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Abstract: We studied the amplitude modulation of the radial electric field constructed from the Langmuir
probe plasma potential measurements at the edge of the mega-ampere spherical tokamak (MAST). The
Empirical Mode Decomposition (EMD) technique was applied, which allowed us to extract fluctuations
on temporal scales of plasma turbulence, the Geodesic Acoustic Mode (GAM), and those associated with
the residual poloidal flows. This decomposition preserved the nonlinear character of the signal. Hilbert
transform (HT) was then used to obtain the amplitude modulation envelope of fluctuations associated
with turbulence and with the GAM. We found significant spectral coherence at frequencies between 1–5
kHz, in the turbulence and the GAM envelopes and for the signal representing the low frequency zonal
flows (LFZFs). We present the evidence of local and nonlocal, in frequency space, three wave interactions
leading to coupling between the GAM and the low frequency (LF) part of the spectrum.
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1. Introduction

The edge region of tokamaks, defined by the steep pressure gradient, is dominated by turbulent
structures of density, temperature, and the electrostatic potential (see, for example, Reference [1] and
references therein) arising from resistive and/or interchange plasma instabilities. These fluctuations are
responsible for the turbulent radial transport, which drives anomalous heat and particle losses and has a
detrimental impact on the global energy confinement. Thus, better understanding and control of the edge
transport is fundamental to enabling enhanced plasma confinement scenarios of future fusion reactors.
The anisotropic shear amplification of micro-turbulence Reynolds stress produces radially localised,
toroidally and poloidaly symmetric flows, called zonal flows (ZFs). These flows are distinct from the
residual poloidal flows, often called zero frequency ZFs [2,3]. Shearing associated with both types of ZFs
can nonlinearly modify stability threshold of unstable plasma modes [4–6] and reduces turbulence level
by vortex stretching [7–9].

ZFs are axisymmetric electrostatic potential modes with zero poloidal and toroidal numbers, m=n=0.
In tokamak geometry, toroidal curvature couples the ZF to the density perturbations with poloidal mode
numbers m ≥ 1 (n = 0), and with a finite frequency. This compressible component of ZF is called
the Geodesic Acoustic Mode (GAM). The local dispersion relation for the GAM has been derived from
various plasma models and the leading term is ωG ∼ cs/R0, where cs is the local sound speed and R0
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is the major radius [10,11]. The amplitude of the density fluctuations varies with the poloidal angle
θ as A ∼ sin(θ). Since its theoretical prediction, the GAM has been experimentally observed in many
tokamaks [12–16]. While the local dispersion relation suggests a monotonic change of the GAM frequency
with radius, due to temperature gradient, there is growing evidence that the GAM is a global mode with
a complex radial mode structure [17–20]. Driven by turbulent fluctuations [21], ZF and GAM provide a
natural sink for turbulent energy. The stability of these flows is less understood. The GAM is damped
by a Landau mechanism, in the region of low safety factor q(r). The ZF/GAM can decay via nonlinear
tertiary Kelvin-Helmholtz (K-H) instability of small scale fluctuations [5,21]. Nonlinear advection of GAM
pressure perturbations provides a mechanism for the energy transport from ZF back to micro-turbulence
scales [22,23].

Nonlinear interaction of ZF/GAM with turbulence are fundamental to our understanding of the L-H
transition [8,24]. In this context, GAM is a valuable tool in the experimental studies of ZF due to its finite
frequency, which allows easier identification of ZF in experimental data [19]. Here, we studied a possible
mechanism for the generation of the LF GAM envelope by nonlinear self-interaction and the coupling
of GAM/ZF and turbulence via these LF amplitude modulations. We analyzed the oscillating radial
electric field component on different temporal scales. The power distribution of the radial electric field
oscillations at GAM frequency was not uniform in time. Instead, it showed strong temporal intermittency,
that is, the power was concentrated in few intense temporal regions, separated by intervals of low level
activity. We used Hilbert transform (HT) based techniques to extract radial electric field fluctuations on
different temporal scales, while preserving their nonlinear character. This allowed us to construct signals
representing meso-scale turbulence, the oscillatory GAM signal, and the LFZFs, with frequencies in the
range of few kHz. HT gave nonlinear envelopes for the turbulence and the GAM. The spectral coherence
of the turbulence with the GAM was then examined. We found that the amplitude modulation of the
turbulence and the GAM had a similar behavior at LFs, between 2–5 kHz. The auto bi-coherence revealed
nonlinear self-interaction of GAM and the possible coupling to these LF components.
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Figure 1. Langmuir Mach probe with separations of pins in millimeters. Pins 1, 2, and 3 are radially offset
by 8mm from all other pins. Red arrow indicates the average direction of the total magnetic field vector at
the edge of mega-ampere spherical tokamak (MAST) for a typical L mode discharge.

2. Experimental Setup and Data

The MAST had a major radius R0 ≈ 0.85 m, a minor radius a ≈ 0.65 m, and the magnetic field
strength B = 0.5 T. The magnetic field vector pitch angle in the L-mode was about 22◦ at the edge of the
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device. We analyzed data from an Ohmic L-mode plasma discharge numbered 29150 with no additional
heating power and with a double null magnetic configuration. A line average number density of the
plasma was n ≈ 1.47× 1019 m−3, and plasma current Ip = 0.43 MA.

A Mach type reciprocating Langmuir probe [25], positioned on the outboard mid-plane, measured
floating potential, Ṽf , as well as a set of ion saturation currents (pins 2, 5, and 8). The schematic of the
probe is shown in Figure 1. Pin pair (1, 3) was positioned 8 mm behind pairs (4, 6) and (7, 9). The floating
potential Ṽf was assumed to be a good approximation of the plasma potential Ṽp, and these were related
by Ṽp = Ṽf + Λ. Here, Λ was a sheath potential drop, which is usually approximated by Λ ≈ 2.5Te/e
[26]. Thus, we assumed that the electrostatic potential fluctuations were larger than those in electron/ion
temperature. The measurement of Ṽf should have been weakly effected by the sheath potential of the
Mach barrier, since it was based on the ion and electron currents balance, which was a function of the
plasma temperature only. The high values of temporal correlations on all pin pairs were consistent with
these assumptions.

We constructed radial electric field component Er by differencing the floating potential values on pin
pair (1, 9), Er = ∇rṼp ≈ (Ṽ1

p − Ṽ9
p )/d(1,9)

r , where the superscripts on the floating potential indicated a pin

and d(1,9)
r = 8 mm is a radial separation of these pins. We noted that the poloidal separation of the pin pair

(1, 9), d(1,9)
θ = 3.8 cm, was much larger than the radial separation. The radial electric field Er estimations

from other radially separated pin pairs exhibited similar spectral features, but had smaller amplitude
oscillations at the frequency expected for the GAM, in comparison with turbulent fluctuations. We chose a
time interval of 0.315–0.33 s, during which the intermittent character of the most powerful fluctuations is
clearly present.

Figure 2 presents a summary of the data. Panel (a) shows the time series of the radial electric field
Er(t), containing 7500 samples. Assuming that the toroidal magnetic field is dominant, the radial electric
field gives the poloidal flow speed vθ = (ErBφ)/B2. Panel (b) shows the distance of the Mach probe in
relation to the last closed flux surface (LCFS) during this time interval. The probe is inside the plasma
its radial depth varies approximately between −2 and −4 cm. Panel (c) of Figure 2 shows electron
temperature from Thomson scattering diagnostic [27] at 0.333 s, which is the closest measurement to the
interval studied here. Each separate profile was taken at time t=0.333 + k · 0.25× 10−5 s, k ∈ [0, 7]. These
give the median of electron temperature at the probe location of Te≈14 eV. The GAM frequency depends
on the electron temperature through the local sound speed value, cs≈

√
Te/mp, where mp is the proton

mass. The GAM frequency obtained from the fluid-based dispersion relation for the MAST edge plasma
parameters [15] was been calculated to be fG≈10 kHz at the electron temperature Te = 30 eV and fG≈6
kHz at Te = 10 eV. The proton gyroradius at Te = 10 eV is ρp = 0.15 cm.
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Figure 2. Summary of the data. (a) Wavelet power at lower frequencies. (b) Mach probe distance from
the last closed flux surface (LCFS); negative values indicate position inside the plasma. (c) Eight electron
temperature profiles from Thompson scattering system, at times t = 0.333 + k · 0.25× 10−5 s, with k ∈ [0, 7].
Two vertical lines indicate an approximate range of Mach probe positions. The dash horizontal line indicates
the temperature of 10 eV.

3. Methods

The methods based on the HT offer a natural approach to studying temporal intermittency in a time
series [28]. The intermittency is interpreted as an amplitude modulation of a mode, or a group of modes,
of interest. Here, we employed this method as an effective filter, which allowed us to construct signals
representing different dynamical temporal scales. The HT performs well when analyzing non-stationary
and non-harmonic fluctuations arising in nonlinear systems. Fourier-based spectral techniques, as well as
the wavelet transform, are unsuitable for such a time series if the principal aim is to preserve the nonlinear
nature of the wave trains. The HT makes use of the Empirical Mode Decomposition (EMD) [29], which
expands the input signal onto a set of intrinsic mode functions (IMFs) derived directly from the data.

The EMD is implemented as the iterative process. Cubic splines are used to connect the local maxima
and local minima of the signal, forming the upper and the lower envelopes of the data. The mean of
these envelopes, m1, is calculated. For an input signal S(t), the difference, h1 = S(t)−m1 gives the first
estimation of the envelope of S(t). In the case of a nonlinear signal, this envelope’s mean is, in general,
not equal to the true local mean. The process is therefore repeated k times until the resultant, h1k, satisfies
the requirement for an IMF, h1(k−1) −m1k = h1k, where h1k and m1k are the first envelope and its mean
after kth iteration, accordingly. We then designate s1(t) = h1k as the first IMF component of the data,
containing the shortest period of the signal. Fluctuations at this scale are removed from the data to obtain
a residual r1 = S(t)− s1(t). The procedure is then repeated for the residual r1, treated as a new input
signal. The decomposition is stopped either when the component si, or the residue ri, becomes too small
to be of interest, or when the residue, ri, becomes a monotonic function from which no more IMFs can be
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extracted. For data with a trend, the final residue should be that trend. When the process is finished, we
obtain the decomposition of a signal S(t) into IMFs si and the final residue:

S(t) =
N

∑
i=1

si(t) + rN . (1)

An individual IMF may contain oscillations with different periods, and different IMFs can contain
similar periods. This spectral leakage, or mode mixing, can be an issue, especially for short and intermittent
data. We incorporate the ensemble empirical mode decomposition (EEMD) [30,31] to reduce the impact of
mode mixing. This noise-assisted method adds white noise to the original data before the iterative process
starts. The EMD modes are computed as normal until all of the IMFs are calculated. The original data is
then reprocessed with a different noise realization, and the final IMF is averaged over all ensembles.

In this work, we used EEMD to decompose the radial electric field time series into a number of IMFs.
We were interested in the amplitude modulation of turbulence and the GAM. The modes with periods
shorter than that of the GAM are interpreted as turbulence. An envelope of a modulated signal can be
constructed using analytic signal Sa:

Sa(t) = S(t) + iH[S(t)] = E(t) exp[iφ(t)], (2)

whereH[S(t)] indicates the HT of the signal S, and i2 = −1. For a slowly modulated signal, the modulus
of Sa corresponds to the amplitude modulation envelope E(t). The frequency of Sa, which may not be be
constant in time, can be obtained from the mean of the instantaneous phase change f = 〈dφ/dt〉.

Figure 3. (a) Wavelet dynamic spectrum of Er(t). (b) Integrated wavelet power spectrum (black) and
Fourier spectrum estimate (red). A significant spectral peak at ∼10 kHz is clearly seen. Fourier spectrum
shows an internal structure of the GAM peak, with multiple modes separated by ∼1 kHz.
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In order to quantify the nonlinear interactions between different modes, we used the wavelet
bi-coherence defined as:

b2( f1, f2) =

∣∣〈S̃( f1, τ)S̃( f2, τ)S̃∗( f1 + f2, τ)〉
∣∣2

〈
∣∣S̃( f1, τ)S̃∗( f2, τ)

∣∣2〉〈∣∣S̃( f1 + f2, τ)
∣∣2〉 , (3)

where S̃ is a wavelet coefficient at a scale associated with a period 1/ f and at time τ. For a signal S(t),
the wavelet coefficients are given by:

S̃(s, τ) =

∞∫
−∞

dtS(t)
1√

s
ψ∗
(

t− τ

s

)
, (4)

where s is a temporal scale, τ is a new time label and ψ(t) is the analyzing wavelet. We use Bump
wavelets [32], which have better frequency resolution, but poorer time localisation compared with a
standard Morlet wavelet. Given a set of wavelet coefficients S̃( f , τ) the wavelet spectrum estimate is given
by [33]:

P( f ) = 〈S̃∗(ν, τ)S̃(ν, τ)〉τ . (5)

Wavelet estimates of the bi-coherence are superior to these obtained form the Fourier transform
for shorter and non-stationary data sets. Fourier-based bi-coherence requires the averaging over many
realizations of the same data, while the averaging indicated by 〈. . .〉 in Equation (3) is over time.
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Figure 4. Signals constructed from ensemble empirical mode decomposition (EEMD) produced intrinsic
mode functions (IMFs): (a) turbulence ST (black) and its envelope ET smoothed over consecutive 50 points
(red), (b) the GAM signal SG (black) and its envelope EG smoothed over consecutive 30 points (green), and
(c) low frequency zonal flows (LFZFs) SZ (blue). Envelopes of turbulence ET and of the GAM were offset
vertically for clarity by 10 units.
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4. Results

A strong oscillatory component has been previously identified in MAST edge plasma density and
electrostatic potential fluctuations measured by the reciprocating Langmuir probes [15,20]. This mode
showed a spectral power peak at the frequency of ∼10 kHz, in reasonably good agreement with the
theoretical and numerical predictions for GAM frequency in MAST L-mode edge plasma [15,16]. Figure 3a
shows the wavelet transform dynamic spectrum for the radial electric field. The intermittent series of
power maxima are clearly visible around the predicted GAM frequency of ∼10 kHz. The integrated
wavelet spectrum of electric field fluctuations is shown in Figure 3b. The spectral peak at 9.3 kHz is
approximately 4 times above the power level of turbulent fluctuations at neighboring frequencies. We
noted an apparent additional spectral peak at ∼15 kHz and a number of smaller maxima at frequencies
below ∼5 kHz. We also showed the Fourier power spectrum estimation for the same signal in the red trace,
which reveals multiple peaks within a single broad spectral peak of a wavelet spectrum estimate. These
additional spectral peaks in the Fourier-based spectrum are separated from the main peak by no more
than 1 kHz. The Fourier spectral density also shows a number of higher harmonics, at 15, 19 and 23 kHz.
The nonlinear interactions between the modes represented by the peaks clustering around ∼10 kHz, could
lead to low-frequency modulation in the electric field signal.
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Figure 5. Fourier spectra of: (a) turbulence envelope ET , (b) GAM envelope EG, and (c) of LFZFs signal SZ.

In order to study the GAM amplitude modulation and its possible impact on turbulence and ZFs, we
decomposed our data into three components with distinct temporal scales: turbulence, GAM, and LFZF.
We used the EEMD technique to generate 25 IMFs from the original, Er data, with the largest frequency of
about∼115 kHz and the smallest frequency at∼70 Hz. The largest frequency is treated as the residual noise
in the data and is discarded. Similarly, we discarded the smallest frequency mode, which is a nonlinear
trend very close to zero. We then combined the IMFs at three different frequency ranges to obtain signals
of interest. The turbulence, ST(t), is a superposition of IMFs 2–4, corresponding to mean instantaneous
frequencies between ∼25 kHz and ∼66 kHz. The GAM is a single IMF with the mean frequency of 10
kHz, SG(t). Finally, the LFZFs signal SZ(t) is obtained by summing modes 8–20, with mean frequencies
in the range 77–5000 Hz. We apply an analytic signal approach to ST and SG, in order to obtain their
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amplitude modulation envelopes ET and EG, respectively. The turbulence envelope is smoothed over 50
neighboring points. Three panels in Figure 4 shows signals ST , SG, SZ and the upper envelopes ET and
EG. The envelopes ET and EG were smoothed over 50 and 30 neighboring points, respectively, and shifted
vertically by 10 units for clarity. A close visual inspection indicates that there is no phase coherence
between turbulence envelope, GAM envelope and the LFZF signal. This is confirmed by a linear cross
correlation coefficients calculated for the pairs (ET , EG), (ET , SZ) and (EG, SZ), which had values at around
or below 0.25, at different non-zero time lags.

While there is no phase coherence in the LF behavior of ET , EG, and SZ, there is a considerable spectral
coherence for these time traces. Figure 5a–c shows the Fourier spectral estimate of power for ET , EG, and
SZ, respectively. Note that all spectra have been normalized to their respective maxima, which had a value
of 0.05 for turbulence envelope, 0.28 for the GAM envelope, and 0.008 for the LFZF signal. All spectra have
pronounced peaks at about 1 kHz and at 2 kHz. The GAM envelope spectrum shows a number of peaks
at relatively constant increments, positioned at ∼0.55, ∼0.75, 1 and 1.5 kHz. We also note that, the LFZF
spectrum shows a broad spectral power between frequencies 3–5 kHz. This is a strong suggestion that
there are nonlinear interactions between various modes, close to the GAM frequency, and also non-local
between GAM/turbulence and LFZF.

The resonant three wave interaction process is considered as a model of coupling between different
modes present in the radial electric field time series. For a single point time series measurements, we can
only consider frequency resonances f3 = f1 + f2. The strength of these interactions is then approximated
by a bi-coherence, which we have calculated using wavelet coefficients and averaged over all times.
Figure 6 shows only positive frequency part of the bi-coherence, which was thresholded at a relatively high
value of 0.7 to emphasize the most relevant interactions. We find the signature of strong self-interactions at
the GAM frequencies f1≈ f2≈10 kHz, positioned on the diagonal line, as well as interactions with the LF
modes, such as f1 = 8.4 kHz, f2 = 1.2 kHz, non-local in frequency space. Interestingly, the bi-coherence
also reveals the importance of a mode with f ≈4 kHz, which also self-interacts and couples to LF modes.
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Figure 6. The wavelet bi-coherence for the entire data set Er.
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5. Discussion

We performed the analysis of the fluctuations in the radial electric field component obtained from
the reciprocating Langmuir Mach probe at the mid plane of MAST. Wavelet dynamic spectrum revealed
temporal power intermittency of the GAM, while the Fourier spectrum estimated shows multiple spectral
peaks in the vicinity of 10 kHz. We then tested the hypothesis that the GAM amplitude modulation was
due to self-interaction of the GAM, and that the LF component further mediated the energy exchange
with turbulent modes. We used an HT based technique, EEMD, to extract radial electric field fluctuations
on temporal scales of turbulence, the GAM and LFZF. Envelopes of turbulent signal and the GAM were
constructed using analytic signal approach. We found a significant spectral coherence for the turbulent
envelope, GAM envelope, and the LF component. The bi-coherence revealed strong nonlinear interactions,
local self-interactions near the GAM frequency [34], and non-local interactions with LF mediated by the
GAM. This is broadly consistent with previous results presented in the literature [28,35].

Our findings may be of particular importance for better understanding how the presence of the
GAM alters the physics of L-H transition. It has been reported that the LF component, which we have
termed LFZF in this work, increases significantly at the expense of the GAM during the transition [24]. The
energy flow for the three component system, turbulence, GAM, and ZF, is often modeled using a nonlinear
predator-prey type formulation [2,36]. These models incorporate all key physical interactions important to
the dynamics of the system but retain simplicity that allows better understanding of how each component
affects their collective complex dynamics, for example, the L-H transition. The behavior of these models is
strongly influenced by the included interactions between various components. This work clearly shows
that in addition to the linear impact of the GAM on ZFs [37], the nonlinear interactions are also important.
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