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The magnetohydrodynamic-kinetic hybrid theory has been extensively and successfully applied for

interpreting experimental observations of macroscopic, low frequency instabilities, such as the

resistive wall mode, in fusion plasmas. In this work, it is discovered that an analytic version of the

hybrid formulation predicts a bifurcation of the mode dynamics while varying certain physical

parameters of the plasma, such as the thermal particle collisionality or the ratio of the thermal ion

to electron temperatures. This bifurcation can robustly occur under reasonably large parameter

spaces as well as with different assumptions, for instance, on the particle collision model.

Qualitatively similar bifurcation features are also observed in full toroidal computations presented

in this work, based on a non-perturbative hybrid formulation. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931076]

The resistive wall mode (RWM) is a low frequency,

macroscopic instability driven either by the plasma current

(in tokamaks or reversed field pinches) or pressure (in

tokamaks).1,2 Because of its global nature, the onset of this

instability, or sometimes even the response of a marginally

stable RWM to external three-dimensional magnetic field

perturbations,3,4 can cause major disruption in tokamaks or

termination of discharges in reversed field pinch devices.

This motivates extensive research that has been carried out

on this instability in recent years, both in experiments5–8 and

in theory.9–17

The mode originates from ideal external kink mode,

which is a high frequency (comparable to the Alfv�en fre-

quency) instability. Whilst the kink mode is often well

described by the ideal magnetohydrodynamic (MHD) theory,

the RWM involves more subtle physics, essentially due to

the fact that the mode’s frequency is much lower as a result

of the surrounding wall eddy current stabilization. In fact,

the mode’s frequency, measured in the laboratory frame, is

often below any of the typical drift frequencies of plasma

thermal particles. Consequently, in the presence of a toroidal

flow of the plasma, the mode rotates in the plasma frame.

This mode rotation in the plasma frame can create resonance

conditions with the particle motions, if the toroidal rotation

frequency matches the toroidal precession frequency of

particles, or even the bounce (transit) frequency of trapped

(circulating) thermal ions. This is the primary resonance

damping physics of the RWM which can be described by the

drift kinetic theory.11

The MHD-kinetic hybrid formulation, which we adopt

in this work, essentially utilizes the single fluid theory to

describe the mode dynamics perpendicular to the equilibrium

magnetic field lines, whilst the parallel motion is kinetically

treated. Neglecting the plasma inertial effect (because the

mode frequency is normally small in the laboratory frame),

the hybrid formulation leads to a well-known dispersion rela-

tion for the RWM11,18

D xð Þ � �ixsw þ
dW1 þ dWk xð Þ
dWb þ dWk xð Þ ¼ 0; (1)

where x¼xr þ ic is the eigenvalue (complex frequency) of

the mode in the laboratory frame, with xr and c being the

real frequency and the growth rate, respectively. sw is the

typical eddy current decay time of the resistive wall. For

example, in a straight cylinder with circular cross section,

the wall time, in response to a single m Fourier perturbation,

is calculated as sw ¼ l0rbdð1� a2m=b2mÞ=ð2mÞ, with a, b,

d, r, m, and l0 being the plasma minor radius, the wall posi-

tion, the wall thickness, the wall conductivity, the poloidal

mode number, and the vacuum permeability, respectively.

This definition of the wall time will be followed in the first

part of our work, where the dispersion relation (1) is solved

under simplified geometrical assumptions.

Equation (1) is equivalent to an extended energy princi-

ple for the RWM, with quantities dW1 and dWb representing

the perturbed fluid potential energies, without and with an

ideal conducting wall, respectively. dWk is the perturbed drift

kinetic energy representing the mode-particle resonance

physics. In this paper, we shall only consider the proces-

sional drift resonances of trapped thermal ions and electrons,

assuming that the plasma flow (more precisely the equilib-

rium E�B flow) is slower than the thermal particle diamag-

netic flow. It is important to note that we keep the mode

frequency x, though normally being small, into the mode-

particle resonance condition, leading to a rather non-linear

a)Electronic mail: haogz@swip.ac.cn
b)Electronic mail: zxwang@dlut.edu.cn

1070-664X/2015/22(9)/090705/6/$30.00 VC 2015 AIP Publishing LLC22, 090705-1

PHYSICS OF PLASMAS 22, 090705 (2015)

http://dx.doi.org/10.1063/1.4931076
http://dx.doi.org/10.1063/1.4931076
http://dx.doi.org/10.1063/1.4931076
mailto:haogz@swip.ac.cn
mailto:zxwang@dlut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4931076&domain=pdf&date_stamp=2015-09-15


dependence of the drift kinetic energy dWk on x. This non-

linearity can introduce multiple branches of the RWM, as

has been shown in earlier work,13,14,19 and can also result in

fishbone-like modes,16 if the energetic particle resonances

are included. Different from early results, in this work we

find that bifurcation can occur in terms of the RWM eigen-

value in the complex plane, with continuous variation of

certain plasma parameters. This can provide a new way of

understanding and interpreting the sometimes rather rich

phenomena of the RWM dynamics as observed in tokamak

experiments.

We adopt a model similar to that developed in Ref. 18.

Following a large aspect ratio approximation with circular

plasma cross section, the perturbed drift kinetic energy can

be written as18,21

dWk ¼ 2p3=2
X

e;i

ð
dr�rP rð ÞjhnRij2

ð
dk

2� kð Þ2

F

�
ð

dêk ê
5=2
k e�êk Q; (2)

where �r¼ r/R0 is the inverse aspect ratio, P(r)¼P0(1 � r2)

is the equilibrium plasma pressure, which we assume to be a

parabolic function of the plasma minor radius r (normalized

by a), with P0 ¼ l0J2
0=4, and J0 being the plasma current

density which is assumed to be flat along minor radius.

k�lB0/ek is the pitch angle of (trapped) particles, l is

the magnetic moment, B0 is the equilibrium magnetic field,

êk ¼ ek=T is the particle energy ek normalized by the temper-

ature T. In this simple model, a uniform plasma equilibrium

current density also yields a flat safety factor profile

qðrÞ ¼ q0 � 2B0=ðl0R0J0Þ. jhnRij ¼ ðm=F0Þrl�1eiðm�vÞh is

the plasma displacement along the major radius, averaged

over one bounce period of the particle,18 with l ¼ jmj;
v ¼ m=l; F0 ¼ ðm� nq0ÞB0=ðR0q0Þ, n is the toroidal mode

number.

Among the remaining factors in formula (2),

F ¼ p
ffiffiffiffiffiffiffiffiffi
2k�r

p
=2Kðk2

t Þ is the normalized bounce frequency,

where Kðk2
t Þ is the complete elliptic integral of the first

kind with kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kþ k�rÞ=2k�r

p
. Q is the resonance

operator18,19

Q ¼ nx�N þ êk � 3=2ð Þnx�T þ nxE � x
nxd � i�ef f þ nxE � x

; (3)

where x*N and x*T are the diamagnetic drift frequencies due

to particle density and temperature gradients, respectively.

For simplicity, we take an assumption that the equilibrium

plasma density is constant, thus x*N¼ 0. xE is the E�B

rotation frequency, again assumed to be a constant: xE¼x0.

xd ¼ Cd êkk½ð2E� KÞ=ð2KÞ� is the bounce-averaged toroidal

precession frequency of trapped thermal particles due to $B

drift, with Cd � r1qðql=rÞðtth=R0Þ and ql� tth/xc being the

Larmor radius of particle gyro-motion, with the gyro-

frequency xc¼ eB0/M. tth �
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=M

p
is the thermal speed

of the particle with mass M. r1 ¼ þ1 for ions and r1 ¼ �1

for electrons. E is the complete elliptic integral of the second

kind.

One key element of the present study is to investigate

how the plasma collisionality can affect the drift kinetic

damping and eventually on the mode dynamics. In a previ-

ous work,15 it has been shown that the collisionality can sen-

sitively change the drift kinetic damping on the RWM. In

this work, we discover another important role played by the

particle collisions, namely, the triggering of the bifurcation

in the mode dynamics. The effective collisionality is denoted

by �eff in the resonance operator (3). We consider two

collision models: the energy-independent model �ef f ¼ �

�
ffiffi
2
p

nim
1=2

ij Z2
i Z2

j e4

12p3=2�2
0
mjT

3=2

j

lnK, and a model where the effective collision

frequency is also a function of the particle energy

�ef f ¼ �ê�3=2
k =�r, on top of the neoclassical correction. Here,

mij¼mimj/(miþmj), Z is the particle charge number, lnK is

the Coulomb logarithm, and �0 is the vacuum permittivity. In

this work, we assume that for thermal ions, the � value, nor-

malized by the Alfv�en frequency xA � B0=ðR0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p Þ,
varies in the range of 10�5–10�3, where q0 is plasma density.

The collisionality for thermal electrons is (2 mi/me)
1=2 times

larger than that for thermal ions.

Using the m/n¼ 2/1 eigen-function of the RWM for a

circular cylindrical equilibrium, the drift kinetic energy per-

turbation (2) is analytically derived as18

dWk ¼
l2

0J2
0

p1=2B2
0

X
e;i

ð1

0

drr2 u�1ð Þ
1� r2ð Þ

�
ð 1

1��r

1
1þ�r

dk G2
0þ4k2

t G2
1

� �K 2�kð Þ2ffiffiffiffiffiffiffiffiffi
2k�r

p
ð1

0

dêk

� XbêkþXnXbþXb
XaþXn

Xb
�Xn

� �� �
ê5=2

k e�êk

êkPþXn
; (4)

where P¼ k(E/K � 1/2), in our case G0¼ 1, G1¼K�1, and

we have introduced the following factors as Ref. 18:

Xa ¼
nx�N � 3nx�T=2þ i�ef f

nCd
; Xb ¼

nx�T
nCd

;

Xn ¼
nxE � x� i�ef f

nCd
:

In further study, we numerically solve the non-linear

dispersion relation (1) for a fixed equilibrium with a¼ 1 m,

R0¼ 3 m, B0¼ 3 T, and q0¼ 1.42. A resistive wall with

thickness d¼ 0.01a is located at b¼ 1.20a. The m/n¼ 2/1

mode is considered. Whilst the drift kinetic energy (4) is

exactly evaluated following these conditions, we choose the

values for the fluid potential energies such that (i) the (fluid)

RWM is unstable without the drift kinetic damping, and (ii)

the fluid potential energy is by magnitude comparable to the

drift kinetic energy. This is often the case from the results of

the self-consistent toroidal computations (which is also why

the drift kinetic terms can strongly affect the RWM stabil-

ity). Here, we set dWb¼ 0.05 normalized by the plasma

inertial energy dK ¼ 2p2R0s2
Alq2

0=ðl0ðm� nq0Þ2Þ, and cf sw

¼ �dW1=dWb ¼ 4. We find qualitatively the same results

while varying these fluid parameters within reasonable

ranges.
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Figure 1 compares the solution of the dispersion relation

(1), vs. X0¼x0/xA at two extreme values of the thermal ion

collision frequency, �¼ 5.0� 10�5 and �¼ 1.0� 10�3. The

simple collision model, without the particle energy depend-

ence, is assumed here. In both high and low collisionality

regimes, there are two branches of the RWM. However,

these two branches behave qualitatively differently as the

E�B flow velocity varies. With increasing collision fre-

quency, these two branches merge and form two new

branches. This transition is more clearly shown in Fig. 2(a),

where we plot the eigenvalue of the mode in the complex

plane, for various choices of the collision frequency. The

arrows along the curves indicate the direction of increasing

the E�B flow velocity. Two separatrix lines exist, that

divide the complex plane into four regions. Depending on

the particle collision, the mode’s eigenvalue can only be

located in two of the four regions (i.e., either side of the sep-

aratrix). This is similar to the bifurcation (of saddle type) of

a dynamic system in the phase space. In practice, this result

predicts that the behavior of the RWM (both growth rate and

mode frequency), with varying plasma flow speed, can be

rather different depending on the plasma collisionality re-

gime. More specifically, there exists a critical collision fre-

quency �¼ 3.9� 10�4, below which the plasma flow

induced drift kinetic resonance tends to stabilize one branch

of the mode but destabilize the other. When the collision fre-

quency exceeds the critical value, increasing of the flow

speed does not generally change the stability of either of the

branches. The same phenomenon is observed using the

particle energy-dependent collision model, as shown by

Fig. 2(b), though the critical value of � is somewhat larger.

The bifurcation of the RWM dynamics is inherently

related to the non-linear dependence of the perturbed drift ki-

netic energy on the mode eigenvalue. Indeed, the bifurcation

also occurs when plotting Re(dWk) versus Im(dWk) in com-

plex plane, as shown in Fig. 3. The circles in these plots indi-

cate constant growth or damping rates of the mode. This can

be understood by re-writing the real part of the dispersion

relation (1) into the following form:20

ðReðdWkÞ �HÞ2 þ ðImðdWkÞÞ2 ¼ C2; (5)

C ¼ ðdWb � dW1Þ=½2ð1þ ðcswÞÞ�; (6)

H ¼ � dWb þ dW1ð Þ
2

�
dWb � dW1ð Þ cswð Þ

2 1þ cswð Þ
	 �� : (7)

The marginal stability circle is obtained by setting

csw¼ 0 in Eqs. (6) and (7). The RWM is stable when

Re(dWk) and Im(dWk) are located outside this circle. It is

interesting to note that the point Re(dWk)¼ –dWb,

Im(dWk)¼ 0 always satisfies Eq. (5), independent of the

value of csw. Therefore, all the equal-growth/damping rate

circles in the complex domain for dWk cross this point.

Another interesting consequence is that the RWM dispersion

relation (1) predicts a full stability of the mode whenever

Re(dWk)< –dWb, independent of the value for Im(dWk).

Independent of the sign, the imaginary part of the per-

turbed drift kinetic energy dWk always plays a stabilizing

FIG. 1. The (a) real and (b) imaginary

parts of the n¼ 1 RWM eigenvalue

normalized by the wall time sw, versus

the toroidal E�B rotation frequency,

X0¼x0/xA. Compared are two cases

with low and high thermal ion colli-

sions, with each case having two

branches of the RWM as predicted by

the analytic model. Both the E�B

rotation frequency and the collision

frequency are normalized by the

Alfv�en frequency.

FIG. 2. The real (c) and imaginary (x)

parts of the n¼ 1 RWM eigenvalue

normalized by the wall time sw, as pre-

dicted by the analytic model with vari-

ous values of the collisionfrequency.

Considered are (a) a simple Krook

collision model with effective collision

frequency �eff¼ � for thermal ions,

and (b) a collision model with particle

energy dependence as well as the neo-

classical correction �ef f ¼ �ê�3=2
k =�r .

Arrows along the curves indicate the

direction of increasing the toroidal

flow velocity.
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role for the mode, as can be qualitatively understood from

Fig. 3. However, the real part of dWk can be either stabilizing

or destabilizing. The separatrix lines in the complex plane

for dWk defines the boundaries for these two qualitatively

different roles played by Re(dWk). At low collisionality,

the real part of dWk is generally stabilizing for one branch

of the RWM (the one which is unstable at vanishing flow)

but destabilizing for the other branch (which can be stable

at vanishing flow). At high collisionality, the Re(dWk)

does not vary much for the unstable branch, having gener-

ally low magnitude. This branch thus remains unstable

as the flow speed increases. The stable branch at high

collisionality remains stable as flow changes, for the case

shown in Fig. 3(a), mainly due to the fact that Re(dWk)

< –dWb. This is, however, not always the case. With the

particle energy dependent collisionality model (Fig. 3(b)),

the value of Re(dWk) varies in such a way, that the mar-

ginal stability boundary is crossed twice as the flow speed

increases.

A more qualitative understanding can be gained by

studying the instability condition for RWM, derived again

from the dispersion relation (1)11,22

�dWbdW1 > jdWkj2 þ ReðdWkÞðdWb þ dW1Þ: (8)

In this work, since we choose dWbþ dW1< 0, a negative

(positive) value of Re(dWk) is stabilizing (destabilizing).

This is clearly demonstrated in Fig. 4(a), where the radial

distributions of Re(dWk) are compared for two (low and

high) collisionality cases, with each case having two

branches. The imaginary parts, shown in Fig. 4(b), are

always stabilizing.

The thermal particle collisionality is not the only param-

eter that determines the bifurcation of the RWM dynamics in

this analytic model. The similar behavior is found by varying

the thermal ion and electron temperature ratio. Defining a pa-

rameter Cp¼Ti/(Te þ Ti), Figs. 5(a) and 5(b) again plot the

eigenvalue of the mode in the complex plane, with different

values of Cp. The arrows along the curves again indicate the

direction of increasing the plasma E�B flow speed. The

collision frequencies are fixed for both ions and electrons in

this scan. The existence of the two separatrix lines is evident,

without (a) or with (b) the particle energy dependence in the

collision frequency. This is largely due to the fact that the ki-

netic resonance contribution mainly comes from thermal

ions in these cases. The electron contribution is small due to

high collisionality compared to that of ions. The thermal

ion contribution to the drift kinetic energy perturbation is

influenced in a qualitatively similar manner, either by the

collision (at fixed Cp), or by the Cp fraction (at fixed colli-

sionality). This is why the parameter scan in either particle

collisionality or pressure fraction produces the similar bifur-

cation effect.

The analytic model, presented here by Eqs. (1) and (4),

is greatly simplified (cylindrical equilibrium with circular

cross section, constant q-profile, eigenfunction with single

poloidal harmonic and with prescribed radial profile). In

order to verify whether the bifurcation predicted by this

model also occurs in toroidal geometry, we have performed

a self-consistent computation of the RWM eigenvalue using

the MHD-kinetic hybrid code MARS-K,13 for a toroidal

Solov�ev equilibrium. This equilibrium, also used in exten-

sive code benchmark efforts,23 with marginally stable ideal

FIG. 3. The perturbed drift kinetic

energy, plotted in the complex plane,

calculated for the same cases (a) and

(b) as in Fig. 2. Circles indicate con-

stant values for the growth/damping

rate of the mode.

FIG. 4. Radial profiles for (a) real and

(b) imaginary parts of the perturbed

drift kinetic energy, calculated for two

(thermal ion) collision frequencies.

Compared are also dWk for two

branches of the mode at each fre-

quency. Shown are cases with energy

independent collision model, at E�B

rotation frequency x0/xA¼ 0.001.
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kink eigenfunctions and low frequency approximation, has

the aspect ratio of 3, the elongation of 1.6 for the poloidal

cross section of the plasma, the on-axis safety factor of 1.9,

and the normalized beta value of bN¼ 2.85. Kinetic contri-

butions from processional drift resonances of both trapped

thermal ions and electrons are included in the MARS-K

computations. Although computationally much more chal-

lenging compared to solving the analytic dispersion relation

(1), we find qualitatively similar bifurcation behavior, as

shown in Fig. 6.

In summary, based on both an analytic model and the

full toroidal computations using the MARS-K code, we have

discovered a bifurcation of the RWM dynamics, in the sense

that the mode’s eigenvalue, as a function of the toroidal flow

speed, experiences qualitative change with continuous varia-

tion of certain plasma parameters (the particle collision

frequencies or the equilibrium thermal ion to electron tem-

perature ratio). Two separatrix lines divide the complex

plane of the mode’s eigenvalue into four regions, where the

mode’s dynamics, as well as the associated drift kinetic

energy perturbations, are found to be qualitatively different.

This work thus predicts a more complicated behavior than

previous thought, of the RWM dynamics due to drift kinetic

resonances, depending on the plasma regimes. Future

experiments in low collisionality plasmas may find that sta-

bility is more sensitive to changes in rotation than present-

day, high collisionality devices. This conclusion is consistent

with Ref. 15. The results reported here, on one side, open a

new angle in interpreting and predicting the zoology of the

RWM behaviors and their consequences observed in toka-

mak experiments; on the other side, pose an interesting

example of exploring the bifurcation of dynamic systems

described by coupled integro-differential equations.
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