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It is well known that a magnetohydrodynamic (MHD) mode, 
which is rotating in the plasma frame in a tokamak, can expe-
rience resonances with continuum waves such as the shear 
Alfvén waves and the sound waves. Such types of resonant 
interactions do not often occur, since many MHD modes, 
such as the internal kink mode, the tearing mode, the peeling-
ballooning mode, the infernal mode, normally rotate together 
with the plasma, and thus appear static in the plasma frame. 
One well known exception is the resistive wall mode (RWM), 
which is an external kink instability, strongly interacting with 
the surrounding resistive wall(s) in toroidal devices such as 
tokamaks or reversed field pinches. As a result, the mode is 
well locked to the wall even when the plasma is rotating. The 
resonant interaction between the RWM and the continuum 
waves in a rotating plasma provides one of the key damping 
mechanisms for the former [1, 2].

In this work, we investigate the similar resonant interaction 
physics for the internal kink mode, which is driven unstable by 
kinetic resonances with precessional drift motions of trapped 
energetic particles (EPs), resulting in the so-called fishbone 
instability [3]. In other words, the internal kink is stable with-
out the EPs drive. More importantly, the triggered fishbone 
mode has a finite real frequency even for a static plasma equi-
librium, meaning that the mode rotates in the plasma frame. 
Consequently, the mode experiences resonances with plasma 
continuum waves, as has already been shown in theory [4]. 
More specifically, coupling of the fishbone to the shear Alfvén 
waves is numerically identified, whilst no significant reso-
nance effect from the sound waves is found for the plasma 
considered in this work.

The key physics consequence, that can be identified from 
the self-consistent toroidal computations, is the significant 
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Abstract
The resonant interaction between the energetic particle triggered fishbone mode and the shear 
Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak 
plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 
2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due 
to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode 
structure of the fishbone instability, by introducing two large peaks of the perturbed parallel 
current density near but offside the q  =  1 rational surface (q is the safety factor). The self-
consistently computed radial plasma displacement substantially differs from that being 
assumed in the conventional fishbone theory.
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modification of the fishbone eigenmode structure near the 
mode resonant surface. More specifically, two large peaks, for 
the perturbed parallel current density, appear near but offside 
the q  =  1 rational surface. The gap between these two current 
peaks increases nearly linearly with the fishbone frequency. 
This is quantitatively confirmed by both toroidal computa-
tions and by the analytic estimate. The computed radial dis-
placement of the mode switches sign near the q  =  1 surface, 
being qualitatively different from the conventional theory 
assumptions, of being either a step-like function, or a hyper-
bolic tangent function describing the smooth transition within 
the inertial layer.

The aforementioned toroidal computations are performed 
with the MHD-kinetic hybrid code MARS-K [5]. The code is 
well benchmarked against other codes with similar drift kinetic 
effects [6, 7], and has been extensively applied to study MHD 
perturbations associated with external kink modes [8–11]. One 
key feature, which allows us to perform the study reported 
in this work, is the non-perturbative approach employed in 
the MARS-K formulation. The MHD equations and the drift 
kinetic equations are solved together in MARS-K, thus allow-
ing (i) the self-consistent modification of the internal kink 
eigenfunction by the drift kinetic effects from trapped EPs, 
and (ii) the wave–wave resonance interactions between the 
fishbone and the plasma continua. Therefore, both types of 
resonance physics—the resonance between internal kink and 
EPs and the resonance between fishbone and Alfvén waves, 
being of different physics origins, are included into the 
MARS-K model and employed in this study. We also mention 
that similar self-consistent MHD-kinetic hybrid formulations 
have been employed in other studies [12–15].

Assuming an ideal plasma with toroidal equilibrium flow, 
the core equations of the MARS-K model can be written as
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⇀
j , ⇀p represent the plasma displace-

ment, the perturbed velocity, magnetic field, current and pres
sure tensor. ω is the complex eigen-frequency of the mode, 
defined in the laboratory frame and is subject to a Doppler 
shift Ωn , with n being the toroidal mode number, Ω the plasma 
rotation frequency along the toroidal angle φ. ρ is the plasma 
mass density. Variables 
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Here, Γ denotes the particle velocity space and M the particle 
mass. ∥v  and ⊥v  denote the parallel and perpendicular velocities 
of the particle guiding center drift motion, respectively. The 
sign σ represents particle species (electrons, ions and energetic 

particles). The perturbed distribution function f L
1 , defined in 

the Lagrangian frame, satisfies the following equation,
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where ( )ε ψf ,0  is the equilibrium distribution function of  
particles, assumed to be Maxwellian for thermal ions and  
electrons, and slowing down distribution for energetic ions. εf

0 

and 
φ

f P
0  denote the derivatives with respect to the particle energy 

and canonical momentum, respectively. ψ is the poloidal magn
etic flux. /ε = + ΦMv Ze22  is the particle total energy with Z 
being the charge number and Φ being the equilibrium electro-
static potential. The total canonical momentum is defined as 

φ ψ= +φP MR Ze2 . νeff is the collision coefficient. The variable 
( )ε ω φ= − − +H H t nexp i ik

1
L  represents particle Lagrangian 

perturbation with [ ( )]/∥ ∥κ ξ µ ξ ε= + +∇⊥ ⊥
⇀ ⇀ ⇀

H Mv Q B• •L kL
2 . 

( )κ = ∇⇀ ⇀ ⇀
b b•  is the magnetic curvature and /µ = ⊥Mv B22  is 

the magnetic moment of particle, /ε = Mv 2k
2  the particle’s 

kinetic energy, and ( )∥ ξ= ∇× ×
⇀ ⇀ ⇀

Q b B•L  the parallel comp
onent of the magnetic field. The solution of equation (8) has 
been discussed in detail in [5]. Equations (1)–(8) form a close 
system to study the fishbone modes. In this work, the above 
equations are solved in a PEST-like straight field line (SFL), 
toroidal coordinate system (s, χ, φ). Here, the first variable s 
represents the square root of the normalized poloidal magnetic 
flux, varying between 0 (magnetic axis) and 1 (plasma bound-
ary). The second and the third variables,χ, φ, correspond to 
a generic poloidal angle and the geometrical toroidal angle, 
respectively.

An experimental equilibrium configuration of HL-2A, 
with neutral beam injection (NBI) heated plasma, is consid-
ered. The equilibrium obtained from the EFIT code, as well as 
the relevant kinetic profiles, are shown in figure 1. The main 
parameters are: the toroidal magnetic field B  =  1.3 T, the 
major/minor radii R  =  1.65 m/a  =  0.4 m, the central electron 
density ne(0)  =  1.6  ×  1019 (m−3), the electron temperature 
Te(0)  =  1.5 (keV), the ion temperature Ti(0)  =  1.5 (keV), the 
temperature ratio of the hot to thermal ions Th/Ti  =  30, the 
density fraction of hot ions nh/ni  =  0.04, the on-axis safety 
factor q(0)  =  0.9 and the edge safety factor q(a)  =  4.08.  
In order to avoid the stabilizing effect of the plasma flow on 
the fishbone instability, the plasma equilibrium is assumed 
to be static. The energy distribution of energetic ions is a 
slowing-down function, and the pitch angle distribution is 
specified by Gaussian functions [5]. In this work, the orbit 
width of EPs and the particle collision are neglected. The 
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contours in figure 1(a) are flux surfaces showing the diverter 
configuration of HL-2A, with the bold line representing the 
plasma boundary. The curves in figure 1(b) represent the nor-
malized, flux surface averaged toroidal current density pro-
file ( )µ=φ φ
�j j R B/ 20 0 0  (dash-dotted line), the safety factor 

q (dotted line), the normalized plasma equilibrium pressure 
µ=�p p B/eq 0 eq 0

2 (solid line), and the pressure profile of ener-
getic ions ph (dashed line), as functions of s. The pressure 
of energetic ions was given by /( )= +� ��p p p p1h h eq h  where 
the pressure fraction factor, for energetic ions, is defined as 

/=�p p ph h th. Here, pth represents the pressure of thermal par-
ticles. The total pressure, which satisfies the equilibrium force 
balance, is the sum of the thermal and EPs pressures.

The diamagnetic drift of energetic particles is the dominant 
factor driving the fishbone instabilities. We shall only consider 
the mode resonance with toroidal precessional drift motion 
(including both the ∇B drift and the curvature drift) of EPs. 
The other resonances, due to bounce/transit motions of EPs, 
are neglected. With non-uniform radial distributions of density 

or temperature, energetic particles usually interact with the 
(stable) internal kink mode, driving the fishbone instability, 
as long as the EPs pressure is sufficiently large. Moreover, the 
real frequency of the fishbone mode is usually about half of the 
precessional drift frequency of EPs at the particle birth energy 
(i.e. /ω ω~ 2r dh ). The growth rate of the mode is roughly a  
linear function of the EPs pressure [3]. Compared with previous 
studies based on the energy principle, the advantages of using 
the MARS-K code is the self-consistent treatment of not only 
the eigenvalue but also the mode eigenfunction for fishbone.

The MARS-K computed eigenvalues of the fishbone 
mode, for our equilibrium, are shown in figure 2(a), as func-
tion of βh/βth. The real and imaginary parts of the eigenval-
ues represent the real frequency (solid line) and the growth 
rate (broken line), respectively, of the fishbone mode. These 
quantities are normalized to the on-axis Alfvén frequency. 
Shown in figure  2(b) is the toroidal precessional drift  
frequency ω�d, averaged over the particle velocity space and 
normalized to the on-axis Alfvén frequency, versus the plasma 

Figure 1.  (a) The diverter configuration of HL-2A, and (b) the equilibrium kinetic profiles for the normalized current density 

( )µ=φ φ
�j j R B/ 20 0 0  (dash-dotted line), the equilibrium pressure µ=�p p B/eq 0 eq 0

2 (solid line), the pressure of energetic ions 

/( )= +� ��p p p p1h h eq h  (dashed line) and the safety factor (dotted line), as functions of s, defined as the square root of the normalized poloidal 
magnetic flux.
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ĵφp̂eqph

q
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minor radius, at βh /βth  =  0.84 and beam energy Eb  =  45 keV, 
based on the equilibrium from figure 1. The minimum value 
of the toroidal precession frequency of EPs is about 0.1 in 
our case. Figure  2(a) shows that the fishbone is excited by 
energetic ions, when βh /βth is larger than a critical value of 
0.03. The real frequency of the excited mode stays nearly con-
stant, being in the same order of magnitude as compared to 
the toroidal precessional drift frequency, agreeing with theor
etical expectations [3, 4]. In MARS-K, the toroidal preces-
sion frequency is calculated as ω ε= ∂ ∂ ∂ ∂J s J/ / /dh ∥ ∥ , where 

∥ ∥∫=J v ld  denotes the longitudinal adiabatic invariant of 

the particle motion. In the large aspect ratio approximation, 
the above expression for the precession frequency is roughly 
reduced to /ω ∝ q rdh . With a parabolic-like safety factor pro-
file in the HL-2A plasma, the toroidal precession frequency is 
thus expected to decrease with s near the magnetic axis, and 
increase with s in the outer region. This is exactly what we 
numerically find, as shown in figure 2(b).

Figure 3 shows the MARS-K computed eigenmode struc-
ture, in terms of the (normalized) radial displacement of the 
plasma, for the n  =  1, m  =  1 harmonic, versus the plasma 
minor radius. Compared are displacements between (a) the 
fishbone mode and (b) an unstable ideal internal kink mode 
within the single fluid approximation. It is important to note 
that these eigenfunctions are obtained from self-consistent 
MARS-K computations. The fishbone mode is computed at 
βh /βth  =  0.84, beam energy Eb  =  45 (keV), and with an eigen-
value of ( )ω = × ×− −� 2.36 10 , 1.1 102 3 . The plasma displace-
ment associated with the ideal internal kink is, as expected, 
nearly constant inside the q  =  1 surface, and monotonically 
decays to zero outside the rational surface. What is interesting, 
however, is the more complicated mode structure for the fish-
bone instability. Sharp variation of the m  =  1 displacement 
across the q  =  1 surface is observed, with strong peaking 
occuring at the radial locations of s1  =  0.354 and s2  =  0.389. 

This new feature of the fishbone mode structure results from 
the kinetic effects of energetic particles on the mode, as well as 
from the resonant interaction between the mode and the shear 
Alfvén waves, as will be elucidated next. We remark here that, 
in previous work, the eigenmode structure of fishbone is often 
assumed as a step-like function, making analytic utilization of 
the energy principal possible [3, 4]. What we find here shows 
that this may not always be a good approximation.

The resonance between the fishbone mode and the shear 
Alfvén waves occurs, when the real frequency of the fishbone, 
in the plasma frame, matches that of the Alfvén waves

( ) ( ) ( )
( )∥

⎡
⎣⎢

⎤
⎦⎥

ω ω= = =
−

r k v
nq r m

Rq r
v ,r

2
A
2

A
2

A

2

� (9)

where vA is the toroidal Alfvén speed defined at the magnetic 
axis. Note that, with relatively slow mode frequency (~the 
toroidal precession frequency of fast ions) for the fishbone, 
the above resonance can only occur near the q  =  1 rational 
surface, where the parallel wave number κ|| is small. Thus, for 
an ordinary q-profile, there are two resonant positions, located 
from both sides of the q  =  1 surface. The mode eigen-function 
is substantially modified near these two resonant surfaces, as 
shown in figure 3.

Even more interestingly, strong current sheets are formed at 
the radial locations of these two resonant surfaces, as shown in 
figure 4. These current sheets form part of the fishbone eigen-
function, as the self-consistent solution of the MHD-kinetic 
hybrid equations. For the case shown here, the perturbed 
parallel current density amplitude peaks at q1  =  0.97796 
and q2  =  1.02081, corresponding to the radial positions of 
s1  =  0.354 and s2  =  0.389, respectively.

The radial gap between these two current sheets is numer
ically determined and shown in figure  5, as the distance 
between the upper and lower circles, at each computed mode 
frequency, which varies as a result of changing the temper
ature of EPs. The gap almost linearly increases with the mode 
frequency. On the other hand, the lines in figure 5 correspond 
to the analytic estimates following the exact solution of 
equation  (9). Quantitative agreement between the numerical 
results and the analytic estimates confirm the shear Alfvén 
wave resonance nature for the fishbone mode. No sound wave 
resonance induced current sheets are observed in these com-
putations, though theoretically such resonance, between the 
fishbone and the sound wave (or the slow magneto-acoustic 
wave) continuum, can also occur.

It is the conventional understanding that the EPs kinetic 
effects mainly act on the bulk part of the internal kink eigen-
mode (i.e. not inside the inertia layer which is normally very 
narrow). Toroidal computations allow us to investigate this 
aspect in more detail, also in the context of the mode cou-
pling to the Alfvén waves as studied in this work. For this 
purpose, we apply an artificial window function along the 
plasma minor radius, of width 2δsa, as a multiplier to all the 
drift kinetic terms associated with the trapped EPs [16]. The 
function value is 0 inside the window and 1 outside the win-
dow. The window is symmetrically located from both sides 
of the q  =  1 rational surface. By varying this numerical 

Figure 3.  Real (solid lines) and imaginary parts (broken lines) of 
the normalized radial displacement of the plasma versus the minor 
radius, for (a) the fishbone mode, and (b) the single fluid MHD 
predicted ideal internal kink mode. The eigenfunctions are self-
consistently computed with MARS-K. The vertical dashed line 
indicates the location of the q  =  1 rational surface.
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parameter δs, we can study how the kinetic effects inside the 
layer affect the fishbone mode instability. The computational 
results, shown in figure 6, indicate that fishbone stability is not 
much affected, as long as the window width does not exceed 
the q  =  1 inertia layer width, which is about 0.1a as shown in 
figure 3. On the other hand, a too large window, covering the 
whole inertia layer and beyond, quickly reduces the EPs drive, 
resulting in the loss of the fishbone excitation.

Figure 7 shows one example of the MARS-K computed 
fishbone eigenmode structure, but plotted in the 2D domain 
for the plasma core region. The same EPs parameters, as 
those in figure 3, are assumed. The n  =  1, m  =  1 internal kink 
structure is evident. Note, however, the sharp variations of the 
mode structure near the q  =  1 rational surface, which is self-
consistently generated due to the mode resonance with shear 
Alfvén waves. This is different from the conventional inter-
nal kink eigen-structure as predicted by the M3D code [12]. 
Finally, we remark that, as a linear eigenfunction, the toroidal 
phase of the computed plasma displacement is undetermined. 
Therefore, only the relative phase between the real and imagi-
nary parts, shown in figure 7, has physics significance.

In summary, the non-perturbative toroidal modeling, 
using the well benchmarked MARS-K code, allows us to 
numerically investigate the resonant interaction physics 

between the trapped EPs triggered fishbone mode and the 
shear Alfvén waves in tokamak plasmas. Such interaction is 
possible, thanks to the finite mode frequency driven by EPs 
toroidal precession, even in a static equilibrium. The Alfvén 
resonance qualitatively modifies the eigenmode structure of 
the fishbone, by introducing a double-peak structure in the 
perturbed parallel current density near the q  =  1 rational sur-
face, and by causing substantial plasma radial displacement 

Figure 4.  The self-consistently computed perturbed current sheets, located from both sides of the q  =  1 rational surface, as a result of the 
wave-wave resonance between the fishbone mode and the shear Alfvén continuum. Plotted is the real part of the perturbed parallel current 
density versus the safety factor q, from the same MARS-K computation as in figure 3.
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reversal near the same surface. These new features should be 
taken into account in further development of more accurate 
fishbone models, as well as in the future interpretation of 
experimental results, provided that fine measurements can be 
made within the narrow inertial layer in experiments. Finally, 
this modification of the mode structure may have conse-
quences for the local (particle, thermal, as well as momen-
tum) transport across the inertial layer, as has previously been 
studied [17].
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