show excellent agree-
ment with each other and the analytic expressions derived
from Eqs. (11) and (12) in low fields. At these applied fields,
no vortices exist in the S regions, and current flow is laminar
within them. In Fig. 3(b), simulations of Jc obtained from
TDGL-2D for larger system widths at B = 0.2Bc2 still follow
the prediction of Eqs. (11) and (12), but with larger scatter
as a consequence of vortices in the S regions that distort the
interference pattern of the computed system from the analytic
prediction [39].

For completeness, we checked our results against a smaller
grid step size 0.1ξs and confirmed little change in Jc(B)
values. Throughout this paper, a standard grid step size of
0.5ξs was chosen since it gave the optimal trade-off be-
tween accuracy and computation time. We also checked the
sensitivity of the results in this section to having a highly
resistive coating, rather than an insulator, at the edges of the
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FIG. 4. Simulations of the critical current of a very thin junction
in the weak-coupling limit with the Ginzburg-Landau temperature
parameter in the normal region αn = −20.0, a junction thickness
d = 0.5ξs smaller than the superconducting coherence length ξs, and
a width ws = 16ξs much smaller than the Josephson penetration
depth λJ for varying coating effective mass (proportional to the
coating resistivity) with a coating thickness of 5ξs. The periodic
system size in the x direction is l = 6.0ξs, and the Ginzburg-Landau
parameter and friction coefficient in the superconductor are κ = 40.0
and η = 5.79, respectively, throughout. For this system, coating
masses below ∼30ms show distortion of the Fraunhöfer pattern, with
reduced zero-field Jc and increased spacing between minima in the
Jc characteristic relative to the insulating coating limit (mcoat → ∞).
Remaining computational parameters are as described in the text.
The dashed line is given by Eqs. (11) and (12) with deff = 2ξs.

junction system. This coating allows the order parameter at
the superconductor/coating interface to decay into the coating
region which affects the critical current characteristics in field.
The simulation data shown in Fig. 4 show that insulating
surface conditions are found if the effective mass in the coat-
ing material is greater than around 30 times the maximum
effective mass in the rest of the system.

A. Very narrow junctions in high fields

In this section, we derive analytic expressions for the crit-
ical current density of very narrow Josephson junctions (w <

ξs) that are valid across the entire range of applied magnetic
fields, up to the upper critical field of the system. Consider
first the current flow within the junction from screening cur-
rents and from the injected currents. Integrating around a thin
closed rectangular loop inside the system using Eq. (10) with
the lower path along the x axis and the upper path at y gives∮

∇γ · dl =
∮

∇θ · dl −
∮

B · dS (14)

after applying Stokes’s theorem to the magnetic vector poten-
tial term. For any choice of gauge, the first closed integral on
the right-hand side in θ is 2πn, where n is the number of vor-
tex cores inside the closed contour, from the requirement that
the order parameter magnitude be a single valued function. We
can integrate Eq. (8) over the junction width in the y direction,
apply the mean value theorem, and replace ψ with its average
in the y direction f = 1

w

∫ w/2
−w/2 |ψ | dy and the components of

Js by their equivalent average 〈 js
i 〉 = 1

w

∫ w/2
−w/2(Js

i ) dy. We as-

sume that the order parameter magnitude is symmetric about
both the y axis and the x axis, that the screening currents and
hence ∂yγ are both antisymmetric about these axes, and that
to first order the transport current is uniform along the y axis,
such that 〈 js

x〉 = m−1
x (x) f 2∂xγ (y = 0) from Eq. (9). Given

that no vortex cores exist in the narrow system (n = 0), and
taking the sections of the contour in Eq. (14) that are parallel
to the x axis to be sufficiently short relative to the coherence
length ξ , we arrive at the gauge-invariant result

∂xγ (y) −
〈
js
x

〉
f 2m−1

x (x)
= Bappy

Bc2ξs
. (15)

We also assume that for narrow junctions, given the bound-
ary conditions at the insulating surfaces and the requirement
for current continuity across the S-N internal interface, js

y(x)
can be taken to be zero. Equation 15 describes the transport
current density and the screening currents that flow within
the junction itself. We have not included the small self-field
corrections to the net field, which describe the currents as-
sociated with a vortex-antivortex pair at the edges, since we
assume that the self-field is much smaller than the applied
field. Substituting our new expression for ∂xγ (y) into Eq. (8)
and averaging over the y direction gives

∂x
(
m−1

x (x)∂x f
) +

[
α(x) − m−1

x q2 − β(x) f 2

−
〈
js
x

〉2
f 4 m−1

x (x)

]
f = 0, (16)

where q2 = ( Bappws√
12Bc2ξs

)2. Equation 16 represents a generaliza-
tion of Fink’s zero-field results for very narrow junctions to all
applied fields Bapp. We can now solve for the critical current
when the N region is thin (i.e., d � ξs) and when the N region
is thick (i.e., d � ξs).

1. Thin junctions in high fields d � ξs

Consider first the thin-junction limit, where d � ξs. As-
suming that β(x) and m−1

x (x) are constant across the system
for simplicity, we rescale Eq. (16) by x̃ = x

√
1 − q2, f̃ =

f /
√

1 − q2, and j̃x = 〈 js
x〉(1 − q2)−3/2 to give

∂2
x̃ f̃ +

[
1 − 1 − α(x)

1 − q2
− f̃ 2 − j̃2

x

f̃ 4

]
f̃ = 0. (17)

Since f̃ and j̃x are continuous across the S/N interface, we
find a constraint between ∂x̃ f̃ and f̃ at the interface in the
limit where d � ξs, by integrating Eq. (17) across the nor-
mal region, where |x̃| < d

√
1 − q2/2, and assuming that f̃ is

symmetric across the junction:

2 f̃ ′
d/2 = d

1 − αn√
1 − q2

f̃d/2, (18)

where f̃d/2 = f̃ (x = d/2) and f̃ ′
d/2 = ∂x̃ f̃ (x = d/2). The re-

mainder of the derivation now follows the zero-field approach
[40]; by substituting Eq. (18) into Eq. (17) and neglect-
ing the highest-order terms in the new small parameter
V −1

0 =
√

1 − q2/d (1 − αn), we find the necessary condition
for a solution to exist as j̃x < 1/2V0. In standard units, this
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FIG. 5. Simulations of Jc(B) of very narrow, thin, weakly cou-
pled junctions as a function of αn where −250 � αn � −50. The
width ws = 0.5ξs, and the junction thickness d = dmin = 0.1ξs. The
periodic system length in the x direction l = 12.0ξs, and κ = 5.
The effective mass in the normal region was taken to be mn = ms.
The grid spacing was chosen to be hx = hy = 0.1ξs, the time step
δt = 0.5τ , and the hold time thold = 5 × 103τ . Dashed lines are given
by Eq. (19).

corresponds to the critical current density JDJ,

lim
d�ξs

{JDJ(Bapp)} = J0
ξs

2d (1 − αn)
(1 − q2)2, (19)

where q2 = (Bappws/
√

12Bc2ξs)2 and J0 = Bc2/κ
2μ0ξs as be-

fore. The applied field at which the critical current density of
the system is zero is given by q2 = 1. This is equivalent to an
applied field equal to the parallel critical field

Bapp(q2 = 1) =
√

12ξs

ws
Bc2. (20)

This expression has previously been found by Tinkham to
be the upper critical field of a thin-film superconductor of
thickness ws when the applied magnetic field is parallel to the
film surface, provided the film is thinner than approximately
1.8ξs [41]. Equation 19 is compared with simulation data from
TDGL-2D in Fig. 5, showing excellent agreement across the
whole field range.

We note that the junctionless case, where V0 = 0, can triv-
ially be considered also, as the rescaling used in Eq. (17)
is equivalent to rescaling the Ginzburg-Landau equations in
terms of a field-dependent coherence length in the supercon-
ductor ξ̃s = ξs/

√
1 − q2. In this case, the critical current of the

thin-film system becomes JD(1 − q2)3/2 [41].

2. Thick junctions in high field d � ξs

For thick junctions, we rescale Eq. (16) into a similar form
to that studied for zero field by Fink [15]. In the superconduct-
ing regions, we rescale by x̃ = x

√
1 − q2, f̃s = f /

√
1 − q2,

and j̃x = 〈 js
x〉(1 − q2)−3/2 to give

∂2
x̃ f̃s +

[
1 − f̃ 2

s − j̃2
x

f̃ 4
s

]
f̃s = 0. (21)

Inside the normal region, we rescale Eq. (16) by

ũ = x
√

mn
ms

(−αn + ms
mn

q2), f̃n = − f
√
βn/(−αn + ms

mn
q2), and

j̃u = 〈 js
x〉βn

√
mn/ms(−αn + ms

mn
q2)−3/2 to give a form that is

again similar to Fink’s zero-field results,

−∂2
ũ f̃n +

[
1 − f̃ 2

n + j̃2
u

f̃ 4
n

]
f̃n = 0. (22)

The critical current in field can now be obtained following
the procedure used by Ref. [15] for zero field, but with the
new, field-dependent rescaled variables. In usual units, the
critical current of this narrow junction system in applied fields
is given by

lim
d�ξs>ws

{JDJ(Bapp)} = 4J0(1 − q2)
3
2

1 −
√

1 − s̃ f̃ 2
d/2

s̃ṽ

× exp

(
− d

ξ̃n

)
, (23)

where

f̃ 2
d/2 = ṽ2 + 1 −

√
ṽ2(2 − s̃) + 1

ṽ2 + s̃
, ṽ = mnξ̃n

msξs

√
1 − q2,

q2 = B2
appw

2
s

12
, s̃ = βn(1 − q2)(

αn − ms
mn

q2
) ,

× ξ̃n =
√

ms

mn

1( − αn + ms
mn

q2
)ξs, (24)

and J0 = Bc2/κ
2μ0ξs. Once again, here we take βn = 1, and

so when the effective mass of the N region is the same
as that of the superconductors, ṽ2 → −s̃, and f̃ 2

d/2 → (1 −
q2)/2(1 − αn). Equation 23 is compared with the critical cur-
rent densities obtained from TDGL-2D in Fig. 6. Excellent
agreement between Eq. (23) and TDGL-2D is observed across
the entire field range, and across the parameter space for
d > ξs, αn < −1.0, and 0.1ms < mn < 6.0ms.

In the limit where f̃ 2
d/2 → 0, and when mn = ms, Eq. (23)

reduces to the simpler form

lim
d�ξs>ws

{JDJ(Bapp)} = J0
(1 − q2)2

√
1 − αn

exp

(
− d

√
1 − αn

ξs

)
,

(25)
which provides the general field-dependent form for de
Gennes’s famous result for SNS junctions in zero field [42].
In general, weakly coupled junctions with f̃ 2

d/2 → 0 for any
thickness of junction with mn = ms can be described by the
single expression

lim
ξs>ws

{JDJ(Bapp)} = J0
(1 − q2)2

2
√

1 − αn sinh(d
√

1 − αn/ξs)
, (26)

where Eq. (19) is recovered in the limit d
√

1 − αn/ξs → 0
and Eq. (25) is recovered in the limit d

√
1 − αn/ξs � 1.

The full-field approximation for Jc given in Eq. (23) has the
same leading-order monotonically decreasing behavior in low
field as predicted by the authors of Refs. [16,17,43] using
a model of an SNS Josephson junction from the linearized
Usadel equations, including the applied magnetic field as an
effective spin-flip scattering rate. Indeed, Eq. (23) can be
viewed as an extension to this result that describes fields
approaching the parallel critical field of the superconductor.
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FIG. 6. Simulations of Jc(B) for very narrow, thick, weakly cou-
pled junctions. The width ws = 0.5ξs, the periodic system length
in the x direction l = 12.0ξs, and κ = 5. The grid spacing was
hx = hy = 0.1ξs, the time step δt = 0.5τ , and the hold time thold =
5 × 103τ . (a) The effective mass in the normal region was taken
to be mn = ms, αn = −1.0, and the junction thickness d was var-
ied. (b) mn = ms, αn was varied, and d = 2.0ξs. (c) mn was varied,
αn = −1.0, and d = 2.0ξs. Dashed lines in all panels are given by
Eq. (23).

Experimental measurements of SNS junctions consisting of
superconducting nanowires in this monotonically decaying
regime that have been carried out in Refs. [44,45] show good
agreement with Eq. (23) for both the magnitude and magnetic
field dependence, as shown in Fig. 7 with reasonable estimates
for the coherence length in the superconducting nanowires.
The approach provided here can be extended to consider thick

FIG. 7. Comparison of Eq. (23) with experimental data on Al-
Au-Al nanowire junctions measured in Ref. [45]. The junction
thickness d varied between 900 and 1300 nm, and all junctions were
ws = 125 nm wide. The coherence length ξn in the Au region was
taken to be 10 μm as suggested by weak localization experiments
below 50 mK. The critical current at zero field I (0) was fixed at
the maximum measured current, and the coherence length of the Al
superconductor ξs and the ratio of the effective mass of a Cooper pair
in Au and in Al, mn/ms, were left as free parameters for the fit.

clean junctions [46], but further work is needed to accurately
describe the effective thickness of the barrier, when the long
conduction-carrier scattering length in very clean barriers be-
comes comparable to the barrier’s thickness.

B. Narrow junctions

We now extend our new solutions for Jc(Bapp) in very
narrow junctions to describe the qualitative behavior of wider
2D systems, so-called narrow junctions, with widths up to the
length scale of the superconductor penetration depth λs, in
arbitrary applied magnetic fields. In low fields, Eq. (13) ac-
counts for the role of the phase in determining the equivalent
fraction of the total width of the junction over which current
density flows. This fraction follows from the distribution of
vortices inside the junction and the (cancellation of) local
currents flowing in opposite directions. The form of Eq. (13)
can be compared with either the second Ginzburg-Landau
equation in gauge-invariant form [Eq. (9)] or the Josephson
relation J = JDJ sin �ϕ [40] (where the current density J be-
tween two points of interest is related to the gauge-invariant
phase difference between them, �ϕ). In both cases there are
two factors, one associated with the magnitude of the or-
der parameter and the other with phase. If we consider the
Josephson relation averaged over the junction, we can replace
the phase term with Clem’s power-law term [Eq. (13)]. This
ensures that Jc(Bapp) reproduces Clem’s results in low fields,
when the applied field is far below the upper critical magnetic
field of the junction. In high fields, the order parameter is
depressed within the superconducting electrode, and we need
a field-dependent form for JDJ to account for this. In a narrow
junction, both the order parameter and the local current den-
sity vary approximately on a length scale of the order of the
vortex-vortex spacing a∗

0, instead of the junction width ws. We
therefore replace the zero-field JDJ term in Eq. (13) with our
new analytic field-dependent JDJ expressions [Eqs. (19) and
(23)] with the width ws replaced by the vortex-vortex spacing.
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FIG. 8. Simulations of the critical current of a narrow, thin
junction in the weak-coupling limit with the Ginzburg-Landau tem-
perature parameter in the normal region αn = −40.0, a junction
thickness d = 0.25ξs smaller than the superconducting coherence
length ξs, and a width ws much smaller than the Josephson pene-
tration depth λJ but much larger than ξs. The periodic system size
in the x direction l = 100.0ξs, and the Ginzburg-Landau parame-
ter and friction coefficient in the superconductor are κ = 40.0 and
η = 5.79, respectively, throughout. The grid spacing was chosen
to be hx = hy = 0.25ξs, and the time step δt = 0.5τ . Dashed lines
represent Eq. (28) for the example parameters B∗

c2 = 1.8Bc2 and c0 =
c1 = 0.58. Remaining computational parameters are as described in
the text. Inset: Kramer plot of data shown in the main plot.

This yields our approximation for Jc for narrow junctions over
the full field range as

Jc(Bapp) = c0

(
φ0

Bappw2
s

)c1

JDJ(Bapp,ws → a∗
0 ), (27)

where we set q2 = Bapp/B∗
c2 and JDJ is taken to be Eq. (19) and

Eq. (23) in the thin limit and in the thick limit, respectively.
We have replaced Bc2 by B∗

c2 to include junctions such as that
considered above, where there is an insulating surface barrier
along the edge of both the superconductor and the junction
and at fields between B∗

c2 and Bc2 current only flows along
the edges [47]. In the case of a simple thin film between two
insulators, the result Jc ≈ JD(1 − Bapp/B∗

c2)3/2 is obtained, as
found previously by Abrikosov [48] and Boyd [49] close to
the effective upper critical field of the system. For junctions
with normal barrier coatings, Jc(Bapp = B∗

c2) = 0 as required.
In the weak-coupling limit, Eq. (27) for thin junctions takes
the form

Jc(Bapp) = J0
c0ξs

2d (1 − αn)

(
φ0

Bappw2
s

)c1
(

1 − Bapp

B∗
c2

)2

, (28)

whereas for thick junctions,

Jc(Bapp) = J0
c0√

1 − αn
exp

(
− d

√
1 − αn

ξs

)
×

(
φ0

Bappw2
s

)c1
(

1 − Bapp

B∗
c2

)2

. (29)

Two-dimensional simulations for two narrow junctions in high
field are plotted in Fig. 8 and compared with Eq. (28) with
c0 = c1 = 0.58 and B∗

c2 set to 1.8Bc2. Excellent agreement is
seen between the analytic functional form and the simulated

TABLE I. Material parameters for the reference 3D polycrys-
talline system for the 3D Jc investigations. Jc is decreased by 2.5% at
each current step.

Parameter Value

h{x,y,z}/ξs(T ) 0.5
Lx/ξs(T ) 150.0
Ly/ξs(T ) 150.0
Lz/ξs(T ) 150.0
D/ξs(T ) 22.4
dGB/ξs(T ) 0.5
αGB −2.0

data, with only B∗
c2 taken as a free parameter. In this paper, we

have not considered the very low field, self-field regime where
the applied field is less than the applied field and Jc(Bapp ∼ 0)
is broadly field independent [50]. For the high-temperature su-
perconductors, we also set aside magnetic fields close to B∗

c2,
where variations in Tc and thermal activation play a role [51].
At intermediate fields (i.e., B ∼ B∗

c2/5), Eqs. (28) and (29)
both simplify to power-law behavior. For high-temperature
superconductors, although there are a wide range of pinning
landscapes that can produce a wide range of field dependen-
cies [52], we note that power-law dependence with c1 ≈ 0.6
has been clearly observed in many powder-in-tube and tape
high-temperature superconductors at intermediate magnetic
fields [23,50,53,54].

V. 3D POLYCRYSTAL FLUX FLOW AND CRITICAL
CURRENT SIMULATIONS

The morphology of grain boundaries in real 3D systems
is significantly more complex than that considered in the 2D
Josephson junction simulations of Sec. IV. Here, we inves-
tigate the critical current density that can be carried by a
3D polycrystalline system containing Josephson-junction-like
grain boundaries using the TDGL-HIκ algorithm [25].

A. Polycrystalline simulations

To create our model polycrystalline material for criti-
cal current and flux pinning simulations, we first generate
a 3D tessellation of equiaxed grains, periodic in all three
dimensions, with grain sizes corresponding to a typical log-
normal grain size distribution for a grain growth system, using
the NEPER software package v3.5.0 [55,56].

For use as a simulation output, this tessellation is post-
processed, with every mesh point in the superconducting
volume within a distance D/2 of a face of a crystal grain
assigned grain boundary properties with α = αGB. In this
manner, a rasterized approximation to an equiaxed polycrystal
is constructed, with grain boundaries given degraded super-
conducting properties with αGB < 1. The base parameters of
our model polycrystalline system are given in Table I. We
consider Nb3Sn at T = 4.2 K with a critical temperature of
Tc,s = 17.8 K, a coherence length ξs(4.2 K) ≈ 3.12 nm, a size
for the base system of 468 × 468 × 468 nm, and a mean grain
size D = 70 nm. An example distribution of grain bound-
aries for this set of parameters, along with distributions of
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FIG. 9. A snapshot of the time-dependent simulation at Japp = 10−2JD and Bapp = 0.2Bc2 for the base system described in Table I. Top
left: grain boundary network of the periodic physical system. Bottom left: distribution of the magnitude of the order parameter |ψ | across the
surfaces of the computational domain. The cores of the fluxons are clearly observable within the grains [64]. Right: distribution of vortices
around an example grain in the system. The surface of the region enclosing points where |ψ | < 0.25 is displayed in red, and the grain boundary
regions are shown in black.

|ψ | over the simulation domain and close to a representative
grain, is presented in Fig. 9. The flux pinning force per unit
volume Fp = JcBapp as a function of reduced field, for poly-
crystalline material with different grain boundary parameters
αGB, obtained from TDGL-HIκ , is shown in Fig. 10(a). For
consistency, we have confirmed that in homogeneous systems
with no flux pinning structures present, no significant critical
current densities are found in these simulations. The optimum
flux pinning forces occur when the grain boundary thickness
dGB is close to the effective (normal metal) coherence length
in the grain boundary ξGB = √−αGBξs (defined when αGB <

0), although we note that the spatial extent of the normal prop-
erties associated with the local strain and electronic properties
of the grain boundary may extend well beyond its chemical
or structural thickness [57]. For more degraded boundaries,
Jc decays approximately exponentially at a rate proportional
to dGB/ξGB for dGB/ξGB > 1, and for αGB < −4.0 the maxi-
mum in the flux pinning force Fp ∝ JcBapp is found at higher
reduced field values. For more weakly degraded grain bound-
aries (αGB > −4.0), we find a Kramer dependence [18,58]
such that the maximum flux pinning force per unit volume
is close to 0.2Bc2 and consistent with the field dependence of
other computational results obtained using a different poly-
crystalline grain morphology [2]. Both the magnitude of Jc

with a grain size of 70 nm at 10−3JD and the Kramer field
dependence are similar to those observed experimentally in
optimized polycrystalline Nb3Sn [1] suggesting that the sim-
ulations capture the important physical processes in these
systems. In the time-dependent simulations when J > Jc (i.e.,
showing continuous vortex movement), we see significant
differences in the curvature of moving vortices, above and
below the optimum. In strongly degraded boundaries when
αGB < −4.0, vortices are significantly curved and follow
grain boundaries, being preferentially held at points where
two or more grain boundaries meet, whereas for αGB > −2.0,
vortices remain mostly straight, aligned along the applied field

in the z axis. Experimental and simulation flux pinning curves
for different mean grain sizes are presented and compared
in Fig. 11. In Fig. 11(b) the maximum flux pinning force
per unit volume as a function of grain size is similar to the
experimental values for D > 100 nm. However, for very small
grain sizes, our simulations show F max

p values that are larger
than observed in experiment. The reduction in Jc found in fine-
grained materials has been noted before and was attributed to
degraded grain boundaries, stress in the superconducting layer
generated during the fabrication process, and/or degraded
(off-stoichiometric) grains [59]. Our computational results
(that show no such reduction) enable us to tune grain boundary
properties and morphologies that provide estimates for im-
proved small-grained polycrystalline materials. Although we
have found similar field dependencies in 3D polycrystalline
systems before [37], these simulations display the increase
of F max

p with decreasing grain size D in bulk materials. This
qualitative agreement with experiment is important because
historically, an increase in Jc for reduced grain size has been
considered the primary signature of flux pinning.

B. Flux pinning in polycrystalline materials

The Kramer-like field dependence implied by Eq. (28)
has been widely observed in low-temperature polycrystalline
superconductors such as Nb3Sn [20] up to Bc2, and the w−1.2

factor in Eq. (27) is reminiscent of the inverse grain size
dependence observed for Jc experimentally [60] and in our
simulations (Fig. 11). Pinning functions similar to the Kramer
field dependence, calculated for different pinning landscapes
by researchers such as Hampshire and Taylor [61] and Dew-
Hughes [62], have been used extensively for the last 50 years
to describe experimental Jc data. This approach has had the
long-standing limitation that the pinning parameters derived
in such analysis cannot easily be related to local properties
of grain boundaries. Motivated by such considerations, we
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FIG. 10. (a) Normalized flux pinning force Fp/10−3JDBc2 for the
polycrystalline 3D system described in Table I with varying αGB at
various applied magnetic fields. The maximum in the flux pinning
force is found close to Bapp = 0.2Bc2 for αGB > −4.0 but moves to
higher fields as the grain boundaries become more strongly normal
(as αGB decreases). Solid lines are fits to Eq. (30) with r = 1.1.
Crosses represent a comparison with typical experimental data for
bronze-route Nb3Sn, taken from Ref. [1]. Inset: fitting parameters
for Eq. (30) as a function of αGB. (b) Maximum flux pinning force
F max

p /JDBc2 as a function of
√

1 − αGB. Line fits are comparisons
with Eq. (30) with A = 0.25, r = 0.6, p = 0.5, and q = 2, and with
Eq. (27).

propose an expression for the flux pinning force per unit vol-
ume for a polycrystalline system with weakly coupled grains
(with highly degraded grain boundaries) based on Eq. (27)
that enables comparison between the results provided here
with a functional form similar to the widely used flux pinning
formulism, where

Fp(Bapp) ≈ J0Bc2A

(
φ0

B∗
c2D2

)r

(b∗)p(1 − b∗)q f (αGB) (30)

and we have replaced ws by the grain size D, defined the
pinning parameters p ≈ 1 − c1 and q ≈ 2, introduced the new
empirical parameters A and r, and made the weak-coupling
approximations that f (αGB) = ξs/2d (1 − αGB) in the thin
limit and f (αGB) = exp (−d

√
1 − αGB/ξs)/

√
1 − αGB in the

thick-junction limit for the grain boundary (GB). The empir-
ical parameters A and r account for the fraction of the total
vortex length that is held within grain boundaries. F max

p is
found as usual at the field b∗ = p/(p + q). In standard flux

FIG. 11. (a) Normalized flux pinning force Fp/10−3JDBc2 for a
polycrystalline 3D system with varying mean grain size D. All other
system parameters are set to the values given in Table I. Solid lines
are fits to Eq. (30) with r = 1.1. Crosses represent a comparison
with typical experimental data for bronze-route Nb3Sn, taken from
Ref. [1]. Inset: critical current density Jc as a function of applied
field for varying grain size. (b) Maximum flux pinning force F max

p

for the polycrystalline 3D system described in Table I with varying
grain size D compared with experimental data for the maximum flux
pinning force measured in experimental Nb3Sn samples taken from
Ref. [65]. The dashed line represents the fit to Eq. (30) with p = 0.5
and q = 2 with remaining free parameters found to be A = 0.09 and
r = 0.6. Experimental data as collected in [65] from: Schauer and
Schelb [59], West and Rawlings [66], Scanlan et al. [67], Shaw [68],
Bonney [69], and Marken [70].

pinning analysis, p and q are usually expected to be constant
for a single flux pinning mechanism [63]. Figures 10 and 11
show that these parameters can vary significantly among ma-
terials that have a single grain boundary mechanism operating.

Comparisons of Eq. (30) in the thick-junction limit with
our TDGL results are presented in Figs. 10(a) and 11(a). A, p,
and q were taken to be free parameters for each flux pinning
curve, and r = 1.1 was obtained as a global fit parameter
from the combined set of simulations. The maximum in the
flux pinning force per unit volume, F max

p , has been com-
pared with a constrained form of Eq. (30) in Figs. 10(b) and
11(b), in which the pinning parameters are restricted to their
Kramer-like values p = 0.5, q = 2. The decrease in critical
current density as the grain boundary properties degrade (as√

1 − αGB increases) in the weak-coupling limit of grains
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appears to be well represented by Eq. (30) and f (αGB) taken
from Eq. (25). In this case, the parameters A and r are closely
related to their 2D equivalents in Eq. (29), with r ≈ c1 ≈ 0.6
and in the limit of strongly degraded grain boundaries, A ≈
c0/3, as shown by Fig. 10. The observation that the prefactor
c0 in the 2D junction simulations is approximately three times
larger than the prefactor A in the 3D simulations here may
partly be due to the stronger surface barrier existing in the
junction system at the junction-insulator interface. The sur-
face barrier at the grain-grain boundary interface in the 3D
simulations is generally weaker as a result of the proximity
effect limiting supercurrents at the interface, similar to the ef-
fect observed at metallic interfaces. For the polycrystal system
in Table I, which lies close to the peak Fp,max in Fig. 11, Jc ∼
b−0.4(1 − b)2.7 (p = 0.6, q = 2.7), close to the Kramer-like
field dependence of the critical current density Jc ∼ b−0.5(1 −
b)2 (p = 0.5, q = 2). Deviations of p and q from predictions
can occur due to multiple pinning mechanisms contributing to
Jc concurrently; indeed, videos of the simulated vortex state in
motion (not shown here) show complex vortex depinning from
grain boundaries, line intersections, and triple points across
the range of αGB in Fig. 10.

VI. DISCUSSION AND CONCLUSIONS

It is important to note that all the polycrystalline simula-
tions carried out in this work are in the high-κ limit, when
the local magnetic field is equal to the applied magnetic field
in the system at every point. Nevertheless, we expect the re-
sults to be qualitatively accurate for real systems of materials
such as Nb3Sn, since the penetration depth in such materials
λs ≈ 100 nm is still of the order of the grain size [1], and so
in high fields, the field from the magnetization of grains will
still be small relative to the applied magnetic field. The same
is not necessarily true in very weak applied fields though, and
thus care should be taken interpreting results in weak applied
fields as a result. Nevertheless, large-scale TDGL simulations

provide an essential complementary tool for time-consuming
and expensive experiments studying systematic variations in
grain size in real materials. We derived expressions for the
critical current density as a function of field from a junction-
based model, used physical arguments to extend their range
of validity, and confirmed the results obtained using TDGL.
The equations obtained qualitatively agree with experimental
data for polycrystalline superconductors such as Nb3Sn and
existing models based on flux shear through grain boundaries
[60]. We have also performed 3D simulations of equiaxed
polycrystalline systems in the high-κ limit, which show, for
a complex polycrystalline system, an increase in the critical
current density of the system with decreasing grain size in
qualitative agreement with experiment [59]. Such simulations
predict that maximum critical currents are achieved when the
grain boundary thickness is similar to the effective coherence
length in the grain boundary region.

Data are available on the Durham Research Online website
[71]. The code is available on request from D.P.H.
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