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A nonlinear bump-on-tail model for the growth and saturation of energetic particle driven plasma

waves has been extended to include two populations of fast particles—one dominated by

dynamical friction at the resonance and the other by velocity space diffusion. The resulting

temporal evolution of the wave amplitude and frequency depends on the relative weight of the two

populations. The two species model is applied to burning plasma with drag-dominated alpha

particles and diffusion-dominated ICRH accelerated minority ions, showing the stabilization of

bursting modes. The model also suggests an explanation for the recent observations on the TJ-II

stellarator, where Alfv�en Eigenmodes transition between steady state and bursting as the magnetic

configuration varied. Published by AIP Publishing. https://doi.org/10.1063/1.4996123

I. INTRODUCTION

Instabilities driven by the energetic particles in fusion

plasmas1 are of significant concern for the next-step burning

plasma experiment as these instabilities may affect the

alpha-particle heating profile, helium ash accumulation, and

cause damage to the first wall.2,3 The nonlinear temporal

evolution of the instabilities observed in present-day

machines varies from a steady-state saturated mode ampli-

tude at nearly fixed frequency to a bursting amplitude and

sweeping frequency scenarios.4–6 Depending on the type of

the nonlinear evolution, transport and peak loads of lost

energetic particles to the wall vary significantly, so it is

important to understand the key physics effects determining

the type of the nonlinear evolution of waves excited by the

energetic particles.

Since the energetic particle instabilities usually involve

wave-particle resonant interaction, theory developments

focus on the resonant particles. This approach simplifies the

description of the multi-dimensional problem as the particle

motion is effectively one-dimensional in the vicinity of a res-

onance if proper action-angle variables are employed.7 A

one-dimensional bump-on-tail model (see, e.g., Ref. 8 and

references therein) was proven to be one of the most effec-

tive in describing the characteristic nonlinear scenarios in

the past.9–13 The corresponding cubic order equation has

recently been solved for parameters taken directly from

MHD simulations.14 It was found12,13 that the different types

of nonlinear evolution of modes driven via wave-particle res-

onances can be attributed to the nature and the rate of the

relaxation effects restoring the unstable distribution function

of the energetic particles at the position of the resonance. In

particular, it was shown that the relaxation of a dynamical

friction type (for example electron drag for energetic ions)

causes only the bursting evolution of the mode amplitude at

a concomitant strong frequency sweeping, while a diffusive

type relaxation may produce four types of nonlinear evolu-

tion: steady-state, periodic modulation of the mode ampli-

tude (pitchfork splitting), chaotic evolution, and bursting

evolution. This theory is in robust agreement with the

observed Alfv�en instabilities driven by the auxiliary heating

ions on many tokamaks.

A surprising recent result from the TJ-II stellarator15

was the observation of a change in the temporal evolution of

a beam-driven Alfv�en Eigenmode (AE) during rotational

transform (iota) profile variation. In this experiment, AEs

were excited by NBI-produced beam ions. As the iota varied

throughout a single discharge, the AE nonlinear evolution

was transformed from bursting to steady-state, and then to

bursting again. During the iota variation, neither the density

nor the temperature of the plasma changed significantly

enough to affect the ratio between the drag and diffusion

relaxation mechanisms restoring the beam distribution.

In this article, we point out that due to 3D configuration

in the TJ-II machine, the same AE could resonate simulta-

neously with two distinctly different types of the beam ions,

one of which is determined by a dominant drag, and the other

one by pitch-angle scattering. As the nonlinear scenario of

AE evolution is determined by two contributions from the

types of beam ions with so different properties, the resulting

type of the nonlinear scenario could be determined by the

ratio between the resonating ions of the first and second

types. We propose then that the role of the change in the iota

profile is in a slight variation of the proportion between the

beam ions of the first and second types, instead of the global

changes in either Te or ne. This division of the resonant beam

ions in two groups in TJ-II differs from other magnetic

fusion devices and could be best explained via the unique

shape of the TJ-II resonance map.

A resonance map of a typical mode, shown in Fig. 1, dem-

onstrates how this specific TJ-II stellarator configuration gives

rise to wave-particle resonances in two very different regions

of the phase space. The guiding center particle orbits, starting

on a core flux surface (normalized poloidal flux wN ¼ 0:25),

have been simulated for experimental parameters of interest.

The resonance function F � jnx/ � mxh � xj is plotted as a

function of the particles’ energy and pitch-angle for a choice
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of toroidal and poloidal mode numbers n¼ 3, m¼ 2, respec-

tively, for a wave with f¼ 325 kHz; a black line indicates the

resonance condition F¼ 0. This very special shape of the reso-

nance map suggests a natural division of the whole population

of the fast ion resonant phase space into two regions. Region 1

(red oval) is narrow in energy (6 < E < 8 keV), but with

appreciable variation in pitch-angle, while region 2 (orange

oval) covers only a narrow range of pitch-angles and extends

in energy (8 < E < 14 keV). In region 1, drag alone deter-

mines the replenishment of the distribution function at the res-

onance, while region 2 is determined by the pitch-angle

scattering effect (diffusive collisional operator). Therefore, one

arrives at the possibility of describing the nonlinear evolution

of the AEs by a sum of two ion species with different weight-

ing factors, one of which is dominated by drag and the other

by diffusion. It is natural to assume that the iota variation

affects the relative weight of each resonant ion species, and

this may cause the experimentally observed change in nonlin-

ear mode evolution.

II. TWO SPECIES MODEL

We consider a population of fast particles with a distri-

bution F interacting with a wave through an electric field

E � Ê cos ðkx� xtÞ. We consider marginally unstable

modes, with the linear growth rate and damping rate, respec-

tively, satisfying cL > cd � jcL � cdj. We assume the distri-

bution to satisfy the Fokker-Planck equation in one

dimension given by

@F

@t
þ v

@F

@x
� jqjE

m

@F

@v
¼ dF

dt

���
coll
: (1)

This kinetic equation may be transformed into the frame

of an electrostatic wave with wavenumber k ¼ 2p=k, by mak-

ing the substitutions n ¼ kx� xt and u ¼ kv� x, as follows:

@F

@t
þ u

@F

@n
� 1

2
x2

Bein þ x�2B e�in
� �

@F

@u
¼ dF

dt

���
coll
: (2)

Here, the electric field is represented by the fast particle non-

linear bounce frequency x2
B ¼ qkÊ=m and other symbols

have their usual meanings. The distribution function is decom-

posed as a Fourier series F ¼ F0 þ f0 þ
P1

n¼1½fn exp ðinnÞ
þf �n exp ð�innÞ�; in a similar electric field decomposition, Ê is

the n¼ 1 component. The collision term is taken to be12

dF

dt

���
coll
¼ a2 @F

@u
þ �3 @

2F

@u2
; (3)

where the a term corresponds to velocity-space friction and

� to diffusion. A complete set of equations is formed with

the addition of Ampère’s law, @E=@t ¼ �4pJ. The two

terms making up the current are the perturbed bulk motion of

the cold electrons (slowed by collisions / cd) and an integral

over the fast electron distribution. For the resonant interac-

tion with the wave,13 this becomes

@x2
B

@t
¼ �cdx

2
B þ

4pe2x
mk

ð
f1du: (4)

One approach to solve these equations to cubic order is

to compare coefficients and integrate iteratively.9,12 The

electric field satisfies the following relation:

dA

ds
¼ A� 1

2

ðs=2

0

dz z2Aðs� zÞ

�
ðs�2z

0

dx Kðâ; �̂ÞAðs� z� xÞA�ðs� 2z� xÞ; (5)

where A ¼ x2
B½cL=ðcL � cdÞ5�1=2

and s ¼ ðcL � cdÞt. The

integral’s kernel, arising from the collision operator, is given

by

Kðâ; �̂Þ ¼ exp iâ2zðzþ xÞ � �̂3z2ð2z=3þ xÞ
� �

; (6)

where the normalized coefficients â ¼ a=ðcL � cdÞ; �̂ ¼ �=
ðcL � cdÞ. It has previously been shown analytically12 that

for a single fast particle species to cubic order in electric

field, a stable steady state exists only for �̂ 	 2 and

�̂ > 1:043â.

In this article, we consider two perturbative interacting

distributions F ¼ F0 þ F1 þ F2, with

F1 ¼ f1;0 þ
X1
n¼1

f1;n exp ðinnÞ þ f �1;n exp ð�innÞ
� �

(7)

and similarly for F2. The collision operator acts on each dis-

tribution separately as follows:

dF

dt

���
coll
¼
X
j¼1;2

a2
j

@Fj

@u
þ �3

j

@2Fj

@u2
: (8)

This operator arises from the differences in the sensitivity of

the two groups of fast particles to changes in energy and

pitch angle. To cubic nonlinearity, the kernel in Eq. (5) is

split into two components

Ktot ¼
X
j¼1;2

cjKðâj; �̂ jÞ; (9)

where Kðâj; �̂ jÞ is an individual kernel from Eq. (6) and cj is

the relative weight of the respective distribution.

FIG. 1. Map of the resonance function F � jnx/ � mxh � xj for energetic

particles launched from wN ¼ 0:25 in TJ-II. The resonance condition F¼ 0

is highlighted by the black line. The grey region corresponds to particles on

loss orbits. Two regions of interest along the resonance are indicated.
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A two-species approach was previously developed for

describing a near-threshold nonlinear evolution of a bump-

on-tail instability, in which the energetic ion drive was bal-

anced by the electron Landau damping.16 In the correspond-

ing generalization of the single species mode equation with

cubic nonlinearity to the case of the mode interacting simul-

taneously with resonant species of very different mass (ions

and electrons), the weights were shown to satisfy

cj ¼
cjrj

cL � cd

; (10)

where for the species of type j, rj is the mass-dependent coef-

ficient, cj is the linear growth/damping rate, and Kj is the col-

lisionality kernel. A similar approach is valid for our case of

two particle species, but instead of the different masses con-

sidered in Ref. 16, different collisionality kernels Kj are the

focus of our study.

Beyond the cubic nonlinearity model, the Bump On Tail

(BOT) code13 is another approach to efficiently solve the

system of Eqs. (2) and (4) exactly by working in reciprocal

space. We have modified it to permit two distributions, to

explore the situation outlined earlier in the fully nonlinear

regime. Each spatial harmonic of the distribution function is

now Fourier transformed by an integral over velocity

Gj;nðsÞ ¼
ð

fj;n exp ð�isu=cLÞdu: (11)

This approach simplifies Eq. (7) to a series of advection

equations with a purely algebraic collision operator

@Gj;n

@s
� n

@Gj;n

@s
� Rj;n

c2
L

¼ i
a2

j

c2
L

s�
�3

j

c3
L

s2

 !
Gj;n: (12)

The velocity term is given by

Rj;n ¼
is

2
x2

BGj;n�1 þ x�2B Gj;nþ1

� �
þ x2

BdðsÞdn 0; (13)

where d represents the Dirac and Kronecker deltas respec-

tively; for the n¼ 0 term, the relation Gj;�1ðsÞ ¼ G�j;1ð�sÞ is

used. Spatial harmonics up to the arbitrary order N required

for convergence are computed.

The two distributions interact through the electric field

described by the Fourier-space Ampère’s law

@x2
B

@s
¼ � cd

cL

x2
B þ

4pe2x
mkcL

X
j¼1;2

cjGj;1ð0Þ; (14)

where the velocity integral has already been evaluated by

taking the Fourier transform approach. Therefore, the cou-

pled advective equations for each distribution function

evolve separately as in the single distribution case, but inter-

act through a common electric field.

III. STABILIZATION BY DIFFUSIVE DISTRIBUTION

It was previously shown12 that the diffusion of a single

fast particle distribution has a “stabilizing” effect on the non-

linear wave evolution. The wave amplitude does not exhibit

explosive evolution, but instead saturates at some finite level.

However, we now aim to demonstrate that the same effect

can be achieved by a secondary, highly diffusive, population

even when a more strongly weighted primary population

determined by its drag does not permit a stable steady state

solution. The relative weights of each distribution, which

appear in Eqs. (9) and (14), c1 and c2, depend on the corre-

sponding damping rate. Therefore, they are not set purely by

the density of the respective population, and so a population

with a relatively low proportion of particles can nonetheless

have a significant effect on the wave evolution.

In Fig. 2(a), we show the electric field evolution for a

single particle distribution with a choice of â ¼ 2 and

�̂ ¼ 2:5, which evolves “explosively” outside the parameter

space of stable solutions. We add a second, purely diffusive

population with �̂3
2 ¼ 10�̂3

1, which is stable alone; we impose

a normalization condition by keeping c1 þ c2 ¼ 1 for the

(a) (b)

FIG. 2. Bounce frequency solved to cubic nonlinearity, showing “explosive” evolution (black curve) for a single particle population with a given value of drag

and two of diffusion. This is stabilized by a second highly diffusive population (orange curve), with c1 þ c2 ¼ 1 in all cases. An intermediate case, where the

explosive behavior occurs at a later time, is shown in the second panel.
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rest of the article. The resulting solution is then stabilized

to cubic order and tends to a constant value when the weights

of the diffusive and destabilizing populations are of the same

order. However, when the first distribution is moved closer

to stability, the threshold for stabilization becomes lower,

as expected; this is shown in Fig. 2(b). A transition is seen

to occur from the electric field rapidly growing after only

several oscillations (c1 ¼ 1), to growing over many oscilla-

tions (c1 ¼ 0:8), to the fully stable case (c1 ¼ 0:7). The

choice of �̂2 in these cases reflects the properties of ions

accelerated by Ion Cyclotron Resonant Heating (ICRH),

where a strong quasilinear diffusion forms the energetic par-

ticle tail.11

This effect is observed also in the fully nonlinear case of

the BOT code. We choose parameters that are unstable to

cubic order and correspondingly show the characteristic

often observed as hook-shaped structures6 in the mode’s fre-

quency structure. A synthetic spectrogram showing these

features for a choice of â1 ¼ 1:5 and �̂1 ¼ 1:4 (also outside

the cubic stability region) is shown in Fig. 3(a); we choose

cd ¼ 0:9cL throughout this article. In this case, the addition

of a second “ICRH” distribution with c2 ¼ 0:5 causes a tran-

sition from the chaotic oscillations in the electric field

(which leads to the frequency behavior mentioned earlier) to

a much more regular, long-scale oscillations whose corre-

sponding spectrogram is shown in Fig. 3(b). For a purely dif-

fusive distribution, after a short initial period of oscillations,

the electric field saturates to a constant value.

These classes of mode evolution can be understood

through the resulting form of the distribution function, which

appears in Eq. (7). A purely diffusive collisional operator

acts to flatten the distribution function and create a plateau

around the resonance u¼ 0, leading to the saturation of the

electric field as outlined earlier. The addition of drag to the

collisional operator leads to the formation of holes and

clumps in the distribution function and the corresponding

asymmetric structures in the resulting spectrogram. The dis-

tribution functions are shown to the leading two orders (the

background F0 and the dominant
P

j¼1;2cjfj;0 term), at one

time point s � tcL ¼ 50 of the BOT simulation detailed

above, are shown in Fig. 4. The term involving the sum influ-

ences the evolution of the bounce frequency through its

Fourier transform in Ampere’s law, Eq. (14).

We have analyzed the velocity space coefficients of the

two regions of interest of the TJ-II resonance map in Fig. 1

with the Fokker-Planck approach.17 We consider the experi-

mental plasma parameters in the expression for the velocity

space resonance. As shown in the Appendix, we estimate

that the drag of the 6–8 keV beam (region 1 in the resonance

map) and the 10–16 keV beam pitch-angle scattering corre-

sponding to diffusion (region 2) satisfy

�

1:7

 a

3
: (15)

By the same analysis, we confirm that drag in the first region

dominates over diffusion and vice versa. We conjecture that

the role of the magnetic configuration in the TJ-II experiment

is in slightly shifting the proportion of the fast ions in region

1 with respect to that in region 2.

Two regimes are seen in BOT simulations depending

on the choice of c1 and c2 (which are taken to satisfy c1 þ
c2 ¼ 1), as shown in Fig. 5. A synthetic spectrogram of the

electric field is shown for the drag-dominated case, with

distinct branches sweeping upwards in frequency, many

comparatively small branches sweeping downwards and

the periodic broadband noise bursts. The frequency asym-

metry arises due to the nature of the drag term. As the

weight of the diffusion term is increased, such rapid oscil-

lations disappear and the amplitude saturates to a constant

value. Hence, there is no frequency sweep; low-frequency

bursts, such as that seen around s¼ 175, appear sporadi-

cally with long time separation.

IV. CONCLUSION

A two-species model with two different relaxation effects

was developed for describing the near-threshold nonlinear

evolution of the beam-driven AEs. Within the lowest-order

FIG. 3. Synthetic spectrograms from nonlinear BOT simulations with

parameters as indicated, showing (a) chirping evolution and (b) stabilization

by a second diffusive distribution.

FIG. 4. The two leading terms of the distribution functions, as defined in Eq.

(7), computed by BOT at s ¼ 50 for the simulations presented in Fig. 3. In

the cases with velocity-space drag, the formation of several holes and

clumps can be seen, which travel outwards. The dashed grey line corre-

sponds to the unperturbed distribution.
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cubic nonlinear equation, a possibility of transforming the

explosive AE scenario driven by the energetic particles with

drag relaxation into a steady-state AE by adding a second

species term with diffusion relaxation was demonstrated.

For investigating the nonlinear AE evolution beyond the

cubic nonlinearity, a two-species BOT code was devel-

oped. The results of the BOT modelling show a wide vari-

ety of nonlinear regimes including the steady-state ones

and bursting, controlled by the proportion between the first

and second species. The results suggest that it may be pos-

sible to control the nonlinear evolution of alpha particle-

driven AEs in ITER by adding ICRH-accelerated ions with

dominant quasi-linear diffusive relaxation.

The resonance map obtained for the interaction of beam

ions with AEs in the TJ-II stellarator suggests two very dif-

ferent regions of the resonant beam phase space: the first

with dominant drag relaxation and the second with dominant

pitch-angle diffusive relaxation. This model may explain the

experimentally observed TJ-II results, as variation in the

rotational transform changes the relative weights of the two

beam species. The observed correlation between the type of

nonlinear AE evolution and the magnetic configuration may

be caused by a number of effects going beyond the assump-

tions used in the 1 D Bump-On-Tail model. The most essen-

tial assumptions are: (1) the damping of the mode does not

change throughout the mode evolution; (2) no other free

energy source exists apart from the energetic particle drive

(e.g., the MHD part playing a role in fishbones is excluded);

(3) the width of the resonance is much smaller than the width

of the mode (as the width of the mode is not present in the

1 D bump-on-tail model).
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APPENDIX: FOKKER-PLANCK EVOLUTION OF THE
BEAM DISTRIBUTION FUNCTION

For AE modes driven by the NBI-produced energetic

ions in plasmas with parameters similar to those in the TJ-II

machine, Coulomb relaxation only plays a role in shaping

the unstable distribution function. The drag and diffusion

relaxation at the wave-particle resonance could be assessed

from a Fokker-Planck approach as follows. Consider the

temporal evolution of an energetic particle beam distribution

function, Fbðu; k; sÞ, in the presence of Coulomb collisions

with thermal plasma species (beam-beam collisions are

neglected). No AE effect on the fast ions is considered. The

Fokker-Planck equation for the beam distribution function

with initial velocity V0 in the range between thermal ion and

thermal electron velocities, �i � V0 � �e, can be repre-

sented in the form (see e.g., Ref. 17)

dFb

ds
� 1

u2

@

@u
ð1þ u3ÞFb

� �
� A

2u3

@

@k
ð1� k2Þ @Fb

@k
¼ S� �sFb;

(A1)

where

u ¼ V=VI; (A2)

k ¼ Vk=V; (A3)

s ¼ �t; (A4)

V3
I ¼

3
ffiffiffi
p
p

4

me

mb
�3

e
~Z ; (A5)

� ¼ 4p
n0e4 ~ZlnK

mbV3
I

; (A6)

A ¼ Zeff= ~Z ; (A7)

Zeff ¼
X

i

Z2
i ni=n0; (A8)

~Z ¼ mb

n0

X
i

Z2
i ni=mi: (A9)

FIG. 5. Cases with two distributions of fast particles, one with drag â1 ¼ 4:5 and one with diffusion �̂ 2 ¼ 2:55. (a) With a relatively low proportion of the dif-

fusion distribution, c1 ¼ 0:64 (c1 þ c2 ¼ 1 in both cases) a spectrogram of xB shows the formation of several frequency sweeping branches. (b) As the diffu-

sive proportion is increased to c2 ¼ 0:4, the activity is stabilized, with the amplitude saturating and dx 
 0.
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Here, Sðu; k; sÞ is the beam source, �sFb represents a sink of

the energetic ions, VI is the critical velocity at which the

heating power from the beam to electrons equals that to the

thermal ions, lnK is the Coulomb logarithm, mb, me mi, are

the beam, thermal electron, and ion masses, ni are thermal

ion densities, and the electron density satisfies n0 ¼
P

iZini.

The effect of Coulomb diffusion on the temporal evolution

of Fbðu; k; sÞ is given by the pitch-angle scattering term, the

last one in the left-hand-side of Eq. (A1). The effect of the

drag is represented by the second term in the left-hand-side

of Eq. (A1). For plasmas with parameters of the TJ-II

machine,15 i.e., n0 
 1013 cm–3, Te 
 400 eV, and hydrogen

species of both the beam and the plasma, mb ¼ mi ¼ mH;
Zb ¼ Zi ¼ 1, satisfying nb � ni, one obtains

�e 
 1:2� 109 cm s�1; Zeff 
 1; ~Z 
 1;

V3
I 
 7:3� 10�4�3

e ; � 
 32 s�1: (A10)

In the normalized units of Eqs. (A2)–(A9), the estimates

(A10) give maximum and minimum values of the beam

velocity and the beam pitch-angle for the resonance regions

shown in Fig. 1. For region 1 with 6 keV � Eb � 8 keV

umin
b 
 2; umax

b 
 2:54; qmin
b 
 3; qmax

b 
 8; (A11)

where q � E=k. For region 2 with 10 keV � Eb � 16 keV

umin
b 
 2:8; umax

b 
 3:6; qmin
b 
 2; qmax

b 
 3: (A12)

The slowing-down time of the beam from umax
b to umin

b

could be estimated as17

sSD ¼
1

3
ln

1þ ðumax
b Þ

3

1þ ðumin
b Þ

3

" #

 2:8� 10�3; (A13)

which corresponds to tSD 
 9� 10�5 s. For the pitch-angle

scattering dominant in region 2, the following expression

could be employed:

1

qmin
b

� 1

qmax
b

¼ A

3
ln 1þ 1� exp ð�3sÞ

u3

� 	
; (A14)

which gives the characteristic time of the pitch-angle scatter-

ing across the resonance in the region 2 then as

sscat 
 6� 10�3, corresponding to tscat 
 2� 10�4 s.

The characteristic times in Eqs. (A13) and (A14) could

be normalized by the instability characteristic time, e.g., by

assuming the net growth rate to be cL � cd . For the observed

AE at x 
 300 kHz the normalized slowing-down time

across the resonance in region 1 is then

2pa
cL � cd


 3; (A15)

while the normalised pitch-angle scattering time in region

2 is

2p�
cL � cd


 1:7: (A16)

A value of cd ¼ 0:9cL is used in the calculations above,

while cL remains a free parameter.
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