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1.  Introduction

The energetic particle (EP) physics is one of the key issues 
in understanding the behavior of burning plasmas, repre-
senting the primary scientific challenge faced by ITER and 
fusion research in general. On the one hand, the self-heating 
in a fusion reactor is provided by alphas generated at 3.5MeV 
by the D–T fusion reactions; other energetic ions, generated 
by neutral beam injection (NBI) and ion cyclotron resonant 
heating (ICRH), are expected to play a major role in achieving 
optimal burning plasma scenarios with external heating and/or 
current drive. On the other hand, EPs often interact with bulk 
plasma waves and instabilities, leading to their destabilization 
or stabilization, or even to excitation of new types of instabili-
ties. Such an interaction also often results in redistribution and 
losses of EPs.

It is well known that future advanced tokamak (AT) devices 
need to operate under steady-state conditions, and at rather 
high-β (β  =  2μ0P/B2 is the ratio of the plasma pressure to the 
magnetic field pressure). However, the achievable maximal 
β is often limited by macroscopic magnetohydrodynamics 
(MHD) instabilities such as the external kink mode [1], which 
causes a global distortion of the plasma that often results in a 
major disruption. Below a certain threshold value of β—the 
so-called ideal wall beta limit—the external kink mode is 
completely stabilized by a perfectly conducting wall located 
near the plasma surface, according to ideal MHD theory. The 
mode, however, can convert into other unstable branches under 
certain circumstances. The most well-known destabilizing 
mechanism is the replacement of the ideal wall with a realis-
tically existing resistive wall in experimental fusion devices. 
A resistive wall allows the magnetic perturbation of the kink 
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instability to penetrate through, leading to a slowly growing 
instability called the resistive wall mode (RWM) [1, 2].

Another destabilizing mechanism, which we shall study in 
this work, comes from the precessional drift motion of trapped 
energetic ions. This mechanism induces instability of a new 
branch of the external kink mode, even under an ideal wall 
assumption. This branch, in many aspects, resembles the clas-
sical fishbone instability, which was experimentally observed 
[3] and theoretically well studied around the 1980s [4, 5]. It 
was understood that trapped EPs provide an additional desta-
bilization mechanism to a fluid-wise stable internal kink 
mode, producing a new unstable branch called a fishbone. In 
the following text, we use the name ‘Fishbone-like external 
kink mode (FLEM)’ referring to the above-mentioned external 
kink instability excited by the trapped EPs.

In recent tokamak experiments, a new fishbone-like 
bursting mode was observed and investigated in NBI heated 
plasmas [6–9]. Theoretical study [10, 11] also found a new 
branch in the presence of trapped EPs, based on analytic solu-
tions of the RWM dispersion relation. Furthermore, an unex-
pected high-frequency (comparable to the geodesic acoustic 
mode and beta-induced Alfven eigenmode) fishbone has also 
been observed in JET experiments, with a theoretical inter-
pretation based on a new suitable dispersion relation [12–14]. 
In reversed-field pinch (RFP) configuration, NBI has only 
recently been applied on the Madison symmetric torus (MST) 
experiments, with the observation of EP-induced MHD fluc-
tuations [15–17]. All the above results provided useful insight 
into the physics of EPs interacting with global MHD modes. 
Certainly, this is a vast problem that still remains to be further 
investigated.

In this work, we numerically study, in full toroidal geom-
etry, the excitation of MHD external kink modes by energetic 
ions, in both RFP and tokamak plasmas. Moreover, we also 
compare the EP kinetic effects between these two configura-
tions. This study provides a possible explanation on the above 
fish-bone-like bursting recently observed in tokamak experi-
ments, meanwhile predicting the EP-driven FLEM instability 
in RFP plasmas. Thus, the results should be well relevant to 
the present and future experiments in the presence of EPs.

The toroidal stability code MARS-K [18] is adopted for 
this study. The drift kinetic physics from both energetic ions 
and bulk thermal particles are self-consistently treated in the 
MARS-K formulation. The numerical analyses clarify the 
driven mechanism of FLEM, which is distinguished from 
that of RWMs. The FLEM satisfies the external kink disper-
sion relation, in which the kinetic effects of the hot ions are 
included. The kinetic contribution by trapped hot ions is a 
unique destabilizing (driving) mechanism for the FLEM insta-
bility. While for the RWM, the precession resonance of the 
trapped hot ions alone can only play a stabilizing (damping) 
role through their kinetic contribution to the energy balance 
as represented by the dispersion relation. The varied physics 
nature of FLEM is further clarified, and its relation (co-exist-
ence/coupling) with the RWM is also investigated.

In the following discussion we differentiate the poloidal 
harmonics of the external kink modes from the ‘non-reso-
nant mode’ with the ‘resonant-mode’. The former have their 

rational surfaces (surface of k · B  =  0, k is mode number, B is 
the magnetic field) located outside the plasma, while the latter 
have their rational surfaces located inside the plasma.

The paper is organized as follows. Section 2 describes the 
theoretical formulation related to the MHD-kinetic hybrid 
model, as well as the equilibrium models of EPs used in this 
work. Section 3 is devoted to the investigation of the FLEM 
in RFP configuration. The physics mechanism of the FLEM 
triggering, as well as the nature of the instability, is discussed. 
The possibility of co-existence/coupling with RWM is also 
reported. Section 4 presents the study of FLEM in tokamak 
plasmas with a circular cross section. This allows a more 
straightforward comparison of the FLEM physics between 
two different configurations. The summary and a brief discus-
sion are presented in section 5.

2.  Models and formulations

2.1. Toroidal self-consistent MHD-kinetic hybrid model

The MARS-K code numerically solves the linearized, single-
fluid MHD equations  with self-consistent inclusion of drift 
kinetic resonances in toroidal geometry [18]. For a given cur-
vilinear flux coordinate system (s, χ, ϕ), and assuming that all 
the perturbations have the form A(s, χ, ϕ, t)  =  A(s, χ)e−iω−inϕ, 
the MHD equations are written in the Eulerian frame

( ) ( )ξ ξω φ− − Ω = + ⋅ ∇Ω ∇n Rvi 2� (1)

( )

[ ( ) ]

ρ ω

ρ φ

− − Ω = −∇ ⋅ +∇× × +∇× ×

− Ω × + ⋅∇Ω ∇�
n

R

v p Q B B Q

Z v v

i

2 2
�

(2)

( ) ( ) ( )ω φ− − Ω = ∇× × + ⋅∇Ω ∇n RQ v B Qi 2� (3)

= + −⊥
�� ��p pp bb I bb( )∥� (4)

∫ ∫∑ ∑= Γ = Γ⊥ ⊥p M v f p M v fand d ,
1

2
d

j
j j

j
j j

2 1 2 1
∥ ∥� (5)

where s is the normalized radial coordinate labeling the 
equilibrium flux surface.χ is a generalized poloidal angle. 

irω ω γ= +  is the complex eigenvalue of the mode (γ being 
the mode growth rate, ωr the mode rotation frequency in the 
laboratory frame). The mode frequency is corrected by a 
Doppler shift in Ω, with n being the toroidal mode number, 
Ω the plasma rotation frequency in the torodial direction φ. 
ξ, v, Q, j, p represent the perturbed quantities: the plasma 
displacement, the perturbed velocity, magnetic field, current 
and kinetic pressure tensor, respectively. ρ is the unperturbed 
plasma density. B is the equilibrium magnetic field. R is the 
plasma major radius. Z� is the unit vector in the vertical direc-
tion. A conventional unit system is assumed with the vacuum 
permeability μ0  =  1; and the subsonic plasma flow is assumed.

The perturbed kinetic pressure tensor p includes both 
parallel (to the equilibrium magnetic field), p||, and perpend
icular, p┴, components. Each component involves both  
adiabatic (superscript ‘a’) and non-adiabatic (superscript ‘na’) 
parts: p p p p p p,a na a na     ∥ ∥= + = +⊥ ⊥ ⊥ .
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p E fd ,g
j

g j
a 0( )∫∑ ξ= Γ − ⋅ ∇⊥� (6)

p E f gd , ,g
j

g j
na 1 ∥∫∑= Γ = ⊥� (7)

where E Mv2
∥ ∥
= , and E Mv B22 / µ= =⊥ ⊥  (μ is the magnetic 

moment). I is the unit tensor, and b  =  B/|B|. Γ denotes the 
velocity space of particles, and j denotes the particle species 
including thermal ions and electrons as well as energetic ions 

(j  =  i, e, a). f j
0 is the equilibrium distribution function. f j

1, 
is the solution of the perturbed drift kinetic equation, which 
we solve together with the fluid equations [19, 20]. Therefore, 
this self-consistent approach provides a drift kinetic closure 
to the single-fluid MHD equations. Besides, a set of vacuum 
equations for the perturbed magnetic field Q, and the resistive 
wall equation based on the thin-shell approximation, are all 
solved together with equations (1)–(4) [21].

We assume Maxwellian equilibrium distributions for 
thermal ions and electrons, and adopt a slowing down distri-
bution for the energetic ions (in what follows, ‘EPs’ always 
refers to energetic ions)

( )
( )

ψ ε
ψ

ε ε
ε ε

ε ε
= +

< <

>

α

α

⎧
⎨
⎪

⎩⎪
f

c

,
0

0
k k c

k

k

a
0 3/2 3/2

� (8)

where Tc
M

M

M

M

3

4

2 3 1 3

e
a

i

i

e( ) ( )( )/ /
ε = π , Mi, Me and Ma denote the 

mass of thermal ion, electron and energetic ion respectively; 
The constant εα is the so-called birth energy, defined as

ε
α

ε
=α

α

⎧
⎨
⎩ s

3.5 MeV -particles
beam-driven fast ions( )� (9)

The factor c(ψ) is determined by the EP density N f da a
0∫= Γ.  

Equation (8) is a reasonable model for simulating the fusion 
born alphas. And within certain approximation, it can be used 
to model fast ions produced by the neutral beam injection [22].

The drift kinetic effects from each species of particles are 
self-consistently coupled to MHD equations; the detailed 
description can be found in [18]. For thermal particles, the 
key element in this formulation is the wave-particle resonance 
operator, expressed as

n

n m nq l n
* 3 2 *

i
N k T

ml
d b eff

[ ( / ) ]
[ ( ) ]

λ
ω ε ω ω

ω α ω ω ν
=

+ − +Ω −
+ + + + Ω− −

α
�

� (10)

where ωd is the bounce-orbit-averaged precession drift fre-
quency. kε

�   =  ε/T is the particle kinetic energy normalized by 
the temperature and νeff is the effective collision frequency. 
For trapped particles, α  = 0, and ωb is the bounce frequency. 
For passing particles, α  =  ±1, and ωb represents the transit 
frequency. Similar to thermal particles, the precessional drift 
resonance operators for fast ions can be expressed as

λ
ω

ω ω ν
=

−

+ Ω− −

ψ ε

∂

∂

∂

∂
⎜ ⎟
⎛
⎝

⎞
⎠n

n n i

f Ze f

a

da eff

k

a
0

a
0

� (11)

where ωda is the bounce orbit averaged precessional drift fre-
quency of fast ions. In this work, we shall neglect the finite 
banana orbit effect, as well as the anisotropy effect associated 
with the particle pitch angle distribution. These two effects 
can readily be extended in a future study.

2.2.  Quadratic energy terms

In order to gain better physics insight, we shall evaluate 
various perturbed energy components in the quadratic form 
[23, 24], for both fluid and drift kinetic contributions. These 
energy components are evaluated a posteriori, based on the 
self-consistently computed mode eigenfunctions. We define 
the following energy components of the fluid potential energy 
δWF and the kinetic potential energy δWk.

W W W Wj Q pFδ δ δ δ= + +� (12)

where

( )

( )

∥
∥

∫

∫

∫

δ χ φ

δ ξ ξ χ φ

δ ξ χ φ

=

= ⋅ × − ⋅ ∇

= ∇ ⋅ ⋅

⊥
∗

⊥ ⊥
∗

⊥
∗

⎡
⎣⎢

⎤
⎦⎥

W Q J s

W J
Q

B
P J s

W J s

b Q

p

1

2
d d d

1

2
d d d

1

2
d d d

j

Q

p

2

a

J is the Jacobian of the flux coordinates. The drift kinetic 
potential energy term is obtained as

W J s p
B

Q B p
1

2
d d d

1 * * *
V

k
na na

P
( )∥ ∥

⎡
⎣⎢

⎤
⎦⎥∫ ξ κ ξδ χ φ= +∇ ⋅ + ⋅⊥ ⊥⊥

� (13)
Taking into account equation  (7), the drift kinetic energy 
component, contributed from the thermal ion and electrons, 
can be expressed as [25]

( )

∫ ∫

∫

∑

∑ ∑

δ
ν π

ε ε

λ τ

= Ψ

× Λ

ε

σ

α α ω φ

−

− + −

� �

�

�
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎫
⎬
⎭

W
B

P

H

2
d d e

d e

e i

e i
e i k

l
l

l nq t n e i
l

k
,

0 ,
,

5/2

b
i i

L
, 2

k
k

b

�

(14)

where Ψ is the equilibrium poloidal flux, Pe i,  denotes the ion 
and electron equilibrium pressure, B k0 /µ εΛ =  (B0 is the on-
axis equilibrium magnetic field strength), vsign( )∥σ = . The 
integration is taken in both the real and the velocity spaces. 
The sum is over the modified bounce harmonics l (which 
includes the poloidal Fourier harmonics m) and the passing 
and trapped particles, as well as over the particle species  
(e, i). For trapped particles, α  =  0, ν  =  1/2 and bτ�  is the bounce 
period normalized by a factor M 2 k/ ε ; for passing particles, 
α  =  σ, ν  =  1 and bτ�  represents the normalized transit period. 
⋅  denotes the time average over the bounce/transit period.

The contribution from the trapped EPs (ions) is written as

( )( )∫ ∫δ ε
ε
λ= Γ −

∂

∂
α φ�

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟W x

f
H t

1

2
d d ek

k

n t
k

3 a
0

a i
L
a 2

� (15)
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H j
L is the perturbed particle Lagrangian for each particle spe-

cies [20]

H s
h B

Q B, , 2 1j
L

0
( ) ( )∥⎜ ⎟

⎛
⎝

⎞
⎠ξ κ ξχ Λ = −
Λ

⋅ +
Λ

+ ⋅ ∇⊥ ⊥� (16)

where h B B0/= . The total drift kinetic energy component is 
the combination of the contribution from all particle species. 

W Wj
j

k kδ δ= ∑ .
In the energy calculations, we neglect the centrifugal and 

the Coriolis force terms in the RHS of equation (2), assuming 
a slow (subsonic) equilibrium flow. The vacuum energies, 
δWv∞ and δWvb, without wall and with an ideal wall at the 
minor radius b, respectively, are written as

W J s b V JQ
1

2
d d d

1

2
d d

V S

n
sv

2
1 1p∫ ∫δ χ φ χ φ= = −∞
∗∞

∞
�� (17)

W J s b V JQ
1

2
d d d

1

2
d d

V S

n b
svb

2
1 1b p∫ ∫δ χ φ χ φ= = −
∗�� (18)

where bn
1 is the normal magnetic field perturbation V b

1
,∗∞  is 

the complex conjugate of the perturbed magnetic scalar poten-
tial, which is determined by the ideal wall position and bn

1 at 
the plasma surface [24]. In the above calculations, we have 
assumed cases with vanishing equilibrium pressure at the 
plasma edge, i.e. P(a)   =   0.

2.3. The equilibrium profiles of energetic particles

In this study, we denote the density and pressure fractions of 
EPs, with respect to the bulk thermal particles, by N*  =  Na /Ne, 
and P*  =  Pa/Pth, respectively, where the subscripts ‘a’, ‘e’ and 

‘th’ denote the species of EPs (P f Ndka
2

3
0

a∫ ε ε= Γ∝ α), elec-

trons and the bulk thermal particles (ions plus electrons). The 
total equilibrium plasma pressure is Ptotal  =  Pth  +  Pa. Both N* 
and P* are functions of the plasma minor radius s, which is the 
coordinate linked to the poloidal magnetic field flux.

Consequently, the beta fraction of EPs is denoted by β*, 
β*  =  βa/βth. For RFPs, the poloidal beta value βp is commonly 
in use, while in tokamaks the total beta value β is usually 
used. By seeking convenience for the numerical analysis, we 
consider two types of P*(s) profiles (normalized by 0

2
0/β µ ): 

(1) P*(s)  =   *
0β , which is a constant along the minor radius, 

thus β*  =   *
0β ; (2) P*  =   *

0β (1  −  s2)8, in which, obviously, the 
value of β* appears much smaller than *

0β . As examples, 
figure  1 shows the corresponding profiles for type (1) with 
β*  =   *

0β   =  0.3. The equilibrium pressure (a) and density pro-
files (b) of the hot ions, bulk thermal particles, and total par-
ticles are separately plotted. Figure 2 shows the pressure and 
density profiles for type (2), with *

0β   =  1.0 and β*  =  0.176.
The profiles shown in figure  2 shall be used in most of 

the computations. Thus, the corresponding results shall be 
reported without specific mention of this type. The profiles 
with β*  =   *

0β   =  constant, shown in figure 1, are assumed in a 
few numerical analyses as the simplest test case. The corresp
onding results will be reported with specific mention of this 
type in the figure captions. The difference between these two 

types of profiles does not cause a qualitative change in the 
nature of the FLEM instability.

3.  FLEM in RFP plasmas

In this work, we first discuss FLEM physics in RFP plasmas, 
because the FLEM instabilities in RFP mainly possess the 
coupling between non-resonant poloidal harmonics (with 
the mode’s rational surfaces being outside the plasma), thus 
representing relatively simpler physics. As we shall show, the 
FLEM instability in tokamak plasmas has essentially a similar 
nature to that in RFPs, although the (dominant) non-resonant 
harmonic couples to the resonant ones (with the rational sur-
faces inside the plasma) in the former. Nevertheless, only 
marginal differences are obtained between these two different 
configurations, regarding the EP triggering of FLEM.

3.1.  Driving mechanism of FLEM

The RFP magnetic configuration is characterized by the sign 
change of the toroidal magnetic field profile (so-called ‘field 
reversal’), which allows an RFP to operate in the parameter 
region where the resonant ideal kink modes appear to be 
stable, whilst the non-resonant external ideal kink modes can 
be strongly unstable due to the large plasma current, unless a 
surrounding perfectly conducting wall is located sufficiently 
close to the plasma surface [26]. Therefore, the non-resonant 
external kink modes are the easiest to be excited among the 
kink mode spectrum in RFP plasmas. The detailed description 
of the RFP equilibrium parameters used in MARS-K can be 
found in [27].

It is interesting to note that, in contrast to the RWM, FLEMs 
satisfy the usual external ideal kink dispersion relation:

I W W W 0F vb kδ δ δ δ− + + + =� (19)

where δI represents the inertial energy component. The nor-

malized version of equation(19) (by xd2 3∫ ρ ξ ) can be further 
written in real and imaginary parts, separately

ω γ δ δ δ δ δ δΩ− − = + + = + ≡n W W W W W Wr
2 2

F
r

vb k
r

b
r

k
r

bk
r( )

�

(20.1)

n W W2 r k
i

F
i( )γ ω δ δ− Ω− = +� (20.2)

where the superscript ‘r’ denotes the real part of the energy 
components and ‘i’ denotes the imaginary part. In the fluid 
theory (where δWk  =  0), δWb   >   0 indicates the external kink 
mode being stable with an ideal wall at r  =  b. Thus, δWb  =  0 
sets a stability boundary, beyond which, δWb  <  0, the ideal wall 
can no longer stabilize the mode. The value of δWb depends on 
the equilibrium parameters of the plasma. For a given current 
profile, the value of δWb sensitively depends on the plasma 
beta value (βp in RFP) and the wall proximity, expressed by 
the normalized minor radius of the wall, i.e. r  =  b/a. In fact, 
δWb  =  0 corresponds to the so-called ‘ideal wall beta limit’ in 
the RWM theory, where the ideal non-resonant external kink 
modes stay marginally stable with an ideal wall. Furthermore, 
when the kinetic effects (wave–particle interaction) are taken 
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into account, as shown in equation (20.1), the contribution of 
the drift kinetic energy component W k

rδ  modifies the stability 
boundary of the ideal kink mode. This will be shown in the 
following results.

Numerical results show that usually the imaginary part 
of δWk is much larger than that of δWF, i.e. W Wk

i
F
iδ δ� , 

Therefore, equation (19) can be written as

n W W W
1

2
r

2
bk
r

bk
r 2

k
i 2

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ω δ δ δΩ− = + +� (21A)

W

n
and

2
k
i

r( )
γ

δ
ω

= −
Ω−

� (21B)

Moreover, we find that in most parameter regions of RFP 
plasmas, W k

rδ  is the dominant term in W bk
rδ , and γ � ωr. 

Equation (20) can thus be further approximated as

n Wr b
rω δΩ− ≈� (22A)

W

W2
k
i

b

γ
δ
δ

≈� (22B)

Equations (22A) and (22B) clearly indicate the FLEM physics, 
that the kink mode frequency is mostly determined by the real 
part of the energy components δWb, and the growth rate of the 
instability is mainly contributed by W k

iδ , which comes from 
the precessional drift resonance of the trapped energetic ions. 
If the mode frequency ωr falls inside a range satisfying the 
resonant condition with the precessional frequency of a given 
type of EPs, i.e. n nr daω ω− Ω≈ , the FLEM instability may 
occur. Therefore, the FLEM frequency ωr directly links to the 
value of ωda, and the plasma rotation provides a Doppler shift 
nΩ on the frequency.

Obviously, in the limit case, where the plasma βp reaches 
the vicinity of the ideal wall beta limit, δWbk  ≈  0, and W k

iδ  
play the major role in the dispersion relation. Equation (20) 
results in

Figure 1.  The equilibrium profiles corresponding to the case of P*  =  constant: (a) the pressure profiles (normalized by B0
2

0/µ ) for hot ions, 
bulk thermal particles, as well as for all particles; (b) the density profiles (normalized by Ne(s  =  0) at the magnetic axis) for thermal ions 
(Ni) and electrons (Ne), as well as for the energetic ions (Na). The equilibrium parameters are Pa/Pth  =  0.3(β*  =   *

0β   =  0.3)., βp  =  0.155, and 
εα  =  100 keV.

Figure 2.  The equilibrium profiles corresponding to P s s* * 10
2 8( ) ( )β= − : (a) the pressure profiles (normalized by B0

2
0/µ ) of hot ions, bulk 

thermal particles, as well as for all particles; and (b) the density profiles (normalized by the Ne(0) at the magnetic axis) for thermal ions 
(Ni) and electrons (Ne), as well as for the energetic ions (Na). The choice of the parameters is βp  =  0.14 and εα  =  100 keV, β*  =  0.176, 
( *

0β   =  1.0).
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n W 2 .r k
i /γ ω δ≈ Ω− ≈� (23)

Figure 3 shows (a) the normalized growth rates and (b) the 
frequencies of the MARS-K computed n  =  6 FLEM insta-
bility as a function of β* in the RFP plasma. Only the kinetic 
effects from the precessional drift motion of trapped EPs are 
taken into account in the computations. A comparison has 
also been made between the results of directly solving the 
set of equations (1)–(4) by the MARS-K code, and that cal-
culated by using the dispersion relation (22). A good agree-
ment is obtained as presented in the figure. In these plots, 
both the frequencies and the growth rates are normalized 
by ωA, ( )ω µ ρ= B R/A 0 0 0 0 . The birth energy εα of hot ions 
from NBI is taken as εα  =  100 eV. The EP beta fraction pro-
file is taken as β*  =   *

0β . We fix the total poloidal beta of the 
plasma at βp  =  0.135, and vary the β* value from 0.0 to 2.0 
(corresponding to the N* value changing from 0 to 0.4591). 
Two cases, without plasma rotation Ω  =  0 and with rotation 
Ω/ωA  =  0.05, are plotted. It shows that, when β* exceeds a 
critical value of *

cβ   ≈  0.28, the FLEM instability appears, at 
a rather high frequency which is in the range of the Alfven 
frequency. With an increase in the β* value, the mode growth 
rate is enhanced due to the increase in the drift kinetic energy 
component W k

iδ . Nevertheless, the FLEM frequency remains 
almost invariant, due to the fact that the value of δWb remains 
unchanged. The latter is because the total plasma beta βp and 
the wall position b remain the same. Since the birth energy 
εα, and thus ωda, is the same for these two cases (i.e. with and 
without rotation), the resonance condition of n nr daω ω− Ω≈  
indicates that the mode has a higher frequency with plasma 
rotation than the one without, due to the Doppler shift nΩ.

Under our equilibrium assumptions, the value of W k
iδ  is 

mainly determined by two features of EPs: (1) the density 
fraction of EPs, Na/Ne, and (2) the birth energy εα which 
directly links to the precession frequency ωda. The parameter 
β* (=  βα/βthermal) reflects the combination of these two effects. 
We note here that, in contrast to the RWM theory where W k

iδ  

always plays a stabilizing role, while the imaginary part of 
the drift kinetic energy component is the only possible driven 
term for the FLEM instability.

3.2.  Excitation conditions of FLEM instability

EPs can induce an unstable external ideal kink mode under 
two conditions: (1) sufficient fraction of trapped EPs, and (2) 
the range of the kink mode frequency ωr can satisfy the reso-
nant condition n nr daω ω− Ω≈ . For the excitation of FLEM 
instability, plasma rotation is not necessary, and without rota-
tion Ω  =  0, the resonant condition is ωr   ≈  n ωda.

Regarding the first condition, the important measure-
ment is the EP contribution to the imaginary part of the drift 
kinetic energy component, W k

iδ , as indicated by the disper-
sion relation (22B). Since the value of W k

iδ  from EPs is pro-
portional to the EP equilibrium pressure Pa, both the density 

Figure 3.  The normalized (a) growth rates γ/ωA, and (b) real frequencies ωr/ωA, of the FLEM as functions of the beta fraction of EPs 
β*  =  βα/βthermal. Two cases are compared, with Ω  =  0 and Ω/ΩA  =  0.05. Comparisons are also made between the direct MARS-K results 
(lines) and those by using the dispersion relation (22) (dots). The equilibrium parameters are chosen as: βp  =  0.135, b/a  =  1.12, F  =  −0.06, 
ε  =  a/R  =  0.23, and q(0)  =  0.1448. F is the reversal parameter in RFP configuration (F  =  Bϕ(a)/<  Bϕ>).

Figure 4.  Growth rates and frequencies of the FLEM instability 
plotted as a function of the density fraction of energetic ions, 
N*(s  =  0)  =  Na/Nth, for two different birth energies εα  =  80 keV 
(dotted lines) and εα  =  100 keV (solid lines). The values of β* and 

*
0β , corresponding to both ends of the curves, are marked in the 

figure.
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fraction N*
a and the birth energy εα can influence W k

iδ  via Pa. 
The birth energy εα is even more important, since it directly 
relates to the EP precession frequency ωda, thus sensitively 
affecting the resonant condition and consequently the kinetic 
resonant energy component W k

iδ . These are confirmed by self-
consistent numerical results. Figure 4 shows the normalized 
mode growth rates and frequencies versus the density frac-
tion of EPs for two different birth energies εα  =  100 keV and 
εα  =  80 keV. Energetic ions with higher birth energy drive 
FLEM instability at much lower critical β* value and lower 
density fraction. For the same β* value, higher birth energy 
leads to higher growth rate. The mode frequencies are almost 
the same for the two cases, due to the same βp value for the 
two εα cases.

The total plasma beta value significantly influences the 
behavior of FLEM, as shown by figure 5, where we plot (a) 
the growth rates, and (b) the frequencies, of FLEM as a func-
tion of the total plasma poloidal beta βp, for the birth energy 
of εα  =  100 keV and without plasma rotation. Four different 
cases of the kinetic resonant contributions are compared: (1) 
hot ions only, with *

0β   =  0.3 (β*  =  0.062) (2) hot ions only, but 
with higher EP fraction *

0β   =  1.0 (β*  =  0.176), (3) both hot 
ions and bulk thermal particles, with *

0β   =  1.0 (β*  =  0.176), 
(4) thermal particles alone (without hot ions). In the latter 
case (4), the FLEM is not triggered. Only an unstable RWM is 
computed by assuming a resistive wall (curve (4) in figure 5), 
or alternatively an unstable ideal kink is found by assuming 
an ideal wall, at the value βp exceeding the ideal wall beta 
limit, p

idealβ  (curve (5) in figure 5). Comparison between cases 
(1) and (2) shows that EPs with higher β* (implying higher 
density fraction N*) drive FLEM instability in a wider region 
in βp, and with higher growth rates. By including the kinetic 
contributions from bulk thermal particles, as in case (3), the 
unstable domain for FLEM shrinks, due to a cancellation 
effect of the kinetic contributions to W k

iδ , between the driving 
term due to the precession resonance of EPs, and the damping 

term due to the transit resonance of thermal particles (mainly 
ions). In other words, the ion acoustic Landau damping by 
thermal ions plays a stabilizing role on FLEM.

The upper-bound of the FLEM instability window appears 

in the region βp  ≈   p
idealβ  (βp  ⩽   p

idealβ ), where the external kink 
mode is close to the ideal wall marginal stability point, and 
the mode has lower frequency resulting from smaller δWb. 
For fixed EP parameters (β*, εα), as βp decreases, the ampl
itude of the fluid potential energy component |δWF| (δWF  <  0) 
decreases, due to the reduction of the pressure-driven effects. 
This leads to a larger δWb (δWb   =  δWF   +  δWvb, δWvb  >  0), 
and thus a higher mode frequency ωr. As βp drops down suf-
ficiently low, ωr becomes too high to satisfy the resonance 
condition, and EPs can no longer provide sufficient driving 
energy W k

iδ  to trigger the FLEM.
The vertical lines in figure  5 represent the ideal wall 

beta limits for various aforementioned cases. The drift 
kinetic contribution modifies the ideal wall beta limit as that  
predicted by the fluid theory, as has also been observed in exper-

iments [28]. Figure 5 shows that the ideal wall beta limit, p
idealβ , 

is substantially modified by various kinetic effects. As marked 
in the figure, the fluid theory predicts the minimum value of 

p
idealβ   =   p

fluidβ   =  0.159 (corresponding to δWb  =  0); the kinetic 

effects from EPs alone shift the value to p
idealβ   =   p

hotβ   =  0.162 
(corresponding to δWbk  =  0); the contribution of thermal par-

ticles alone shifts the value to p
idealβ   =   p

thβ   =  0.175; finally the 

combined kinetic effects from both hot ions and thermal parti-

cles give the maximum value of p
idealβ   =   p

th hotβ +   =  0.182.

Figure 6 presents the radial profiles of various drift  
frequencies, averaged over the poloidal angle as well as over 
the particle velocity space, for the case of curve (3) from 
figure  5. The precession frequency of EPs, and the transit 
frequencies of thermal ions for three different βp values 
(βp  =  0.14, 0.16, 0.18), are compared. The shaded area indi-
cates the frequency range that corresponds to the full unstable 

Figure 5.  The (a) growth rates, and (b) frequencies of the n  =  6 FLEM instabilities plotted as functions of the plasma poloidal beta βp, 
for different β* values of energetic particles with birth energy εα  =  100 keV. Comparison is made for five cases: curves (1) and (2) include 
the kinetic contribution of EPs alone, with *

0β   =  0.3 (β*  =  0.062) and *
0β   =  1.0 (β*  =  0.176), respectively; Curve (3) includes the kinetic 

contributions from both EPs and bulk thermal particles, with *
0β   =  1.0 (β*  =  0.176); curve (4) and (5) include thermal particles only (no 

EPs), in the presence of either (4) a resistive wall (penetration time scale τw/τA  =  4.4  ×  103), or (5) an ideal wall. The other parameters are 
b/a  =  1.12, F  =  −0.06, q0  =  0.1448 and Ω  =  0.
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region of curve (3) in figure 5. Figure 6 thus confirms that both 
the precession resonance of EPs and the transit resonance of 
thermal ions can simultaneously occur, which in turn deter-
mines the condition for triggering the FLEM.

Figure 7 shows the unstable domain (the shaded area) of 
the n  =  6 FLEM in the βp-b/a plane, for two different choices 
of the birth energy of EPs. The solid (black) line represents 
the ideal wall beta limit, whilst the dashed (red) line (εα  =   
100 keV) and the dotted (blue) line (εα  =  150 keV) represent 
the lower-bounds of the unstable domain. No plasma rotation 
is considered. The higher β* value (higher birth energy εα in 
this case) results in a larger unstable domain. At a fixed wall 

position, the FLEM cannot be triggered at too low a beta. 
Conversely, at a fixed beta value, the FLEM cannot be trig-
gered if the wall is located too close to the plasma (i.e. too 
strong a wall stabilization). More detailed discussion of the 
wall effect is carried out in the next sub-section.

3.3. The role of the surrounding wall on the FLEM instability

Since the FLEM instability has rather high frequency, the usu-
ally realistic resistive wall in experiments plays the role of an 
ideal wall for the FLEM. In fact, our numerical results show 
that the instability appears independent from the wall resis-
tivity, in most resistivity ranges. For an extremely high resis-
tive wall, the FLEM may couple to the branch of the no-wall 
ideal kink instability. On the other hand, the radial position 
of the wall can strongly influence the FLEM triggering, as 
already shown in figure  7. Figure  8 plots the mode growth 
rates and frequencies as a function of the wall position b/a, for 
different choices of the EP birth energies εα and the plasma 
poloidal beta values βp. Comparisons are also made between a 
resistive wall (dots) and an ideal wall (lines) assumptions. For 
the resistive wall, the normalized penetration time is assumed 
to be τw/τA  =  4.4  ×  103.

The ideal wall and the resistive wall give almost the same 
results. On the other hand, a wall closer to the plasma sets a 
more severe condition for the FLEM excitation. In the lower 
βp case, with βp  =  0.1, the ranges of the wall position for the 
FLEM instability are b/a  =  1.16–1.225 for εα  =  100 keV, 
and b/a  =  1.05–1.225 for εα  =  150 keV. Obviously, EPs with 
higher εα extend the instability to smaller b/a. At even higher 
βp, βp  =  0.135, the instability region of b/a extends to the 
vicinity of the plasma surface.

3.4.  Kinetic effects of thermal particles on FLEMs

The kinetic effects of thermal particles play a stabilizing 
role on the FLEM instability, as has already been shown 
by curve (3) of figure 5. By including the kinetic effects of 
thermal particles, the instability requires higher βp value, and 
growth rates are smaller, compared to those of EPs alone. This 
damping effect is mainly contributed by the transit resonance 
of passing ions. As shown in figure 6, the transit frequency 
of passing ions is comparable to the precession frequency of 
EPs; and both can be in resonance with the FLEM. On the 
other hand, it turns out that a cancellation occurs between 
the thermal and the energetic ion contributions to the imagi-
nary part of the drift kinetic energy component. As a result, 
thermal particles play a damping role on the FLEM instability. 
This cancellation effect is shown in figure 9, where various 

perturbed energy components (normalized by xd
2 3∫ ρ ξ ) are 

computed at βp  =  0.14 (see figure 5). Two cases—with and 
without thermal particles—are compared for the same β* 
value, β*  =  1.0. In the first group of the energy columns, only 
the kinetic contribution of hot ions is considered (corresp
onding to case (2) in figure 5). In the second group, contrib
utions from both hot ions and thermal particles are included 
(corresponding to case (3) in figure  5). In each group, the 

Figure 6.  The precession frequencies of energetic ions, ωda, and 
the transit frequency of the thermal ions, (m  −  nq)ωp, at different 
βp values: βp  =  0.18(1), 0.16(2), 0.14(3), are shown for the RFP 
plasma. Compared are also the FLEM frequencies. The shaded 
area presents the frequency range for the unstable FLEM, as shown 
by curve (3) in figure 5, where the kinetic effects of both EPs and 
thermal particles are included.

Figure 7.  The unstable domain (shaded area) for the n  =  6 FLEM 
plotted in the 2D plane of the poloidal beta βp versus the wall 
position b/a. The solid line with square points represents the ideal 
wall beta limit, which is also the upper-bound of the beta value 
for the FLEM instability. The other two lines (dashed and dotted) 
represent the lower-bounds of the instability window for the two 
cases: *

0β   =  0.3, εα  =  100 keV; and *
0β   =  0.51, εα  =  150 keV, 

respectively The other equilibrium parameters are F  =  −0.06, 
q0  =  0.1448, and Ω  =  0.
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first column represents the fluid contribution δWb, the second 
column is δWbk   =  δWb  +   W k

rδ , the third one is W k
rδ , and the 

fourth is the imaginary part of kinetic energy W k
iδ . The value 

of W k
iδ  in the second group drastically decreases with respect 

to the first group due to the cancelation effect, whilst the other 
components experience only minor changes. Furthermore, it 
can be easily understood why the mode frequency becomes 
slightly lower with the inclusion of thermal particles—this is 
essentially due to the modification brought by W k

rδ  to δWb, 
(δWbk   <  δWb).

Figure 10 further demonstrates this cancellation effect, by 
plotting (a) the imaginary, and (b) the real, part of the drift 
kinetic energy component with varying plasma toroidal beta 
βp (see curves (3) of figure 5). Figure 10(a) shows that signifi-
cant cancelation occurs in the whole unstable region, for the 
imaginary part W k

iδ , implying that the ion Landau damping by 
thermal particles plays a stabilizing role for the FLEM insta-
bilities. Figure  10(b) shows that the kinetic contribution to 

the real part W k
rδ , provided by thermal particles, also slightly 

modifies (cancels) that by energetic ions, resulting in a modi-
fication of the mode frequency.

3.5.  Relation with the RWM

The fish-bone-like external kink mode can co-exist and/or 
couple with the resistive wall mode. Both modes originate 
from the ideal external kink, which is stable in the plasma 
with a sufficiently close-fitting ideal wall. The RWM insta-
bility is introduced by the replacement of the ideal wall with 
a resistive wall, which allows the penetration of the perturbed 
magnetic field; whilst the FLEM instability is driven by the 
precession motion of trapped EPs, which resonate with the 
external kink mode.

Figure 11 shows the normalized mode growth rates γ/ωA 
and frequencies ωr/ωA, for both FLEMs and RWMs, as func-
tions of the plasma rotation frequency Ω/ωA, for various β* 
values of EPs. The beta value of thermal particles remains 
invariant βthermal  =  0.015. The kinetic contribution from hot 
ions alone is included here. Panel (a) shows the negative 
rotation (Ω  <  0) case, where the Doppler shift reduces the 
FLEM frequency. With a further increase in |Ω|, the FLEM 
frequency ωr crosses zero (in the vicinity of the RWM fre-
quency), becoming negative. The FLEM remains unstable as 
the plasma rotation increases, because the resonance condition 

n nr daω ω− Ω≈  is satisfied. The RWM instabilities, instead, 
are damped by the same motion of hot ions, and become 
stable with negative rotation, where the similar resonance 
condition ωr  −  nΩ  −  nωda  ≈  0 is satisfied, but with ωr  ≈  0 
for the RWM. This figure shows two unstable modes (FLEM 
and RWM) that generally co-exist. In the particular situation 
of β*  =  2.13, βp  =  0.04, and at rotation Ω/ωA  ≈  −0.047, cou-
pling between the two modes appears, since both frequencies 
and growth rates of these two modes become very close to 
each other.

With positive rotation as presented in panel (b), the FLEM 
frequency ωr stays positive and rapidly increases with rotation, 
due to the Doppler shift, and thus does not vanish. The RWM, 

Figure 8.  The MARS-K computed (a) growth rates and (b) frequencies of the n  =  6 FLEM instability versus the normalized wall 
position b/a. The lines represent results with an ideal wall, and the dots represent results with a resistive wall having a penetration time of 
τw/τA  =  4.4  ×  103. The other parameters are the same as those in figure 7.

Figure 9.  Comparison of the energy components between two 
groups: the first group represents results with kinetic effects of hot 
ions alone; the second group includes the kinetic contributions from 
both hot ions and the full kinetic resonances with thermal particles. 
The other parameters used here are the same as those in figure 5, at 
βp  =  0.14 and *

0β   =  1.0.
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on the other hand, cannot be stabilized by the kinetic effects of 
EPs alone—full stabilization can be reached though, if the ion 
acoustic continuum damping from thermal particles is taken 
into account [28]. Coupling between the FLEM and the RWM 
is not observed with positive rotation, due to the large differ-
ence in both the mode frequencies and growth rates. Only the 
co-existence of two modes is presented.

Figure 12 compares the computed eigenfunctions of the 
FLEM and the RWM, with inclusion of the hot ion kinetic 
contribution only. The quantity ξ1 denotes the associated 
plasma radial displacement, and Q1 the radial component of the 
perturbed magnetic field. The example is chosen at *

0β   =  1.0, 

βp  =  0.12, and without rotation. The penetration time scale of 
the wall is taken as τw/τA  =  4.4 · 103. Clearly, these two modes, 
both originated from the ‘external kink’, have rather similar 
shapes of the eigenfunctions, for both ξ1 and Q1. Nevertheless, 
a subtle difference can be noticed, both ξ1 and Q1 of the FLEM 
are pushed towards the plasma core by the wall. In particular, 
Q1 of the FLEM is nearly vanishing at the wall radius, whilst 
the RWM field perturbation penetrates well through the wall 
and extends into the outer vacuum region. Thus, the wall acts 
as a resistive wall for the RWM (with the mode frequency 
ωr/ωA  ≈  0) but appears as an ideal wall for the FLEM (with 
ωr/ωA  ≈  0.48).

Figure 10.  The drift kinetic energy components δWk versus the poloidal plasma beta βp, computed at *
0β   =1.0, β*  =  0.176, corresponding 

to the case (3) of figure 5. Considered are three cases: drift kinetic energy component contributed from the hot ions (marked ‘hot’), from the 
thermal particles (marked ‘thermal’), and a combination of both hot and thermal,(marked ‘full’). Both (a) the imaginary part, and (b) the 
real part, of δWk, are shown. The other parameters are the same as those in figure 5.

δW
ki

δW
kr

Figure 11.  The normalized growth rates and frequencies of the n  =  6 co-existing and/or coupled RWM and FLEM, plotted as functions 
of the normalized plasma rotation frequency Ω/ωA, for β*  =3.1 (βp  =  0.05), β*  =2.6 (βp  =0.045) and β*  =2.1 (βp  =0.04), respectively, 
and with a fixed thermal poloidal beta βthermal  =0.015. The other choice of parameters is: β*  =  constant, b/a  =  1.275, εα  =  100 keV, 
F  =  −0.015, and q(0)  =  0.145.
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4. The FLEM instability in tokamaks

4.1.  Excitation of the FLEM instability

The FLEM in the tokamak configuration can be driven by the 
same mechanism as that in RFPs. Indeed the modes show a 
similar nature. One difference, though, is that the EP-driven 
FLEM has much lower frequency in tokamaks, than that in 
RFPs (with the same birth energy εα of EPs). This is because 
the tokamak configuration has a larger scale length of magn
etic gradient and curvature radius (in the order of the major 
radius R) than that in the RFP configuration (in the order of 
the minor radius r), resulting in a much lower precession fre-
quency of hot ions in tokamaks than in RFPs. Furthermore, 
the ion acoustic Landau damping by bulk thermal ions in 
RFPs would be relatively stronger than in tokamaks, due to 
the shorter connection length in the former.

Figure 13 shows the growth rates and frequencies of the 
n  =  1 FLEM instability versus the total plasma beta β, com-
puted for a circular tokamak equilibrium (such a choice of 
the plasma shape is mainly motivated by matching the RFP 

plasma studied in section  3) with q(0)  =  1.14, q(a)  =  3.68, 
and b/a  =  1.12. The poloidal harmonics are included from 
m  =  −10 to 5. The equilibrium parameters of the ener-
getic ions, with εα  =  100 keV, are assumed to be similar 
to those shown in figure  5. Three cases are considered: (1) 

*
0β   =  0.3(β*  =  0.067) and (2) *

0β   =  1.0 (β*  =  0.19), where 
the kinetic effects of EPs alone are included; case (3) *

0β   =   
1.0 (β*  =  0.19), where the kinetic resonances from both EPs 
and bulk thermal particles are taken into account. Figure 13 
shows similar behavior of the FLEM instability to that shown 
in figure 5 for RFPs. Namely, the FLEM can also be triggered 
by EPs in a tokamak configuration, when the plasma beta β 
exceeds a critical value, which in turn depends on the EP pres
sure fraction (β*). Comparison between case (1) *

0β   =  0.3 and 
(2) *

0β   =  1.0 indicates that, the higher the fraction of EPs, the 
lower the critical β value, and the higher the mode growth 
rate. The real frequency r A/ω ω  of the FLEM, which links to the 
precession frequency of EPs, is also reduced with increasing 
the plasma beta. Note that the mode frequency ωr is much 
lower compared to that in RFPs. The thermal ion Landau 

Figure 12.  The magnitude of the dominant components of (a) the radial plasma displacement 1ξ  (n  =  6, m  =  −1) and (b) the perturbed 
radial magnetic field Q1  (n  =  6, m  =  −1,−2,−3), plotted along the minor radius, for both the FLEM and the RWM. The s  =  1 value 
corresponds to the plasma surface. The wall is located at b/a  =  1.125. Included are kinetic effects from hot ions alone. No plasma rotation 
is assumed. *

0β   =  1.0, βp  =  0.12. The other parameters are chosen as the same as those in figure 5.

Figure 13.  The (a) growth rate γ/ωA, and (b) real frequency ωr/ωA, of the n  =  1 FLEM versus the plasma beta β value for the tokamak 
configuration. The solid lines represent the kinetic contributions from EPs alone, with two different fractions *

0β   =  0.3(β*  =  0.067) and 
*
0β   =  1.0 (β*  =  0.19), respectively. The dashed line represents results with kinetic contributions from both EPs and thermal ions, with 
*
0β   =  1.0 (β*  =  0.19). The other parameters are b/a  =  1.12, Ω  =  0 and εα  =  100 keV.
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damping also plays a stabilizing role, as can be observed by 
comparing case (2) (kinetic effects of hot ions alone) and case 
(3) (kinetic effects of hot plus thermal ions). In tokamaks, 
the poloidal harmonics of FLEM can be non-resonant and/or 
resonant. In our case, the dominant non-resonant kink comp
onent (e.g. m  =  −1, n  =  1) couples with the resonant external 
kink components (e.g. m  =  −2,−3, n  =  1).

Similar to the RFP case (figure 5), the ideal wall beta limit 
is modified by the kinetic effects, as marked in figure  13: 
β ideal  =  0.0124 (βN  ≈  3.34) with the EP kinetic effect alone, 
and β ideal   =   0.0139 with full kinetic effects (both EPs and 
thermal ions). The computed no-wall β limit for this plasma 
is β nowall  =0.0078 ( N

nowallβ   =  2.11). Here βN is defined as 
βN  =  βT(aBT/I), βT  =  2μ0  <  p  >  /BT

2,<p  >  is the volume 
averaged plasma pressure, μ0 is the vacuum permeability and 
BT is the strength of the toroidal magnetic field.

The general dispersion relation for the external kink mode, 
equation (21), still applies to the tokamak case. However, the 
dispersion relation (22), that is valid under the assumption 
of ωr � γ, no longer applies, since ωr is comparable to γ in 
tokamaks. Thus, the drift kinetic energy component δWk intro-
duces an additional influence on the mode frequency ωr.

The 2D plot in figure 14(a) shows the precession frequency 
nωda (averaged over the velocity space) of EPs. The 2D plot 
in figure 14(b) shows the imaginary part of the drift kinetic 
energy W k

iδ  for the FLEM in our tokamak plasma. The kinetic 
effects of hot ions alone are included here. The other para
meters are chosen as β  =  0.012 (βN  =  3.02), *

0β   =  1.0, and 
β*  =  0.19, corresponding to one of the points in case (2) of 
figure  13. Figure  14(b) shows that the main contribution to 
the drift kinetic energy W k

iδ  comes from the region close to 
the low field side of the magnetic axis, corresponding to the 
area of nωda  ≈  0.015–0.06 in (a), which is also in the vicinity 
of the FLEM frequency ωr/ωA  ≈  0.065 as shown in figure 13 
for β  =  0.012. Thus, W k

iδ  is mainly contributed by the inter-
action of EPs with the external kink through the precession 
resonance. We also notice that the values of nωda, that provide 

the maximum contribution to the drift kinetic energy W k
iδ ,  

do not fully coincide with the mode frequency ωr. This dis-
crepancy may be due to the fact that the nωda frequency shown 
in figure 14(a) is the average over the velocity space, whilst 
the true precessional drift frequency entering into the compu-
tations is located in the particle velocity space.

The unstable domains, in the 2D plane of the total plasma β 
versus the wall position b/a, are mapped out in figure 15 for the 
n  =  1 FLEM, for two choices of the parameter set, *

0β   =  0.3 
(β*  =  0.067) εα  =  100 keV and *

0β   =  0.51 (β*  =  0.107), 
εα  =  150 keV, respectively. The unstable (shaded) area 
appears above the no-wall beta limit (marked in figure 15 as 
β nowall  =  0.0078) and below the ideal wall beta limit. The 
latter is the upper-bound of the unstable region. The EPs with 
higher birth energy, and/or higher fraction β*, lead to a larger 

Figure 14.  The 2D plots of (a) the precession frequency of the EPs nωda (averaged over the particle velocity space), and (b) the imaginary 
part of the drift kinetic energy component W k

iδ  for the FLEM, with the plasma beta β  =  0.012 (βN  =  3.02) and the fraction *
0β   =  1.0 

(β*  =  0.19), are shown in the R-Z plane. The other equilibrium parameters are chosen as the same as those from figure 13.

Figure 15.  The unstable domains (shaded areas) for the n  =  1 
FLEM, plotted in the 2D plane of the plasma beta β (left) and βN 
(right) versus the wall position b/a. The horizontal dashed line 
represents the no-wall beta limit (βnowall  =  0.0078). Two different 
EP parameters are compared: *

0β   =  0.3(β*  =  0.067), εα  =  100 keV, 
and *

0β   =  0.51 (β*  =  0.107), εα  =  150 keV. In both cases, the solid 
lines denote the ideal wall beta limit modified by the kinetic effect, 
and the dashed lines denote the stability boundary of the FLEMs. 
No plasma rotation is assumed.
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unstable area. Plasma with a closer surrounding wall requires 
higher beta value to excite the FLEMs. The figure also indi-
cates that the kinetic effects modify the ideal wall beta limit, 
and hence the upper-bound of the unstable region. Above this 
limit, the ideal kink mode is intrinsically unstable without or 
with the kinetic effects of EPs.

4.2.  Co-existence of FLEM and RWM

The co-existence of the RWM and the FLEM is computed in 
the tokamak configuration, as shown in figure 16, where both 
positive and negative rotation directions have been consid-
ered. Moreover, the kinetic effects from trapped hot ions as 
well as trapped thermal particles are considered in the compu-
tations. For the FLEM instability, since the frequency should 
be determined by the resonance condition ωr  ≈  nωda  +  nΩ, 
positive (negative) plasma rotation increases (decreases) the 
mode frequency. However, the rotation along both directions 
does not significantly influence the growth rates of the FLEM, 
provided that the resonance condition is satisfied.

For the RWM instability, the mode frequency is much lower 
than that of the FLEM. With positive rotation Ω  >  0, the RWM 
can be stabilized by the kinetic damping contributed by the pre-
cession drift of trapped thermal particles [18, 28–32], at a very 
slow rotation velocity (Ω/ωA  ⩽  0.014 as shown in figure 16). 
No resonance-induced stabilization occurs due to the EPs. With 
negative rotation Ω  <  0, both hot and thermal ions contribute 

to the drift kinetic energy W k
iδ . The RWM is stabilized with 

relatively slow (or even vanishing) negative rotation, mainly 
due to the contribution of trapped thermal particles. As rota-
tion frequency becomes more negative, the RWM is again 
stabilized, but this time mainly by the kinetic damping of hot 
ions. Detailed investigation of these RWM phenomena will be 
reported elsewhere. A key observation, presented by this figure, 
is the co-existence of both unstable FLEM and RWM. In the 
parameter ranges that we investigated here, no mode coupling 
occurs, unlike in the RFP case. This may be related to the 
fact that the Doppler shift nΩ introduced by negative plasma 
rotation, with n  =  1 in the tokamak case, frequency does not 
decrease the FLEM frequency as rapidly as in the RFP case 
with n  =  6. Thus, before the FLEM frequency decreases and 
reaches the RWM frequency (near zero), the RWM has already 
been stabilized by the kinetic damping of EPs.

The eigenfunctions of the co-existing FLEM and RWM 
are compared in figure  17, for (a) the radial displacements 
|ξ1| associated with the most important poloidal harmonics 
(n  =  1, m  =  −1 to  −4), and (b) the radial components of the 
perturbed magnetic field |Q1|. These two coexisting modes 
correspond to the case of Ω/ωA  =  0.02 from figure  16. The 
kinetic effects contributed from both hot ions and trapped 
thermal particles are considered (the curves marked with 
‘th  +  hot’ in figure 16). Figure 17 presents both non-resonant 
poloidal harmonics (n  =  1, m  =  −1,−4) and resonant har-
monics (n  =  1, m  =  −2,−3). Similar to the RFP case, the 
eigenfunctions of FLEM and RWM are of comparable shape 
in general. However, the perturbations of the FLEMs are 
pushed towards the plasma center due to the ‘ideal-like’ wall, 
and show lower amplitude of the displacements compared to 
that of the RWMs. The radial field perturbation |Q1| nearly 
vanishes at the wall for the FLEM, whilst it remains finite and 
extends into the outer vacuum for the RWMs.

4.3.  FLEM Damping by thermal particles

Similar to the RFP plasma, passing thermal ions provide ion 
acoustic Landau damping on the FLEM instability also in the 
tokamak. Figure  18 shows various energy components. In 
particular, the imaginary parts of the drift kinetic energy W k

iδ  
contributions from EPs and from thermal particles have oppo-
site signs and thus (partially) cancel each other.

Therefore, by including the kinetic effects of thermal par-
ticles in the tokamak computations, the FLEM instability 
becomes weaker compared to the case of considering only the 
hot ions. This leads to the requirement of higher β value for 
triggering the instability, and also results in lower growth rates 
of FLEM, as already demonstrated in figure 13.

On the other hand, the damping from thermal particles on 
the FLEM does not seem to substantially modify the driving 
force by EPs—the cancellation of the thermal particle contrib
ution to W k

iδ  is relatively small compared to that in the RFP 
plasma. Comparison between figures 18 (for tokamak) and 10 
(for RFP) supports this conclusion. As already mentioned, the 
stronger cancellation in the RFP plasma is due to the shorter 
connection length, and thus the stronger Landau damping 

Figure 16.  The normalized growth rates and frequencies of the 
co-existing RWM and FLEM, plotted as functions of the plasma 
rotation frequency. The mark ‘hot’ denotes the case where the 
kinetic effects are contributed only by hot ions; ‘th  +  hot’ denotes 
both hot ions and trapped thermal particles. The other parameters 
are *

0β   =  1, 0 (β*  =  0.19), β  =  0.012, b/a  =  1.12 and εα  =  100 keV.
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by passing thermal particles than that in tokamaks. Similar 
observation has also been made in the studies of other types of 
instabilities [33–35] in RFP plasmas.

5.  Summary and discussion

In this work, we have numerically investigated the fishbone-like 
external kink mode (FLEM) driven by the precessional drift 
motion of trapped EPs. Both RFP and Tokamak (with circular 
cross section) magnetic configurations are considered and the 
results are compared. The toroidal MHD-kinetic hybrid sta-
bility code MARS-K was used for this purpose. The code self-
consistently takes into account the drift kinetic effects of both 
thermal and EPs. Detailed numerical analyses of the results 
have been performed, in order to gain better insight into the 
mode physics. The physics nature of the FLEM is presented, 
and its relation with the RWM is discussed.

The FLEM instability is numerically predicted for RFP 
plasmas as a non-resonant mode, which is the least stable kink 

mode in RFP configuration. In the presence of a sufficiently 
large fraction of EPs in the plasma, and with the satisfaction 
of the resonance condition n nda rω ω≈ − Ω, the stable non-
resonant ideal kink mode (stabilized by a close-fitting ideal 
conducting wall) is converted into an unstable FLEM by the 
precessional drift resonance of EPs (hot ions). The mode  
frequency is linked to the precessional drift frequency of  
EPs, and therefore, is much higher than the RWM and around 
the ideal MHD time scale, and varies with the plasma rotation 
frequency. The FLEM instability occurs at rather high plasma 

beta βp. In fact, the value of ideal beta limit p
idealβ  is the upper-

bound of the parameter space for the FLEM instability. Near 
(and below) this boundary, the external ideal kink stays mar-
ginally stable with an ideal wall, and is thus the easiest one to 
be excited by EP kinetic resonances. From another point of 

view, the energy component δWb is sufficiently small as the βp 

value stays close but below p
idealβ , resulting in a low-frequency 

ωr for the external kink mode, which can then easily match 
the precession frequency ωda of EPs. For given parameters 

Figure 17.  The radial components of (a) the plasma displacement 1ξ  and (b) the perturbed magnetic field Q1  (n  =  1, m  =  −1 to  −5), 
plotted along the plasma minor radius, for the FLEM and the RWM, for the point from figure 16 with full kinetic contribution and at the 
plasma rotation of Ω/ωA  =  0.02. The other parameters are chosen as the same as those in figure 16.

Figure 18.  The drift kinetic energy components (a) W k
iδ , and (b) W k

rδ , versus the plasma beta β, computed by including kinetic resonances 
of both EPs and thermal particles. The corresponding stability curve is marked as ‘th  +  hot’ in figure 13. The contributions to δWk by 
various species are presented as follows: the curve ‘thermal’ denotes the contribution from thermal particles, ‘hot’ denotes the contribution 
from energetic ions, and ‘full’ denotes the combination of both species. The parameters used are the same as those in figure 13 for curve 
‘th  +  hot’ with *

0β   =  1.0 (β*  =  0.19).
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(εα, β*) of EPs, δWb increases as the total plasma beta βp 
decreases, due to decreasing |δWF| (i.e. farther from the mar-
ginal state). Thus, the external kink frequency ωr increases 
with decreasing βp (equation (22A)). When ωr becomes too 
large, to satisfy the resonance condition with the precession 
frequency ωda of EPs, the instability disappears. The higher 
the fraction of EPs (i.e. with higher β*), the larger the kinetic 
contribution to W k

iδ  is expected, resulting in easier excitation 
of the FLEM instability. Furthermore, higher birth energy εα 
leads to higher precession frequency of EPs, which sensitively 
enlarges the parameter space for the FLEM triggering.

In general, the instability of FLEM does not depend on the 
wall resistivity. However, the wall position can significantly 
affect the mode’s property. The closer the wall to the plasma, 
the higher the plasma beta required for the excitation of the 
instability. The kinetic effect of the thermal particles (transit 
resonance of passing particles) can partially cancel the driving 
mechanism contributed by the precession resonance of EPs, 
thus playing a stabilizing role on FLEMs.

In the presence of EPs, the FLEM and the RWM can 
coexist. They can couple to each other if plasma rotates, 
depending on the plasma parameters. However, the RWM can 
be stabilized by the plasma flow, whilst the FLEM remains 
unstable with the typical plasma rotation.

The same type of EP-driven instability is also computed 
for the tokamak plasma, where the (dominant) non-resonant 
external kink component (e.g. m  =  1, n  =  1) couples with the 
resonant external kink components (e.g. m  =  2, 3; n  =  1). The 
similar nature of FLEM, to that previously mentioned for RFPs, 
is also observed in the tokamak configuration. Therefore, in 
the presence of a sufficiently large fraction of trapped ener-
getic ions in high beta plasmas, the FLEM instability may 
occur under the same excitation condition as discussed for 
RFPs. However, the computed FLEM frequency is much lower 
in tokamaks, than that in RFPs, due to the lower precession 
frequency of EPs in the former (with the same birth energy). 
Furthermore, the Landau damping of the transit resonance by 
the passing thermal particles is weaker in tokamaks than that in 
RFPs, due to the longer connection length in the former.

This work focuses on the physics investigation of the driven 
mechanism, the excitation condition, the nature of external 
kink instability driven by EPs, as well as the comparison of 
the FLEM physics between the two different configurations. 
The application of the current finding to the experimental 
observation, in a specific device, remains the next step in our 
future work.

Finally, we point out that, due to the non-resonant nature 
of the FLEM in RFP plasmas, where the n  =  6 mode with 
the most important poloidal harmonics (e.g. m  =  −5 to 5) are 
all non-resonant, the Alfven continuum damping seems to be 
rather weak and does not crucially influence the nature of the 
instability. As for the tokamak case, although the non-resonant 
harmonic (n  =  1, m  =  1) is still the dominant component, it 
does couple to certain resonant components. However, we 
have so far not been able to identify any dramatic modifica-
tion of the FLEM physics due to the coupling between the 
non-resonant and the resonant harmonics. This peculiar point 
may nevertheless deserve further investigation in the future.
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