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ABSTRACT

We present an ultrafast neural network model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a
surrogate model based on a database of 3� 108 flux calculations of the quasilinear gyrokinetic transport model, QuaLiKiz. The database
covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of
turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modeling
framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and vali-
dated through application to three JET shots covering a representative spread of H-mode operating space, predicting the turbulent transport
of energy and particles in the plasma core. JINTRAC–QLKNN and RAPTOR–QLKNN are able to accurately reproduce JINTRAC–QuaLiKiz
Ti;e and ne profiles, but 3–5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The
discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order of 1%–15%. Also the dynamic
behavior was well captured by QLKNN, with differences of only 4%–10% compared to JINTRAC–QuaLiKiz observed at mid-radius, for a
study of density buildup following the L–H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak
modeling is a promising route toward enabling accurate and fast tokamak scenario optimization, uncertainty quantification, and control
applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134126

I. INTRODUCTION

Accurate prediction of tokamak core plasma temperature and
density is essential for interpretation and preparation of current-day
fusion experiments, optimization of plasma scenarios, and designing
future devices. Time-evolved tokamak simulation on discharge
time scales is typically carried out within an “integrated modeling”
approach,1 where multiple models representing various physics
phenomena are coupled together within a single code or workflow. An

essential component of integrated models is the prediction of turbulent
fluxes, particularly in the tokamak core where transport is often domi-
nated by plasma microinstabilities.2,3 However, calculating these fluxes
using nonlinear gyrokinetic models is too computationally expensive
for routine simulation of tokamak discharge evolution.

Reduced order turbulence models have, thus, been developed for
increased tractability. They remain first-principle-based yet are com-
putationally cheaper through invoking the quasilinear approximation.
Quasilinear turbulence models like QuaLiKiz4–6 and TGLF7 are valid

Phys. Plasmas 27, 022310 (2020); doi: 10.1063/1.5134126 27, 022310-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/1.5134126
https://doi.org/10.1063/1.5134126
https://doi.org/10.1063/1.5134126
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5134126
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5134126&domain=pdf&date_stamp=2020-02-11
https://orcid.org/0000-0003-0728-4635
https://orcid.org/0000-0001-8007-5501
https://orcid.org/0000-0003-1361-3722
https://orcid.org/0000-0001-5371-5876
https://orcid.org/0000-0001-7585-376X
https://orcid.org/0000-0001-5107-3531
https://orcid.org/0000-0003-3184-3361
mailto:k.l.vandeplassche@differ.nl
https://doi.org/10.1088/1741-4326/ab2276
https://doi.org/10.1063/1.5134126
https://scitation.org/journal/php


in wide parameter regimes in the tokamak core and have been exten-
sively validated against nonlinear gyrokinetics.8–10 These models can
predict turbulent fluxes approximately six orders of magnitude faster
than df local nonlinear codes. For QuaLiKiz, this means around
10min for a radial profile of 25 multiscale transport fluxes on a single
CPU, depending on the physics fidelity used in the simulation. The
speed has enabled routine runs of QuaLiKiz coupled to integrated
modeling suites such as JINTRAC,11,12 recently leading to numerous
successful validation exercises against JET4,13–15 and AUG16 dis-
charges. However, due to the small time step needed in explicit trans-
port PDE solvers, these integrated models need thousands of calls to
the turbulent transport module for each second of plasma evolution,
and, thus, they can still take days to run, even when parallelized. This
sets limits on large-scale model validation and theory-based optimiza-
tion of fusion experiments as well as for model-based real-time control
applications.

To further accelerate integrated modeling workflows, we apply
feed-forward neural networks (FFNNs) as a surrogate model, repro-
ducing the underlying turbulent transport model within tens of micro-
seconds. The concept takes advantage of the fast evaluation time of the
reduced tokamak turbulence models (e.g., QuaLiKiz) by applying
them for generating large training sets then used for neural network
regression. The neural networks can then be used as a drop-in replace-
ment inside the integrated model, removing one of the main computa-
tional bottlenecks.

Similar development of neural network surrogates for physics
models applied within tokamak integrated modeling has been carried
out for the following: the TGLF quasilinear turbulent transport
model,17 the EPED pedestal confinement model,17 and the neutral
beam heating code NUBEAM.18–20 This paper presents the state-of-
the-art of the QuaLiKiz neural network surrogate model, far beyond
our original proof-of-principle.21,22 In the original proof-of-principle,
neural networks were trained on a small dataset and implemented into
the control-oriented tokamak simulator RAPTOR.22 It was shown
that this method could accurately predict the temperature profiles of a
JET discharge, giving confidence to apply this methodology on a larger
scale. In this work, we extend the input dimensionality of the model
from 4 to 10, leading to significantly increased surrogate model fidel-
ity. We chose to generate the QuaLiKiz training set as a large regular
input parameter hyperrectangle scan (see Sec. II) to ensure the wide
applicability of the obtained model. Since neural networks extrapolate
poorly beyond training dataset bounds, a large and experimentally rel-
evant database is essential for good model performance.

Other novel aspects include a focus on incorporating physics-
based features in the training pipeline, as discussed in Sec. IV and
Appendix H. To properly introduce the applied methodology, we
summarize neural network techniques in Appendix C. We show a
new analytical scaling rule partially capturing the effect of rotation on
transport fluxes in Sec. III. Finally, we show the application of the neu-
ral network surrogate model within the control-oriented transport
code RAPTOR and the integrated modeling framework JINTRAC in
Sec. V.

II. DATASET GENERATION

We use the quasilinear gyrokinetic transport model QuaLiKiz to
generate a large database of turbulent transport model calculations.
QuaLiKiz solves the linear gyrokinetic dispersion relation in the

electrostatic limit in s� a geometry. By assuming a shifted Gaussian
for the mode eigenfunctions in the strong ballooning limit, strongly
trapped and passing particles, and a small Mach number, the calcula-
tion is greatly simplified leading to increased calculation speed (�103)
beyond standard linear gyrokinetics. The quasilinear approximation is
then used, setting the transport fluxes (heat, particle, and momentum)
from the linear response over a range of wavevectors, in conjunction
with a saturation rule for the electrostatic potential amplitudes and
spectral shape, tuned to nonlinear gyrokinetic simulations both at ion
scales and electron scales.5,23

The input space of the full QuaLiKiz code (�15 dimensions for
typical simulations) is too large to cover with a brute-force hypercube
scan. We thus constrain the training set dimensionality to the subset
most significantly impacting turbulent transport within the framework
of QuaLiKiz approximations. These input dimensions are shown
in Table I and include the logarithmic ion temperature gradient
(R=LTi ), electron temperature gradient (R=LTe ), density gradient
(R=Ln), ion–electron temperature ratio (Ti=Te), safety factor (q), mag-
netic shear (̂s), local inverse aspect ratio (r/R), collisionality (��), and
effective charge (Zeff), with a carbon impurity and deuterium main ion.
The impurity ion density is controlled by Zeff, scanning it independently
from ��. Notable simplifications are excluding plasma rotation
(cE�B ¼ vpar ¼ vperp ¼ 0), assuming equal density gradient for the two
ion species, and no Shafranov shift. This significantly extends the previ-
ous proof-of-principle 4D neural network QuaLiKiz regression,21 which
included only q, ŝ; R=LTi , and Ti=Te as input. The nine inputs are taken
as the feature space of the neural network. The impact of rotation,
important for accurate tokamak plasma simulation, is taken into account
through a new separate model in post-processing, as described in Sec. III.

A database consisting of 3� 108 QuaLiKiz input-flux relations
was generated with HPC resources on the Edison supercomputer at
NERSC, using 1.3 MCPUh. The database spans ion scales (khqs � 2)
and electron scales (khqs > 2) and contains contributions to transport
fluxes and coefficients q (heat), C (total particle), D (particle diffusiv-
ity), and V (particle convection) per species. The input space was
chosen as a rectangular, non-uniform 9-dimensional grid. The bounds

TABLE I. 9D hyperrectangle bounds and number of points of the QuaLiKiz neural
network training set. Each input is non-uniformly distributed in space, with a finer res-
olution in experimentally more relevant regimes.

Variable # Points Min Max

khqs � 2 10 0.1 2
khqs > 2 8 3.5 36

R=LTe 12 0 14
R=LTi 12 0 14
R=Ln 12 �5 6
q 10 0.66 15
ŝ 10 �1 5
r/R 8 0.03 0.33
Ti=Te 7 0.25 2.5
�� 6 1� 10�5 1
Zeff 5 1 3

Total flux calculations 3� 108 � 1.3 MCPUh
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cover dimensionless parameter regimes typically encountered in the
core of standard aspect-ratio present-day tokamaks and future devices
such as ITER and DEMO. We chose the spacing of the grid to have a
higher density around typical threshold zones (e.g., � R

Te

dTe
dr � 5) and

zones of high non-monoticity (e.g., ŝ � 0:7) based on previous exten-
sive experience with application of QuaLiKiz within integrated model-
ing and standalone. See Table I for the bounds of the generated
dataset. The dataset is stored in HDF5(pandas) or netCDF(xarray) for-
mat, takes around 12 GiB for the 9D input set, and 3 GiB per output
variable, and is freely available on Zenodo.24

III. ROTATION RULE

To save computation time, the dataset was run without rotation.
Beyond adding additional dimensions in the training set input-space
with associated cost, running QuaLiKiz with rotation takes �4 more
computation time due to a loss of symmetry in the internal integration
routines. However, since the impact of rotation on confinement can be
critical, particularly in high performance H-modes, we implemented a
new flux suppression rule in postprocessing. This rule is based on a
new set of linear GENE25 scans around the GA-Standard case, coupled
to a methodology to assess the impact of rotation on linear growth-
rates in spite of the Floquet fluctuations.26,27 These scans consisted of
toroidal rotation scans for various q, e � r

R, and ŝ, capturing both the
effects of E�B stabilization and Parallel Velocity Gradient (PVG)
destabilization. The rule scales all ion-scale fluxes with a tuned
function frotðq; ŝ; eÞ. It depends also on the rotationless maximum
ion-scale growth rate c0, which is predicted by an additional neural
network based on the HPC-generated QuaLiKiz database, and the
normalized E�B shearing rate cE�B defined as follows:

cE�B � �
dvperp
dr

R
cref

; (1)

cref �
ffiffiffiffiffiffiffiffi
Tref

mp

s
; (2)

where vperp is the E�B velocity, Tref is a reference temperature of
1 keV, and mp is the proton mass. The TEM/ITG ion i and electron e
transport coefficient x are then scaled with frot described as follows:

frotrule ¼ c1qþ c2 ŝ þ c3=e� c4; (3)

frot ¼ maxð1þ frotrulecE=c0; 0Þ; (4)

xi=e;ITG=TEM ¼ frot � xi=e;ITG=TEM ; (5)

where the values of the constants were determined to be
c1 ¼ 0:13; c2 ¼ 0:41; c3 ¼ 0:09, and c4 ¼ 1:65. Using this rule, we
are able to capture partially the effect of rotation on transport in a
computationally quick way.

IV. PHYSICS-BASED NEURAL NETWORK TRAINING

Regularized neural networks, described in detail in Appendix C,
provide a smooth regression of supplied training data. It does not
assume any features of the underlying mapping. Physics-informed
features can be directly implemented into the training methodology to
significantly improve the fidelity of the surrogate transport model. For
our application, we desire the following features:

• sharp flux discontinuities at critical (temperature) gradients of
the underlying instabilities;

• identical critical (temperature) gradient for all transport channels
driven by a single (TEM/ITG) instability.

This was found essential for consistent results in integrated
modeling. We show an example of a physics-unaware model in inte-
grated modeling in Sec. VB.

We can include these physical features in the neural network
training process itself. This is done by choosing training targets care-
fully, which results in leading flux predicting networks and flux ratio
predicting networks for each turbulence driving mode in QuaLiKiz,
see Appendix A. For example, for ITG we predict a leading ion flux
qi;ITG and flux ratios qe;ITG=qi;ITG and Ce;ITG=qi;ITG. When combined,
the threshold is necessary at the same location in 9D input
space. This method is described in more detail in Appendix D. The
predicted fluxes are in normalized GyroBohm units, summarized in
Appendix B. Since the underlying physics model follows GyroBohm
scaling, developing the neural network regression for dimensionless
quantities allows a reduction in input dimensions. Conversion of out-
puts to SI quantities is carried out in post-processing as per the
GyroBohm scaling.

The sharpness of threshold can be improved by modifying the
cost function optimized during network training. We describe two
such modifications in Appendix E. First, we calculate the classical
goodness-of-fit term, in this work the mean square error, only on the
turbulent unstable points. Second, we add a term that punishes neural
network predictions in the turbulent stable zone. These modifications
could be easily included in our training pipeline, which is described in
Appendix H.

As with all data-driven approaches, the quality of the data used is
paramount for resulting model performance. In this work, a conserva-
tive approach to data filtering was used. All untrusted and unvalidated
regime QuaLiKiz data are filtered out. Most notably, as described in
Appendix F, we disregard regions with negative heat fluxes. The TEM
fluxes might also be filtered too strictly, resulting in worse perfor-
mance for these networks. The filtering can be improved with more
rigorous analysis of the dataset and better validation of QuaLiKiz in
unexplored regimes, both left for future work.

It was found that to judge the performance of the resulting surro-
gate model inside transport codes, classical machine learning measures
of goodness were not sufficient. Classically, one looks at global perfor-
mance, e.g., total root mean square error between network and original
data, or global smoothness. In our work, we instead found local and
physical features to be more important. While no definite metric for
goodness was found, we show measurable performance indicators
found important in this work in Appendix G. We applied this meth-
odology to train thousands of neural networks in a hyper-parameter
tuning exercise. All networks were judged against the aforementioned
performance indicators measured against a separate test dataset to
show generalization capability on unseen data. The optimization
resulted in a final set of neural networks with the hyper-parameters
shown in Table V. These scored well on global root mean square error
and other parameters as shown in Table IV. The networks are imple-
mented within integrated modeling suites for transport physics valida-
tion, using an open-source Fortran driver as will be shown in Sec. V.
The speed of the integrated modeling is vastly accelerated, which is the
primary motivation of this study. The neural networks and fast driver
evaluate a 24-point radial profile of transport coefficients within
1.4ms without derivatives and 60ms with derivatives, on a single core.
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V. APPLICATION IN TRANSPORT CODES

The time evolution of the radial profiles of plasma current, den-
sity, temperatures, and angular momentum is governed by a highly
non-linear, coupled system of partial differential equations, describing
radial transport in the plasma core. Generally this system is too
complicated to solve fully explicitly from first principles with direct
numerical simulation, so assumptions have to be made to improve
tractability. Time scale separation between transport and turbulent
process time scales allows the system of equations to be decoupled
in mathematically and computationally decoupled modules. This is
illustrated in the 1D energy equation (in cylindrical coordinates for
simplicity) shown in Eq. (6). Analogs exist for the poloidal magnetic
flux diffusion equation, density equation, and momentum equation.
The transport flux qs and sources Qsðr; tÞ are typically calculated by
physics models under the assumption that the process time scale is
much less than the representative transport time scale, e.g., the particle
and energy confinement time for temperature and density profile evo-
lution. In this study, we focus on the energy and density transport as
these are the coefficients calculated by QLKNN,

3
2
@nsTsð Þ
@t

þ 1
r
@rqsð Þ
@r

¼ Qsðr; tÞ: (6)

We have implemented QLKNN as a transport module inside
JINTRAC and RAPTOR.22 In the current implementation, QLKNN
provides the main ion heat flux qi;1, electron heat flux qe and electron
particle flux Ce. For multiple ion species, we assume the same
GyroBohm heat flux for each ion species. This involves a multiplica-
tion by ion density, and, hence, leads to negligible impurity heat flux
for typical impurity densities. Contrary to RAPTOR which evolves
electron density directly, JINTRAC solves the ion density equations
for particle transport. Since the current version of QLKNN contains
only Ce, we thus assume for each ion species Ci ¼ ni

neZi
Ce, maintaining

ambipolarity. This limits QLKNN, which is then not applicable
for impurity transport or for multiple-isotope particle physics as in
Ref. 28. The next generation of QLKNN will include multiple-ion
transport. Finally, for numerical stability, we use either an effective
diffusion Deff or convection Veff, derived from the total particle flux,
depending on the flux direction and density gradient. Veff is used for
up-gradient particle transport and for low density gradients
ðj RLn j < 0:1Þ. Future work will aim to improve on these assumptions
by neural network fits on species dependent Di and Vi directly, which
is important for multiple-isotope fueling and impurity transport
applications.

Neural networks do not extrapolate well outside their training set
boundaries. In this work, this is trivial to detect as the training set was
a bounded regular hyperrectangle. We chose to clip the inputs to the
input layer of the neural network within the bounds of the hyperrec-
tangle with a margin of 5% on all sides. Alternative approaches are
also possible, such as training multiple neural networks to form a
“committee,” where extrapolation is detected from increased variance
of the committee predictions in zones with sparse or non-existent
data. This increase in variance arises from different local minima of
the weight optimizations due to random initialization. This is more
suitable for training sets which are not pre-selected hyperrectangles,
such as the training derived from experimental databases.17 We chose
not to implement this here due to the additional calculation times
involved and the trivial structure of our training set. Whether QLKNN

remains within the bounds of the training set during application
within integrated modeling can be found in post-processing.

A. QLKNN simulation results within integrated
modeling

We now compare QLKNN simulations to full QuaLiKiz within
integrated modeling for a representative set of three JET H-mode dis-
charges. The correspondence between QuaLiKiz and the experimental
profiles will not be discussed here, and on this point we refer
the reader to the citations where the original JINTRAC–QuaLiKiz
simulations were carried out for each of the cases. We focus on the
correspondence between QuaLiKiz and QLKNN as well as between
the implementations within JINTRAC and RAPTOR.

To judge the quality of the neural network regression and the
impact of the assumptions made, we show a comparison of QLKNN
and QuaLiKiz on the high performance JET baseline #9243613

within both JINTRAC and RAPTOR integrated modeling. The
JINTRAC–RAPTOR comparison further acts as a benchmark exercise
for correct coupling of QLKNN within the code suites. These simula-
tions correspond to an averaged 500ms time-window during
discharge flattop. A Gaussian process regression fit is performed on
the kinetic profile data, and the distribution average is used as initial
condition.13 The current, temperature, and density profiles are then
evolved over multiple energy confinement times until the temperature
and density profiles are in stationary-state and compared to the experi-
mental fits. As QLKNN is only applicable for turbulent transport in
the tokamak core, we evolve temperature and density only inside
qN;tor ¼ 0:85 and include a proxy transport coefficient for sawtooth-
induced transport in the deep core for all simulations in this work.13

Appendix I contains a full overview of the applied settings. We show
three simulations to investigate the QLKNN model performance in
different levels of increasing physics fidelity.

First we compare the implementation of QLKNN within
JINTRAC and RAPTOR on a benchmark case. In both RAPTOR and
JINTRAC, we prescribe the ICRH and NBI power density calculated
from the JET analysis chain, and a current density calculated from cur-
rent diffusion integrated modeling with prescribed experimental
kinetic profiles. A time-dependent equilibrium was calculated with
ESCO within JINTRAC modeling. An equilibrium EQDSK file corre-
sponding to the final time step was then generated, used within the
JINTRAC–RAPTOR benchmark runs themselves, and kept constant
during the runs. In JINTRAC, we use a grid in qN;tor of 25 points. As
RAPTOR uses a cubic spline base (order 3) compared to the finite
differences scheme of JINTRAC (order 2), we need less points in
RAPTOR to represent the same accuracy. As such, we use 252=3 � 9
points for qN;tor . Both codes use the same boundary conditions at
qN;tor ¼ 0:85 and the same initial condition as taken from the GP fit
of the experimental data. Neoclassical transport was not included.
Finally, a pure plasma (Zeff ¼ 1) was assumed to reduce any effect of
the different density equations being solved in RAPTOR (electrons)
and JINTRAC (ions), and the radiation power loss was set to zero
accordingly. We note two major implementation differences remain-
ing between the codes: first, the spatial base on which the equations
are solved, namely, a sum of spatial basis functions (RAPTOR) and a
finite difference scheme (JINTRAC), and the associated spatial
smoothness. Second, RAPTOR uses a fully implicit scheme, leveraging
analytical Jacobians of all equations, while JINTRAC is explicit using a
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dynamic time step and a predictor–corrector method to treat
nonlinearities.

The final profiles of these simulations can be found in Fig. 1. The
parameter of merit for QLKNN performance is the relative root mean
square (RRMS) difference of the predicted kinetic profiles compared
to the original QuaLiKiz runs. See Eq. (7), where the summation is
over JINTRAC simulation radial grid points. The RRMS of
the JINTRAC–QLKNN and RAPTOR–QLKNN runs are shown in
Table II and the final kinetic profiles and initial condition in Fig. 1,

RRMS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXqcore

i¼qBC

ðQLKi � ^NNi Þ2

Xqcore

i¼qBC

QLK2
i

vuuuuuuut : (7)

As is clear from the figure and RRMS, QLKNN performs remarkably
well both in JINTRAC (maximum 5.1% deviation from
JINTRAC–QuaLiKiz) and in RAPTOR (maximum 4.2% deviation

from JINTRAC–QLKNN). In both frameworks, this small hit in
accuracy comes with momentous speed increases. The JINTRAC–
QuaLiKiz run took 3.6h on 16 cores, while JINTRAC–QLKNN and
RAPTOR–QLKNN took only 15 s and 8 s, respectively, on a single
core, a speedup of three orders of magnitude. In JINTRAC, the evalua-
tion of QLKNN itself was no longer the bottleneck, so only a modest
speedup of 2 s was obtained by parallelizing over 4 cores. Conversely, in
RAPTOR, the evaluation of QLKNN and its Jacobian matrix is the
bottleneck, so further work will investigate utilizing MPI parallelization
in the RAPTOR–QLKNN implementation, toward real-time simulation
capability. Both simulations were run without using the MKL
acceleration.

Two caveats have to be kept in mind when comparing the speeds
of RAPTOR and JINTRAC. First, the implicit scheme of RAPTOR
allows for time steps far exceeding transport time scales without
numerical stability issues. However, to be able to capture transients,
we have set the time step for RAPTOR to 0.1 s. The Predictor–
Corrector JINTRAC scheme is prone to numerical instabilities when
the time step becomes too large. For QuaLiKiz, this resulted in a
maximum time step of 1� 10�3 s, which we also took for the
JINTRAC–QLKNN run. It is possible to increase the time step of
JINTRAC–QLKNN to 6� 10�3 s without resulting in instability, pos-
sibly by the smoothness of QLKNN in the unstable turbulent region
compared to QuaLiKiz, resulting in a runtime of 7 s on a single core.
Second, while the need to evaluate the Jacobian matrix of QLKNN
results on a longer evaluation time per time step, this allows RAPTOR
to compute derivatives of the final state (e.g., kinetic profiles) to
machine inputs (e.g., the ICRH input power), as well as derivative of
intermediate plasma states. These derivatives are invaluable in control
and optimization tasks and are relatively expensive to compute using
finite difference methods. The intermediate state derivatives can be
used to find time varying linearized models of the plasma dynamics.

We then increase physics fidelity by using a more realistic mix of
impurity isotopes, the inclusion of the ad hoc electromagnetic stabili-
zation rule,13 and solving the magnetic equilibrium self-consistently

FIG. 1. The final kinetic profiles of the JINTRAC–QuaLiKiz (solid) and JINTRAC–QLKNN (dashed-dotted) and RAPTOR–QLKNN (dot) simulations of JET shot #92436. Shown
are the final temperatures for the electrons (left, blue) and ions (middle, red) as well as the final electron density (right, blue). We also show the initial condition from GP regres-
sion in dashes. The simulations were done with low physics fidelity to aid the benchmark, most notably without rotation and with a pure plasma. The agreement between the
three simulations is remarkable, within 5.5% of each other. The QLKNN simulations were three orders of magnitude faster than the JINTRAC–QuaLiKiz one. Remaining small
differences between JINTRAC and RAPTOR are likely caused by the different numerical schemes, and are under investigation.

TABLE II. A comparison of the final kinetic profiles of JINTRAC–QuaLiKiz/QLKNN
and RAPTOR–QLKNN benchmark case for JET #92436. We use the relative root
mean square profile difference (RRMS) in the region where QLKNN dominates trans-
port, between the boundary condition qBC ¼ 0:85 and deep core qcore ¼ 0:212.
This simulation was done with lower physics fidelity to aid the benchmark, most nota-
bly a static equilibrium and a pure plasma without rotation. The differences between
QLKNN and QuaLiKiz in JINTRAC are very small, and also match
RAPTOR–QLKNN closely, all within 6%. However, QLKNN was three orders of mag-
nitude faster than the simulation with QLK.

Comparison

RRMS (%)

Ti Te ne qcore

JINTRAC–QuaLiKiz vs JINTRAC–QLKNN 3.6 5.1 1.2 0.212
RAPTOR–QLKNN vs JINTRAC–QLKNN 2.4 4.2 0.7 0.212
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with ESCO. These settings are described in detail in Ref. 13 where the
original JINTRAC–QuaLiKiz simulations were carried out. The final
kinetic profiles are shown in the left column of Fig. 2. In the right col-
umn, we include the effect of rotation in the outer-half radius of the
plasma4,13 using the QuaLiKiz native impact-of-rotation prediction for
QuaLiKiz, and for QLKNN the new QLKNN-rotation-rule as
described in Sec. III. The RRMS values are shown in Table III.

Even in these simulations further from the QLKNN assumptions,
the final kinetic profiles predicted by JINTRAC–QLKNN and
JINTRAC–QuaLiKiz agree very well. The maximum discrepancy is on
the order of 1%–15%. The JINTRAC–QLKNN simulations were sig-
nificantly faster, specifically for the full-physics case from around
7days of walltime on 16 cores for JINTRAC–QLKNN to around
30min of walltime on two cores for JINTRAC–QLKNN. This shows
the applicability of QLKNN to reproduce approximately QuaLiKiz
results for a fraction of the computational cost. The largest difference
between QLKNN and QuaLiKiz can be found in the full-physics cases
as shown in Table II. This discrepancy is mainly caused by the differ-
ent treatment of rotation as can be expected. While the inclusion of
rotation did lead to an increase in ne and Ti in the QLKNN simula-
tions, for this case the degree of stabilization is less than in QuaLiKiz
itself.

Next we show the general applicability of QLKNN in two more
JET shots. The first is the high collisionality baseline JET H-mode
scenario #73342,21,29 where the simulation corresponds to a
stationary-state during flattop, and the GPR fit time-window was
taken to be 500ms. The second case is high performance JET hybrid

scenario #92398, subject to DT extrapolation in upcoming cam-
paigns.15 To demonstrate the capabilities of JINTRAC–QLKNN for
dynamic evolution, this discharge was simulated during the density
buildup following the LH transition. The GPR fits for each snapshot
during the evolution was taken to be 50ms. Both cases were re-run
with JINTRAC–QuaLiKiz for this paper, with interpretive impurities,

FIG. 2. The final kinetic profiles of the JINTRAC–QuaLiKiz (solid) and
JINTRAC–QLKNN (dash-dot) simulations of JET shot #92436. Shown are the final tem-
peratures for the ions (top, red) and electrons (top, blue) as well as the final electron
density (bottom, blue). From left to right, we show three cases of increasing physics
fidelity: a reduced physics case, a more complete but rotationless case, and finally a
case with rotation. Note the excellent agreement between QLKNN and QuaLiKiz in all
figures although a larger discrepancy was found for the case with rotation. This is
expected as the treatment of rotation is different in QuaLiKiz and QLKNN.

TABLE III. The final kinetic profile differences between JINTRAC–QuaLiKiz and
JINTRAC–QLKNN for the simulations of JET shot #73342, #92398, and #92436. We
use the relative root mean square profile difference (RRMS) in the region where
QLKNN dominates transport, between the boundary condition qBC ¼ 0:85 and core
patch qcore. We show simulations without rotation (rotationless), as well as with rota-
tion (full-physics). The differences between QLKNN and QuaLiKiz are small for the
rotationless case, and larger for the full-physics case, mainly caused by the different
treatment of rotation between QuaLiKiz and QLKNN.

RRMS (%)

qcoreSimulation Ti Te ne

73342 rotationless 0.5 1.6 1.1 0.25
73342 full-physics 4.1 3.4 2.8 0.25
92398 rotationless 12 10 7 0.15
92398 full-physics 13 10 9.9 0.15
92436 rotationless 3.1 7.5 0.7 0.212
92436 full-physics 2.8 15 14 0.212

FIG. 3. The final kinetic profiles of the JINTRAC–QuaLiKiz (solid) and
JINTRAC–QLKNN (dashed-dotted) simulations of JET shot #73342. Shown are the
final temperatures for the ions (top, red) and electrons (top, blue) as well as the
final electron density (bottom, blue). Both cases were run with interpretive impurities
without rotation (left) and with rotation (right). The QLKNN predictions lie close to
the QuaLiKiz ones, on the order of 4% at maximum, which show the generality of
applying QLKNN as quicker surrogate for the full QuaLiKiz model. We do note the
underprediction of the density profile by QuaLiKiz. This is a known issue at high col-
lisionality, which is under investigation by the QuaLiKiz team, and a revision of the
collisionality model will be included in future releases.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 022310 (2020); doi: 10.1063/1.5134126 27, 022310-6

Published under license by AIP Publishing

https://scitation.org/journal/php


meaning that the impurity profiles were constrained to match the
main ion profile peaking, consistent with the QLKNN output
assumptions.

The final kinetic profiles and comparison between QuaLiKiz and
QLKNN for #73342 are shown in Fig. 3 and Table III, and for #92398
in Fig. 4. For #92398, we also show the temperature and density tem-
poral evolution at three radial locations in Fig. 5.

Again we note the excellent agreement between JINTRAC–
QuaLiKiz and JINTRAC–QLKNN. The rotationless #73342 case
matches excellently within 2%. #92398 matches less well in compari-
son, around 10%. While still good, we expect the match to improve by
expanding the QLKNN input dimensionality, most notably a better
capture of different impurity species and Shafranov shift, which are
both planned in future work. #73342 is with carbon wall (as per
QLKNN training set assumptions) as opposed to ITER-like wall in
#92398, and #92398 is high performance (high-b); hence, it has a
more significant Shafranov shift. We estimate that by expending 5–10
MCPUh it would be feasible to expand the range of the QuaLiKiz
training set database sufficiently. Note that the better agreement
between JINTRAC–QuaLiKiz and JINTRAC–QLKNN in the #92436
case for the rotationless case compared to #92398 may simply be coin-
cidental as the impact of the input dimensions not included in
QLKNN can “cancel out.”

For the cases with rotation, the impact on #73342 is small sim-
ply due to low rotation in this high-density case. For #92398, the
agreement between the native QuaLiKiz and QLKNN rotation rules

is excellent, both boosting ne and Ti significantly, and by the same
magnitude. Note that Te is barely impacted by rotation since the Te

profile is predicted to be clamped by ETG turbulence for this dis-
charge, both in the original QuaLiKiz and the QLKNN simulations.

The dynamic behavior of QLKNN for #92398 is shown in Fig. 5.
The match between JINTRAC–QuaLiKiz and JINTRAC–QLKNN is
excellent, most notably the density build-up in the lower plot, staying
within a discrepancy of 4% at mid-radius for the whole duration.
However, the small differences between the two models compound
from the outer-radius inward and over multiple time steps, resulting
in the relatively larger but still acceptable discrepancy for the final con-
dition in Fig. 4. While it is factor 4 less compared to #92436, the
speed-up gained in the #92398 simulation is still very significant, from
11h on 16 cores to 8min on 2 cores.

B. Physics-unaware network performance

Now that we have confirmed JINTRAC–QLKNN reproduces
JINTRAC–QuaLiKiz well, we show results of a physics-unaware neu-
ral network model within JINTRAC. This model was trained on the
same data as QLKNN, but it was trained directly on the total qi;e and
Ce instead of training on separate mode contributions, and did not
employ the decomposition of fluxes to leading flux and flux ratios.
Additionally, we used a standard machine learning cost function, as in
C3. The final profiles of these physics-unaware network simulations
can be found in Fig. 6.

Although there are cases where the physics-unaware networks
perform (coincidentally) very similarly to QLKNN, notably for Ti and

FIG. 5. A time-dependent JINTRAC–QLKNN simulation without rotation of JET
#92398. Note the density buildup that is very well captured by QLKNN. The RRMS
differences at q ¼ 0:5 for the full time-evolution are Te ¼ 8%; Ti ¼ 9%, and
ne ¼ 4%.

FIG. 4. The final kinetic profiles of the JINTRAC–QuaLiKiz (solid) and
JINTRAC–QLKNN (dashed-dotted) simulations of JET shot #92398. Shown are the
final temperatures for the ions (top, red) and electrons (top, blue) as well as the
final electron density (bottom, blue). Both cases were run with interpretive impurities
without rotation (left) and with rotation (right). Here the disagreement between
QuaLiKiz and QLKNN is larger than previous cases, but still within 13%. Future
improvements to the QLKNN model are expected to lower these differences, but
this result shows that even in this state the QLKNN model can be used for quick
exploratory studies.
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ne in #92436, clearly QLKNN performs better in almost all cases. The
RMS errors on the full (stable þ unstable) test set were not notably
high, namely, 1.1, 1.7, and 0.2 GB for qe, qi, and Ce, respectively. As
such, we recommend looking beyond traditional measures of goodness
when judging the quality of neural networks representing physical
models.

VI. CONCLUSIONS AND OUTLOOK

We have shown a method to train physics-based neural networks
as turbulent transport models, which we applied to generate a surro-
gate model for the fast quasilinear gyrokinetic transport model
QuaLiKiz. Utilizing HPC, we generated a large dataset of 3� 108 flux
calculations, which was used as a training set for fully connected feed
forward neural networks for regression. Prior physics knowledge of
the underlying model features was incorporated by using a customized
cost function, choosing appropriate training targets, and looking
beyond traditional measures of goodness. This surrogate model,
QLKNN, has been integrated into two integrated modeling suites:
JINTRAC and RAPTOR. We applied the JINTRAC–QLKNN ensem-
ble to carry out predictive dynamic simulations of core transport in
three JET shots, covering a representative spread of H-mode operating
space. We have also shown one similar simulation using
RAPTOR–QLKNN in good agreement with JINTRAC–QLKNN. This
benchmark was important for verifying the implementation of
QLKNN in both code suites. The RAPTOR–QLKNN simulation cal-
culation time was similar to JINTRAC–QLKNN in spite of the larger
RAPTOR time steps. This was due primarily to the extra cost of calcu-
lating the derivatives of the output of the neural networks with respect

to the input as needed for the fully implicit solver as well as the extra
calls needed for the implicit scheme Newton solver. However, these
derivatives are invaluable in control and optimization tasks, and there
is potential for further parallelization to bring down the evaluation
time by a further order of magnitude toward real-time evaluation. The
steady-state and dynamic kinetic profiles match those of the full
QuaLiKiz simulations closely, while being up to five orders of magni-
tude faster to run.

The largest discrepancy between QLKNN and QuaLiKiz is
caused by the different rotation rules employed between QLKNN and
QuaLiKiz. The rotationless cases studied in this work showed differ-
ences from 1% to 10% in the final kinetic profiles. The rotation cases
studied showed mildly larger differences ranging from 3% to 15%. The
rotation discrepancy was more prevalent for the #92436 case studied.
An improved treatment of rotation will be part of future work, for
example, by implementing the quench rule on the individual growth
rates in the spectrum before evaluating the saturation rule, thus cap-
turing spectral shifts.

Future work will improve the QLKNN model by extending to
larger input space, focusing on the impurity density gradient, and
multiple-ion transport important for multiple-isotope fuelling applica-
tions and impurity transport. Additionally, using a robust method to
fit a large amount of experimental kinetic profiles,13 one can base a
training set on experimental data, instead of the hyperrectangle meth-
odology described here. This allows for more input dimensions to be
used as well as including rotation by using the native QuaLiKiz rota-
tion model, instead of a rotation rule as described here. There are also
other techniques to include physics information in neural networks.
The “late fusion” method can be used to include functional informa-
tion in the network architecture itself, for example, by constraining the
mapping to a critical gradient model, and has already been successfully
used in a proof-of-principle QuaLiKiz surrogate model.30 Finally,
instead of fitting the transport fluxes directly with a neural network,
more primitive linear characteristics can be fit for the entire spectrum,
e.g., growth rates, frequencies, phase-shifts. The transport flux calcula-
tions would then arise from application of a nonlinear saturation rule
in post-processing of neural network outputs, which is a trivially fast
calculation, allowing the rapid testing and evaluation of multiple satu-
ration rules.

Beyond the model improvements, work can now commence on
extensive experimental validation of QLKNN predictions, as well as
using QLKNN for scenario optimization and design. As shown in this
work, physics-based neural network surrogate models can enable first-
principle dynamic transport simulations at unprecedented speeds,
opening up new avenues for tokamak scenario optimization and real-
time control applications.
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APPENDIX A: PER-MODE TRANSPORT FLUX
CONTRIBUTION CALCULATION

To aid with successful neural network regression, as discussed
in the subsequent sections, QuaLiKiz was modified to additionally
output fluxes and transport coefficients arising solely from individ-
ual classes of modes, i.e., ITG, TEM, and ETG. Mode identification
is determined by mode number (ion or electron scale) and mode
frequency (ion or electron direction). The ETG electron heat flux is
defined as the qe arising from the spectrum khqs > 2. To separate
ITG and TEM fluxes, the saturation rule was evaluated twice at ion
scales for electron modes and ion modes separately. This is different
from the regular QuaLiKiz scheme, where the saturation rule is
evaluated once for all modes at ion scales. This can lead to inconsis-
tencies comparing regular QuaLiKiz and these newly created trans-
port flux and transport coefficient outputs. In other words, for
saturation rule SAT and ITG spectrum kITG and TEM spectrum
kTEM, SATðkITG [ kTEMÞ 6¼ SATðkITGÞ þ SATðkTEMÞ. However, in
practice, the difference between summing the separate ITG and
TEM fluxes together (in cases where they coexist in the spectrum)
compared to their self-consistent total evaluation in the saturation
rule is typically less than 20%. To further extend the general appli-
cability of the neural networks, we use a form of GyroBohm nor-
malization for all transport coefficients in this work as defined in
Appendix B.

APPENDIX B: QLKNN GYROBOHM
NORMALIZATIONS

We define here the GyroBohm normalizations used by
QLKNN. First, the normalizations of the predicted transport fluxes
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The transport coefficients are denoted with SI for fluxes in SI
units and GB for fluxes in GyroBohm units. a and R are the
midplane-averaged minor and major radii of the last-closed-flux-
surface. Furthermore, qe is the electron charge, B0 is the magnetic
field at the magnetic axis, mp is the proton mass, and Ai;0 is the
atomic number of the main ion. Unless noted otherwise, all radial
derivatives are against the midplane-averaged minor radius
r � rminor . For convenience, we define the normalized length scales
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The normalized collision frequency is as follows:
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where qe and me are the electron charge and mass, respectively, and
finally the effective ion charge Zeff
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APPENDIX C: INTRODUCTION TO NEURAL
NETWORKS

Neural networks are universal approximators and hence a
powerful tool for regression.31 In this work, we apply fully con-
nected feed-forward neural networks to a supervised regression
problem, in which we reproduce the input-output mapping of the
QuaLiKiz code. The basic building block of a FFNN is the neuron,
with activation function f, as shown in Fig. 7.

In a FFNN, neurons are distributed into layers, with each neu-
ron in a layer taking the output of each neuron in the previous layer
as input. Most FFNNs have at least an input layer in this case taking
the physical input features described in Sec. II, a hidden layer cap-
turing the to-be learned hidden relationships and an output layer,
combining the learned relationships into a target. A FFNN with a
single hidden layer is able to reproduce any sufficiently smooth

FIG. 7. Schematic and mathematical representation of a neuron. A neuron takes
multiple inputs, multiplies each input with a weight wi, sums the results, adds a bias
b, and applies an activation function f. Generally f is a nonlinear function.
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input-output mapping up to arbitrary error,32 but in practice train-
ing a network with at least two hidden layers has better regression
and convergence properties.

We use the notation of Ref. 33, namely, l as the number of
the current layer, j for the number of the neuron in the current
layer, and k the number of the neuron in the previous layer. A
neuron is then fully defined by its weight w, bias b, activation
function f, and output or activation a, see Fig. 8, or the one-
neuron as follows:

alj ¼ f
X
k

wl
jka

l�1
k þ blj

� �
: (C1)

These layers can be arbitrary combined. For example, we show the
explicit formula for a two-hidden layer neural network with
N-dimensional input xin and M-dimensional output y in Eq. (C2).
The output layer has a linear activation function which is simply
the identity function f ðxÞ ¼ IðxÞ ¼ x, as is usual for regression
problems. We also assume each hidden layer has the same nonlin-
ear activation function r,
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The weights and biases of the network are determined by mini-
mizing some cost function or loss function C, called training.
Assuming we have S input-output mapping samples, we collect
these in an N� S input matrix and M� S output matrix. Before
training the full dataset is generally split in a training set, which is
used to update the weights and biases, a validation set which is used
to check generalization of the neural network model after every step
of the optimizer algorithm, and a test set which is not used at all
during training, and is used to check generalization across any tun-
able parameters related to the training process described later. The
weights and biases are updated using an optimizer, usually a variant
of (mini-batch) gradient descent.34 For mini-batch gradient descent,
the training set is further split in batches of size B, which is itself a
hyperparameter to be tweaked. A small batch size will generally be
slower to converge as some vectorization of internal calculations
is lost, but the resulting model has better generalizing properties.35

A common choice for measure-of-goodness and regularizing term
for regression tasks is the mean square error and L2-regularization,
respectively. Now we can write down a general formula for the cost
function, extended in this work in Appendix E, where yi is the net-
work prediction for a single sample and ŷ i is the real value in the
dataset,

C ¼ Cgood þ kreguCregu; (C3)

C ¼ 1
B

XB
i

ðŷ i � yiÞ2 þ kregukWk22; (C4)

where kWk2 denotes the matrix L2-norm of all the weights com-
bined. The derivative of the cost function with respect to its tunable
parameters can be analytically determined using the chain-rule in
what is called backpropagation. This can then be used in the update
of the gradient descent, generally of the form

hnþ1 ¼ hn � crCðhnÞ; (C5)

where h are the tunable parameters (w and b) and c is the step size
or learning rate, another hyperparameter to be optimized. The
training algorithm needs an initial guess h0 to start training, which
is in our case a random Gaussian distribution with mean 0 and
standard deviation 1 for all weights and biases. The weights and
biases are updated every batch B. After the optimizer has seen the
full training set, i.e., all batches, this is called an epoch. The resulting
neural network is then used to determine the loss against the full
validation set, which is used to determine convergence. If conver-
gence is reached, the training is stopped and the neural network is
saved. If not, all samples are re-shuffled and new batches are taken,
repeating this procedure until convergence is reached. In this work,
we use early stopping to determine convergence. Early stopping sets
a bound on the amount of epochs the loss of the validation set is
allowed to increase, a hyperparameter called patience. Early stop-
ping prevents overfitting and gives a robust stopping criterion.

This method of training is quick even for a large amount of
parameters as rCðhnÞ is analytical and efficient to calculate. It is
thus also quick to calculate the derivatives of the final trained neural
network with respect to its inputs dy=dx. This is highly useful for
our application, when the neural network turbulent surrogate mod-
els are integrated into implicit PDE solvers (solving the transport
equations), used for trajectory control applications, or applied to
tokamak scenario optimization.

APPENDIX D: PHYSICS-BASED TRAINING TARGETS

The identical critical thresholds for all transport channels were
forced by a careful choice of training targets. The transport coeffi-
cients were separated into a leading flux and flux ratios. For exam-
ple, for TEM fluxes, the leading flux is the electron heat flux qe,
resulting in the flux ratios qi=qe and Ce=qe. Networks are then
trained on the leading flux and flux ratios separately, resulting in a
leading flux network, and flux ratio networks. In the transport
model implementation, the flux ratio predictions and leading flux
predictions are multiplied together to re-obtain the original trans-
port fluxes qi and Ce. This procedure is sketched in Fig. 9. The fact
that the leading flux is zero in the stable region (below the critical

FIG. 8. A schematic representation of a two-hidden-layer feed-forward neural net-
work. wl

jk is the weight of the connection from the kth neuron in the ðl � 1Þth layer
to the jth neuron in the lth layer. Then, blj is the bias of the jth neuron in the lth
layer. The final network output is the activation of the jth neuron in the lth layer.
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threshold) guarantees that the thresholds of all transport channels
are identical. Increased smoothness and quality in the regression is
achieved by removing training set outliers through data filtering
(see Appendix F). The mode separation technique works well with
QuaLiKiz, where the ITG, TEM, and ETG modes are always clearly
separable and identifiable. This technique may be more challenging
in higher-fidelity models, or in future QuaLiKiz extensions, where it
is uncertain if multiple additional co-existing modes (e.g., micro-
tearing-modes, kinetic ballooning modes, fast-ion driven modes)
are always clearly identifiable and separable.

Splitting the training targets by mode (ITG, TEM, ETG) and
training a single network for each was found important for obtain-
ing flux ratio regressions of sufficient quality. Letting a single net-
work predict multiple channels was found to introduce cross talk
between the channels, resulting in the same averaged total error,
but a different error per channel. For example, depending on the
random initialization, ion heat flux would be better than average
and the electron heat flux worse than average. Then, for the next
network, with different initialization, the electron heat flux would
be better than average and vice versa. As no averaging between net-
works was used in this work, we chose to separate the transport
channels in separate networks.

Flux ratio network training for total fluxes (i.e., corresponding
to the original QuaLiKiz output, as opposed to each of the separated
ITG, TEM, ETG flux outputs) was unable to converge to a result of
sufficient quality for a robust surrogate turbulence model, even after

extensive hyperparameter scans. This is likely due to sharp disconti-
nuities present in the flux ratios when not separating the fluxes.
This is apparent in a TEM–ITG transition, for example in a scan of
R=LTi as shown in Fig. 10. The boundary between ITG and TEM
regimes for this specific parameter set is � R

Ti

dTi
dr � 3:1. Above this

value (ITG regime), qi=qe > 1. Below this value (TEM regime),
qi=qe 	 1. The transition between these regimes is extremely sharp,
a feature challenging to capture by a regularized neural network.
Instead, we use the mode-specific fluxes calculated by QuaLiKiz
described in Sec. II, where the mode-specific flux ratios within the
separate ITG and TEM regimes are more uniform compared to the
total flux ratio. The output of the per-mode predicting networks is
then added together in the transport model implementation in post-
processing using an unweighted sum. This results in a small differ-
ence between QuaLiKiz predicted fluxes and QLKNN predicted
fluxes in regions where ITG and TEM coexist, as mentioned in
Sec. II. Fitting the separate modes results in clearer thresholds with-
out transition regions, enabling the use of the modified cost func-
tion in E, which results in a sharper transition at the threshold. As
seen in Fig. 10, the neural networks fits (solid and dashed lines)
from the combined ITG þ TEM networks accurately reproduce the
non-trivial structure of the ITG–TEM transition.

APPENDIX E: PHYSICS-BASED COST FUNCTION

Training a neural network means optimizing the weights and
biases of the network to minimize a cost function C, which typically

FIG. 9. Schematic overview of the Ce and qe predicted by a combined leading flux
and ratio-predicting neural network for TEM fluxes. Three separate FFNNs: one
predicting the leading flux qe and two ratio-predicting network predicting Ce=qe and
qi=qe are combined to a network ensemble that predicts Ce, qe, and qi.

FIG. 10. The QuaLiKiz predicted total heat fluxes for electrons qQLK;e;tot and ions
qQLK;i;tot for multiple values of R

LTi
, while keeping the other input parameters constant

(pluses and crosses). We also show neural networks fit with the methodology
described in Sec. IV, denoted with NN and TEM/ITG for networks trained on the sep-
arate TEM and ITG fluxes, respectively. Important to note is the capture of sharp
transport characteristics around � R

Ti
dTi
dr � 3:1. Note the excellent quality of regres-

sion throughout. The discrepancy for the highest R
LTi

point is due to it being filtered

out of the training set due to non-experimentally relevant high flux, see Appendix F.
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compares for each set of inputs, the neural network output to
desired targets—in our case the QuaLiKiz input–output mapping.
Typically the cost function consists of a measure of goodness-of-fit
and a regularizing term as already shown in Eq. (C3). We have cus-
tomized the cost function for our application beyond this standard
implementation, to impose prior physics knowledge of the mapping
structure into the system. This prior knowledge consists of sharp
instability thresholds, zero flux in the region where no instabilities
are predicted, and identical transport flux thresholds for all trans-
port channels. This last point has been treated through the leading-
flux and flux-ratio paradigm introduced in Appendix D. We now
summarize the other two.

The sharpness of the critical threshold is achieved by only
including the unstable points (where instabilities are predicted)
in the measure of goodness-of-fit Cgood for the leading flux
regression. Otherwise, if we include the zero flux points explic-
itly, then due to regularization, some smoothing at the discontin-
uous critical threshold region is inevitable, leading to a loss of
accuracy in the regression. By only including the unstable points,
the leading flux neural network predictions are free to extrapolate
to negative fluxes below the critical threshold, which are then
clipped to zero in the transport model implementation, leading
to the desired sharp critical threshold behavior for all transport
channels.

We then wish to avoid any possible FFNN extrapolation to
spurious non-zero fluxes in the stable region below critical thresh-
old. This is done by controlling the allowed range of extrapolation
in the stable region. We add an additional penalty term Cstab in the
cost function for the leading flux regression, for samples predicted
to be stable by QuaLiKiz. This penalty term punishes positive
FFNN predictions in ostensibly stable regions while remaining zero
for negative FFNN predictions in the stable region (which are then
subsequently clipped to zero).

The customized cost function is summarized in Eq. (E1). The
free parameters kregu, kstab, and cstab, as well as other hyperpara-
meters like network topology, are then optimized using a simple
grid search. To test generalization, the dataset is split in a test set of
5% never seen during training, and a validation set of 5% used dur-
ing training to avoid overfitting on training data. The remainder is
used as training set. So, for each network prediction NNi relating to
a QuaLiKiz calculation QLKi, we have for all n samples and k
weights

C ¼ Cgood þ kreguCregu þ kstabCstab; (E1)

Cgood ¼
1
n

Xn
i¼1
ðQLKi � NNiÞ2; if QLKi 6¼ 0

0; if QLKi ¼ 0;

8><
>: (E2)

Cregu ¼
Xk
i¼1

w2
i ; (E3)

Cstab ¼
0; if QLKi 6¼ 0

1
n

Xn
i¼1

NNi � cstab; if QLKi ¼ 0:

8><
>: (E4)

The final values of the free parameters of this hyperparameter opti-
mization exercise can be found in Table V.

APPENDIX F: NETWORK TRAINING SET DATA
FILTERING

Inaccurate data in the training set can have a deleterious
impact on the neural network training by overly biasing the regres-
sion toward an inaccurate representation. Such inaccuracies can
arise due to unexplored corners in parameter space present in the
QuaLiKiz scan, outside the commonly used (and experimentally
relevant) parameter regimes of the code. While several code
improvements were already made for some of these regimes on a
case by case basis, survey by eye of the entire dataset was not feasi-
ble due to database size. In addition, due to the relatively low accu-
racy (2%) demanded on the internal QuaLiKiz cubature routines to
increase calculation speed, numerical errors related to occasional
underestimation of integration relative accuracy can lead to spuri-
ous flux calculations. Therefore, a conservative approach was taken
in filtering the training set to remove untrusted QuaLiKiz flux cal-
culations. As the dataset is generally too large for memory, the dask
framework36 was used to allow for general out-of-core processing of
arbitrarily large array-like structures. For the networks trained in
this work, data points were deemed untrusted and not included in
training, according to the following heuristic criteria, which all indi-
cate an internal integration routine might have failed. The percent-
age of the dataset filtered at each step is indicated in the list below.
The dataset was generated with QuaLiKiz v2.4.0. Due to continuous
improvements, these numbers may be decreased in later versions.
Each filter is applied consecutively, so multiple filters might filter
out the same sample. The quoted percentages are with respect to
the total dataset size.

• Difference between total particle flux and derived particle flux
from diffusion and convection transport coefficients is more than

50%, i.e., j Cs�ð�Dsdns=drþVsnsÞ
Cs

j > 0:5 (2.32%).
• Total heat flux was negative (3.92%).
• Difference between unweighted sum of ITG þ TEM mode con-
tributions, and self-consistent total flux calculation, was more
than 50% (0.08%).

• Ambipolarity was violated by more than 50% (1.75%). Note that
the QuaLiKiz dispersion relation solution is intrinsically ambipo-
lar, but cases of reduced convergence in the separate quasilinear
flux integrations for ions and electrons can occasionally lead to a
loss of ambipolarity. Transport solvers solve for either the elec-
trons or the ions, assuming ambipolarity, so this occasional loss
in transport model ambipolar ouputs for isolated calls does not
lead to a loss of ambipolarity in practice.

• Any transport coefficient is non-zero but predicted to be smaller
than 10�4 in GyroBohm (GB) units (3.14%).

To increase prediction quality in experimentally relevant
regimes, all points with either total ion or electron energy fluxes
larger than 33 (in GB units with the minor radius as length scale)
were removed (6.6%), which is far beyond typically encountered in
core plasmas. Additionally it was found essential for the flux-ratio
predicting networks to remove low and high fraction values. These
were removed by visual examination of the data histograms and
determining cut-off points corresponding to tails of the distribu-
tions. With the percentage of points dropped in brackets, these
were determined as follows:
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0:05 < qe;ITG=qi;ITG < 1:5ð0:73%Þ; (F1)

0:02 < jCe;ITG=qi;ITGj < 0:6ð1:83%Þ; (F2)

0:05 < qi;TEM=qe;TEM < 2:0ð24:06%Þ; (F3)

0:03 < jCe;TEM=qe;TEMj < 0:8ð69:52%Þ: (F4)

Note that the TEM filtering bounds are likely too strict, and will
be improved upon in further work. None of the plasmas shown in
Sec. VA to test QLKNN within integrated modeling display TEM
modes.

APPENDIX G: PHYSICS-BASED MEASURES OF
GOODNESS

Performance indicators are a critical tool for differentiating the
quality of different neural networks, trained with different hyper-
parameters, to assess the optimal networks to use in our application.
In contrast to classical regression tasks, the final loss—meaning the
final value of the optimized cost function—is not the key perfor-
mance indicator of the trained network. Instead, for our application,
how well the trained neural network performs as a transport model
within integrated transport modeling is the most important.
However, using the integrated model directly in the training pipe-
line is cumbersome and computationally expensive. Instead, we
define metrics relating to the aforementioned capture of known
physical features and use these in conjunction with the classical test
loss to judge the quality of the trained networks after training. To
do this we take 1D slices in the main driving gradient (for each
mode) from the full dataset and let the network predict over the
range of this slice. The main driving gradients are taken to be the
electron temperature gradient for TEM and ETG, and the ion tem-
perature gradient for ITG. The full dataset contains 2:4� 107 such
slices, but taking 5% was sufficient to statistically differentiate
networks with different hyperparameters. We first define for each
slice:

• neural network critical gradient cNN;crit : the location where the
neural network leading flux predictions cross from positive to
negative fluxes corresponding to the transition from unstable to
stable QuaLiKiz regions;

• spurious stable prediction cspur: the first encountered point in the
QuaLiKiz stable region, when descending from high gradient to
low gradient, where the neural network predictions spuriously
transitions from negative flux (clipped to zero in the transport
code implementation) to positive flux; and

• QuaLiKiz critical gradient proxy cQLK;crit : the midpoint between
the gradient slice gridpoints corresponding to the transition from
zero to positive fluxes in the original QuaLiKiz data.

Using these quantities, we found the following measures to be
important:

• no threshold fraction: the percentage of slices where QuaLiKiz
predicts a threshold (e.g., has a zero-flux-crossing), and QLKNN
does not;

• spurious flux fraction: the percentage of slices where QLKNN
predicts spurious flux in the stable region;

• threshold misprediction: the mean absolute distance between the
QuaLiKiz and QLKNN thresholds 1

n

Pn
i jcNN;crit � cQLK;crit j;

• threshold mismatch: the mean absolute distance between the pre-
dicted thresholds of two transport channels, for example,
between ions and electrons 1

n

Pn
i jcNN;e;crit � cNN;i;crit j. Necessarily

zero for the QLKNN methodology;
• unstable zone smoothness: the smoothness in the unstable zone
as defined from the second derivative with respect to the driving
gradient: 1

n

Pn
i j @2x

@ðR=LTsÞ2
j; if R=LTs > cNN;crit . This strongly

depends on the regularization hyperparameter; and
• spurious distance, or the relative distance of spurious stable flux
prediction and predicted threshold cNN;crit�cspur

cNN;crit
.

An overview of these distances is shown in Fig. 11. A trained
network never has an absolute minimum in all these metrics simul-
taneously, so instead a trade-off is made. In this work, we have not
attempted to unify these metrics in a single value. Instead, the met-
rics are used as guidance to select a small number of networks that
are then tested inside the integrated model. This adds some poten-
tial bias to the process, and future work would profit from investiga-
tion of objective and quantitative measures of goodness for trained
networks. The metrics for the final implemented networks can be
found in Table IV. All these metrics for measures of goodness end
up very similar both for the leading flux network and their associ-
ated ratio network because of the choice of training targets
described in Appendix D. Finding minimum required values of the
metrics is outside the scope of this work, but we note the low per-
centage of stable flux predictions for all networks, and the low val-
ues for threshold mismatch. Because of the low percentage of stable
flux predictions, the relative spurious distance is thought to be of
less importance, while the smoothness was assumed to be sufficient
by visual inspection of many neural network predictions on random
slices. Finally, while the measures of goodness for the TEM net-
works are not as good as the others, we found it encouraging
enough to implement them in the later-described transport models.
However, for future work improving these networks specifically
would be beneficial.

FIG. 11. Predictions of the ITG driven heat flux for the ions (red) and electrons
(blue). We show three types of networks, networks trained using a standard RMS
error on both the stable and unstable points (dashed-dotted, left) and only on the
unstable points (dashed, left). These networks show clear mismatch between trans-
port channels and QuaLiKiz prediction, as well as a small but finite prediction of
fluxes in the stable region. The physics-based neural network (right) have no mis-
match between transport channels, a sharper threshold closer to the QuaLiKiz pre-
diction, as well as no prediction of flux in the stable region.
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APPENDIX H: NEURAL NETWORK TRAINING
PIPELINE

The networks were trained using the TensorFlow37 framework.
TensorFlow is an open source framework allowing various machine
learning algorithms to be run efficiently on heterogeneous machines,
both for CPU and for GPU architectures. The framework can be used
to train neural networks out-of-the-box, but as it is a general frame-
work care has to be taken that the use-case it is applied to matches the
expectations of the framework. In this work, we have identified and
worked around two limitations of the TensorFlow framework at time
of writing. First, TensorFlow is most commonly used for deep learning.
In deep learning, the amount of training samples vs the size of the net-
work, and thus its evaluation speed, is relatively small. In this work,
the networks are shallow and the amount of training samples large. As
such, we have implemented a simple but shuffling algorithm using
numpy,38 which is factor 2 faster for this application. This results in
1.25� (CPU) to 2� (Tesla P100 GPU) reduction of training time.
Second, TensorFlow uses its own proprietary format to save the
trained neural network weights and biases to disk. This would mean
any integrated framework would need to depend on TensorFlow/
python to use the neural network predictions. This is inconvenient and
non-performant for many integrated frameworks, especially if they are
in MATLAB (RAPTOR) and Fortran (JINTRAC). Instead, we wrote a
lightweight communication format using JSON between TensorFlow,
and a re-implementation of the network in Fortran with wrappers for
Python and MATLAB. Using these MKL accelerated native Fortran
functions, the baseline QLKNN model, seven networks with three
layers and 128 neurons each for 24 radial points, can be evaluated
within 1.4ms on a single core or 60ms if the derivatives of the neural
network output with respect to the neural network inputs are also eval-
uated. This can be accelerated to 0.3 ms and 9ms respectively by paral-
lelizing over 7 cores using MPI. These timings were obtained on a
Intel(R) Xeon(R) CPU E5-2665 0 at 2.40GHz. The FFNN and
QLKNN wrappers are freely available at GitLab.com.39

Neural network training involves optimizing training hyperpara-
meters. While many algorithms to optimize hyperparameters exist, the
authors are not aware of a commonly used readily available framework
to do this. As such, we have written a thin wrapper around TensorFlow,
using a PostgreSQL database and Spotify’s Luigi framework40 to interact
with supercomputer job schedulers and train, validate and analyze net-
works trained with the QLKNN training framework. This allows to
setup simple hypergrid hyperparameter scans. For the dataset used in
this work we have found optimal hyperparameters which work well for

a dataset of reduced 7D space (fixing Zeff ¼ 1 and �� ¼ 1� 10�3), also
work sufficiently well for networks trained on the full 9D space.
Additionally, hyperparameters optimal for ITG neural networks were
found to work well for networks for the other modes in exploratory
hyperparameter scans. This brings down the training time from 24h
per network to approximately an hour. Using this property, we have
done wide scans of the following hyperparameters for qi;ITG, resulting in
over 1000 trained neural networks.

This resulted in the optimal hyperparameters shown in Table
V. All networks were trained with RMSE as measure of goodness
and L2 and early stopping as regularization, using the ADAM algo-
rithm.41 The hyperparameters were found by doing a wide scan for
the leading fluxes on a reduced 7D dataset. These were then refined
by a smaller scan on the full 9D dataset, resulting in the same opti-
mal 7D values. The obtained network weights and biases are freely
available on GitLab.42

APPENDIX I: SIMULATION SETTINGS

In this appendix, we show relevant JINTRAC and RAPTOR
settings for all runs in Table VI and the associated run timing in
Table VII. The isotope mix of the non-benchmark simulations can
be found in Table VIII. Finally, the used proxy-sawtooth transport
patches can be found in Tables X–XII. For numerical stability, we
add a small BgB transport fraction, as shown in Table IX. We add
inner core transport as shown in Tables X–XII. Finally, we show the
used relevant code versions in Table XIII and the JINTRAC
archived runs in Table XIV.

TABLE V. Results of hyperparameter optimization. All networks were trained with
the ADAM algorithm with learning rate a ¼ 0:001 and decays b1 ¼ 0:9 and
b2 ¼ 0:999, not optimized in this work. A test set of 5% was kept separate during
this optimization.

Variable Optimized value

Number of layers 3
Neurons per layer 128
Early stopping patience 15
L2 regularization strength kregu 1 � 10�5

Stability positive scale kstab 1 � 10�3

Stability positive barrier Cstab 5
Validation fraction 5%

TABLE IV. An overview of the measures of goodness as described in Appendix G: The percentage of slices with no threshold (No thresh frac) and without spurious flux predic-
tions (No spurious frac), the absolute threshold mismatch (Abs thresh mismatch), relative spurious flux prediction distance (Rel spurious dist), and smoothness in the unstable
zone (Unstab zone smooth). These quantities are shown for the three leading flux networks qe;ETG; qe;TEM , and qi;ITG. These statistics were taken on a reduced 7D dataset,
fixing Zeff ¼ 1 and �� ¼ 1� 10�3. No attempt is made to combine these measures of goodness into a single final value, nor is currently known what the upper and lower
bounds are. However, as shown later in this work, these values were found sufficient for good model performance in integrated modeling. The RMS error was calculated on the
unstable 9D test set with values higher than 33 filtered out.

RMS test (GB) No thresh frac (%) No spurious frac (%) Abs thresh mismatch Rel spurious dist (%) Unstab zone smooth

qe;ETG 2.0 3.3 97.7 �0.38 �0.44 0.017
qe;TEM 1.8 14.3 98.6 �0.31 �0.70 0.008
qi;ITG 2.3 4.2 99.2 �0.26 �0.52 0.0300
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TABLE VI. JINTRAC and RAPTOR settings of simulations in this paper. The same settings were used for the QLKNN and QuaLiKiz simulations. All simulations have lower lim-
its of 10�4 m2 s�1 for thermal diffusion, negligible in the turbulent transport region.

Field name/option Value/setting

Shot number 73342 92398 92436 92436 (bench) 92436 (RAPTOR)
Number of grid points 51 101 101 25 9
Start time a (s) 20.75 6.3779 10 10 10
End time a (s) 22.75 8.6 12 12 12
Min. time step (s) 1 � 10�13 1 � 10�8 1 � 10�13 1 � 10�13 0.1
Max. time step (s) 1 � 10�3 1 � 10�3 1 � 10�3 1 � 10�3 0.1
Main ion mass (u) 2 2 2 2 2
Simulation boundary (qN;tor) 0.85 0.85 0.85 0.85 0.85
Equilibrium EFIT ESCO ESCO EQDSK EQDSK
Equilibrium boundary … 0.995 0.998 … …
Toroidal field (for ESCO) … 2.798 2.8 … …
Plasma current (A) 2.5 � 106 2.2 � 106 2.9 � 106 2.9 � 106 2.9 � 106

Neoclassical transport model NCLASS NCLASS NCLASS … …
Bootstrap current Yes Yes Yes Yes Yes
Particle transport min (cm2=s) 10 1 10 10 10
Impurities Interpretive Interpretive SANCO … …
Numerical scheme Predictor–corrector Predictor–corrector Predictor–corrector Predictor–corrector Implicit

TABLE VII. Exact run times for the simulations in this paper. Also shows the amount of transport model (QLKNN or QLK) evaluations for all runs. This is always 2� the amount
of timesteps in JINTRAC, but depends on the number of newton evaluations needed in RAPTOR. Usually, as soon as a physically consistent state is reached, this is 2 or 3 per
time step.

Shot number

73342 92398 92436 92436 (bench) 92436 (RAPTOR)

QLK QLKNN QLK QLKNN QLK QLKNN QLK QLKNN QLKNN

Amount of cores 16 2 16 2 16 2 16 1 1
Rotationless Number of evaluations 5788 4002 4454 4456 19934 4076 4006 4006 51
Rotation Number of evaluations 4654 4002 4452 4506 4480 4040 … … …
Rotationless Runtime (m) 284 1 775 8 8550 34 217 0.2 0.1
Rotation Runtime (m) 1564 1 644 8 11708 33 … … …

TABLE VIII. Used impurities in the non-benchmark JINTRAC–QuaLiKiz and
JINTRAC–QLKNN runs. The table shows the mass (m), charge (c) and amount of
superstages (ss) used in SANCO if applicable.

Species 1 Species 2 Species 3

Simulation m c ss m c ss m c ss

73342 12 6 …
92398 58 28 …
92436 9 4 4 58 28 28 184 74 74

TABLE IX. Extra BgB transport in JETTO. Not implemented in RAPTOR, and negli-
gible in the predicted turbulent unstable region.

Field name/option Value/setting

Shot number 73342 92398 92436 92436
(bench)

Particle diffusion multiplier 1 1 1 0
Thermal diffusion multiplier
(bohm, electron)

0.08 0.03 0.08 0

Thermal diffusion multiplier
(bohm, ion)

0.08 0.03 0.08 0

Momentum diffusion
(Prandtl number)

1 3 1.25 0
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TABLE X. Sawtooth-proxy core transport patch for JET #73342.

Additional transport

vi ve Di

Shape Gaussian Gaussian Gaussian
Center (qN;tor) 0 0 0
Height (m2 s�1) 4 2 2
2r width (qN;tor) 0.25 0.25 0.25

TABLE XI. Additional core transport patch for JET #92398.

Additional transport

vi ve Di

Shape … Gaussian …
Center (qN;tor) … 0 …
Height (m2 s�1) … 0.1 …
2r width (qN;tor) … 0.15 …

TABLE XII. Sawtooth-proxy core transport patch for JET #92436.

Additional transport

vi ve Di

Shape Gaussian Gaussian Gaussian
Center (qN;tor) 0 0 0
Height (m2 s�1) 2 1 1
2r width (qN;tor) 0.212 0.212 0.212

TABLE XIII. Equivalent code version used in this work, as determined by git describe –abbrev¼ 6 –tags. All results in this paper should be reproducible by using the code ver-
sions in this table.

Part Version Repository

QLKNN-fortran v1.0.0 https://gitlab.com/qualikiz-group/QLKNN-fortran
QLKNN networks v0.5.0-1-ge2c20a https://gitlab.com/qualikiz-group/qlknn-hyper
QLKNN tools and filters v1.0.0 https://gitlab.com/Karel-van-de-Plassche/QLKNN-develop
Physics-uninformed networks 0.1.0 https://gitlab.com/qualikiz-group/qlknn-fullflux
QuaLiKiz v2.6.1-5-g95d8df http://qualikiz.com
QuaLiKiz (dataset generation) v2.4.0 http://qualikiz.com
JETTO Release-v191219 https://git.ccfe.ac.uk/jintrac/jetto-sanco
RAPTOR plassche_PoP2019 https://gitlab.epfl.ch/spc/raptor

TABLE XIV. Archived JETTO runs displayed in this paper.

Figures Line User Shot Archive date Catalogue seq

1 JINTRAC–QLKNN kplass 92436 dec2919 seq#4
JINTRAC–QuaLiKiz kplass 92436 dec3019 seq#1

2 JINTRAC–QLKNN (rotationless) kplass 92436 dec2919 seq#1
JINTRAC–QLKNN (full-physics) kplass 92436 dec2919 seq#2
JINTRAC–QuaLiKiz (rotationless) jcitrin 92436 may2419 seq#1
JINTRAC–QuaLiKiz (full-physics) jcitrin 92436 may2419 seq#2

3 JINTRAC–QLKNN (rotationless) kplass 73342 dec2919 seq#1
JINTRAC-QLKNN (full-physics) kplass 73342 dec2919 seq#2
JINTRAC–QuaLiKiz (rotationless) jcitrin 73342 apr2319 seq#1
JINTRAC–QuaLiKiz (full-physics) jcitrin 73342 apr2319 seq#2

4 JINTRAC–QLKNN (rotationless) kplass 92398 dec2919 seq#1
JINTRAC–QLKNN (full-physics) kplass 92398 dec2919 seq#2
JINTRAC–QuaLiKiz (rotationless) jcitrin 92398 jan2919 seq#1
JINTRAC–QuaLiKiz (full-physics) jcitrin 92398 oct1618 seq#1
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