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1.  Introduction 

The onset of the resistive wall mode (RWM) has been a major 
concern for advanced tokamaks [1] such as ITER [2]. The 
RWM can be viewed as a residual instability from the external 
ideal kink (XK) mode, which is a global magnetohydrody-
namic (MHD) instability driven by plasma current gradient or 
pressure. The RWM can pose severe operational limits on the 
achievable beta values of tokamaks and on the discharge dura-
tion in RFP devices. In order to maximize the benefit of the 
concept of advanced tokamaks, which aim at high pressure, 
large bootstrap current fraction, long pulse or even steady 
state operation, stabilization of the RWM is a critical issue.

Two approaches are well established to stabilize the mode 
in tokamaks, namely feedback control using magnetic coils 
[3–12] or passive stabilization based on toroidal plasma flow 

damping [13–18]. While significant progress has been made 
in understanding the feedback control of the RWM in both 
theory and experiments, including impressive results obtained 
on RFP devices [19, 20], understanding of the passive stabi-
lization physics is still incomplete, in particular, in view of 
the recently discovered drift kinetic physics associated with 
the RWM damping. The experiments from DIII-D [21] and 
JT-60U [22] showed a very small threshold value of toroidal 
flow speed, about 0.3% of the Alfven speed, for the complete 
suppression of the RWM. This value is much lower than that 
observed from previous magnetic braking experiments with 
large momentum input. Theoretical models based on magnetic 
drift kinetic resonances [23–29] seem to provide a reasonable 
explanation of these new experimental results.

Most theoretical work, with very few exceptions [30–33], 
uses ideal MHD theory to study the RWM. The role of the 
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plasma resistivity on the RWM stability, in conjunction with 
the drift kinetic effects from energetic particles, was first ana-
lyzed in a recent analytic work [34], where a strong damping 
of the mode due to the resistive layer dissipation associated 
with the Glasser–Greene–Johnson effect [35], was demon-
strated. Toroidal computation of the resistivity induced RWM 
damping has been carried out in our recent work [36], but in 
the context of a fluid model for the RWM. Within the fluid 
approximation, [36] also investigated the synergetic effects 
between the active and passive stabilization of the mode.

This work expands that of [36], by considering combined 
effects of several important physics, namely the drift kinetic 
damping, the magnetic feedback, the resistive layer effects, 
and the toroidal flow damping, on the stability of the RWM. 
We consider the same toroidal tokamak model as in [36], and 
carry out computational study using the MARS-K code [37]. 
For the drift kinetic effects, we focus on the precessional drift 
resonance between with the mode and the trapped thermal 
ions and electrons.

The multi-physics nature of the problem dictates that 
we have to explore the mode stability in multi-dimensional 
space. The parameters that we vary include: the plasma pres-
sure, the on-axis plasma toroidal rotation frequency Ω0 (with 
a fixed rotation profile), normalized by the Alfven frequency 

( )μ ρΩ = B R/ ,A 0 0 0 0  the normalized radial distance d a/  of 

the resistive wall, the plasma resistivity η, normalized by 

η μ ε= ΩR0 0 0
2 2

A ε( = )a R/ ,0  the amplitude G  (normalized by 
μ=G R /0 0 0) and phase ( )Garg  of the feedback gain G. Here B0 

is the toroidal vacuum magnetic field at the magnetic axis of 
the plasma equilibrium, ρ0 is the on-axis plasma mass density, 
a the plasma minor radius and R0 the major radius of the torus, 
μ0 is the vacuum magnetic permeability.

The next section describes computational models used in 
MARS-K. Section 3 specifies a toroidal equilibrium used in 
this study. Section 4 reports numerical results. Section 5 draws 
conclusions. A simple analytic model is proposed in appendix 
A, in order to qualitatively explain the computational results 
related to the drift kinetic damping. An analytic model, based 
on the extended energy principle, including contributions from 
the perturbed fluid potential energy, the vacuum and the resis-
tive wall energy perturbation, as well as the energy associated 
with the feedback coils, is derived in appendix B, in order 
to demonstrate the synergistic effects between the magnetic 
feedback and the drift kinetic damping. Finally, appendix C 
offers an analytic model for investigating the coil phasing 
effect in the presence of multiple rows of active control coils.

2.  Computational models

Each of the physics models (the single fluid, the resistive 
plasma, the toroidal flow, the magnetic feedback, the drift 
kinetic formulation), that we shall employ in this work, has 
previously been reported in separate publications. For the 
completeness of discussions, we present below a brief over-
view of all these physics effects, as well as basic numerical 
aspects associated with the MARS-K code.

The core part of our formulation is the toroidal hybrid 
MHD-kinetic model, that combines the single-fluid MHD 
equations  with a self-consistent drift kinetic closure for the 
perturbed pressure. The eventual fluid and kinetic equations, 
in the plasma region, are solved together with equations for 
the resistive wall(s), the active coils, as well as the vacuum 
itself in the vacuum region.

2.1. The MHD-kinetic hybrid model in MARS-K with plasma 
flow

The core equations  in the plasma region, where the kinetic 
terms are involved, are written in the Eulerian frame [37, 38]

γ ϕξ ξ( + Ω) = + ( ⋅ ∇ Ω) ∇n Rvi 2� (1)

ρ γ

ρ ϕ

( + Ω) = − ∇ ⋅ + × + ×

− [ Ω × + ( ⋅ ∇ Ω) ∇ ] − ∇ ⋅ Π

n

R

v p j B J b

Ẑ v v

i

2 2
� (2)

γ η ϕ( + Ω) = ∇ × ( × − ) + ( ⋅ ∇ Ω) ∇n Rb v B j bi 2� (3)

γ( + Ω) = − ⋅ ∇n p Pvi� (4)

μ = ∇ ×j b0� (5)

where γ is the (complex) eigenvalue of the mode, corrected 
by a Doppler shift Ωni , with n being the toroidal mode 
number, Ω the angular frequency of the plasma flow along 
the toroidal direction ϕ. ( )PB J, ,  are the equilibrium magnetic 
field, the plasma current density and pressure, respectively. 
These equilibrium quantities are obtained by the equilibrium 
code CHEASE [39], which solves the fixed boundary Grad–
Shafranov equation. The lower-case quantities ξ( )v b j p, , , ,  
represent the plasma displacement, perturbed velocity, mag-
netic field, current and pressure tensor, respectively. ρ is the 
unperturbed mass density, R the plasma major radius, Ẑ the 
unit vector in the vertical direction. Π is a viscous stress tensor, 
chosen in this work to represent a viscous force damping the 
parallel sound wave [14], with a numerical coefficient κ∥ spec-
ifying the strength of the damping. η is the plasma resistivity. 
Note that the fluid compressibility term ∇ ⋅P v5/3  is dropped 
from equation (4) for the perturbed scalar pressure. This term 
is replaced by the anisotropic part of the full drift kinetic pres-
sure tensors p [40, 41]

= + + ( − )∥ ⊥p p pp I b̂b̂ I b̂b̂� (6)

where I is the unit tensor and = Bb̂ B/ , =B B . p is the scalar 
(isotropic) part of the perturbed pressure, representing the 
so called adiabatic part of the drift kinetic pressure. Strictly 
speaking, equation (4) holds only for special equilibrium dis-
tribution functions such as Maxwellian, which is what we 
assume in this work for thermal particles. ξ( )∥ ⊥p  and ξ( )⊥ ∥p  
are the parallel and perpendicular perturbations of the kinetic 
pressure (the non-adiabatic contribution), computed by

∫∑= Γω ϕ
∥

− +
∥p M fe d vt n

e i

i i

,

2
L
1

� (7)
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∫∑= Γω ϕ
⊥

− +
⊥p M fe d

1

2
vt n

e i

i i

,

2
L
1

� (8)

where an ω ϕ(− + )t nexp i i  dependence is explicitly assumed 
for the perturbation, with the mode (complex) frequency ω. 
M is the particle mass, ∥v  and ⊥v  are the parallel and perpen-
dicular (to the equilibrium magnetic field) velocities of par-
ticle drift motion. The integral is carried out over the particle 

velocity space Γ. fL
1 is the non-adiabatic part of the perturbed 

particle distribution function, which is derived by solving the 
perturbed drift kinetic equations for each particle species, the 

expression for fL
1 is as follows [37]

∑ε λ= − ε
ω ϕ ϕ χ ω− + − ˜( )+ +

⋅

f f X He ek
t n

m l u
m
u

ml
u

ml
n t m t l t

L
1 0 i i

, ,

i i i b
� (9)

where εf
0 is the energy derivative of the particle equilibrium 

distribution function (which we assumed to be Maxwellian 
for thermal electrons and ions). ε is the particle total energy, 
ε ε= − ΦZek  is the kinetic energy of the particle, Φ being 
the equilibrium electrostatic potential with the charge number 
Z. m is the poloidal Fourier harmonic number. l is the so 

called bounce harmonic number. ϕ ϕ ϕ˜( ) = ( ) −
⋅

t t t denotes 

the periodic part of the particle motion projected along the 
toroidal direction, with ⋅  denoting an average over the par-
ticle bounce period, ωb is the particle bounce frequency. Both 
Xm

u and Hml
u  are related to the perturbed particle Largrangian. 

Xm
u denotes the poloidal Fourier harmonics with respect to the 

perpendicular fluid displacement and the magnetic field per-
turbation (the superscript ‘u’ labels these components); Hml

u  
represents the geometrical factor associated with the particle 
trajectory in the equilibrium magnetic field. λml is the mode-
particle resonance operator representing the key drift kinetic 
physics

λ ω ε ω ω ω
ω α ω ω

= [ + ( − ) + ] −
+ [ ( + ) + ] −

∗ ∗n

n m nq l

ˆ 3/2
ml

N Tk E

d b
� (10)

where ω∗N and ω∗T are the diamagnetic drift frequencies due 
to the density and temperature gradients, respectively. ωE is 
the ×E B drift frequency due to the equilibrium electrostatic 
potential. ε ε= Tˆ /k k  is the particle kinetic energy normal-

ized by temperature T. ω ϕ=
⋅

d  is the bounce-orbit-averaged 

toroidal precession drift frequency of particles, including the 

ωE drift. ω is the mode complex frequency, with γ ω= −i . q is 
the safety factor. We have neglected the effect of finite radial 
excursion width of particles across the magnetic surfaces. 
α = 0 for trapped particles, and α = 1 for passing particles. In 
the latter case ωb denotes the transit frequency. Although the 
full MARS-K model includes both bounce/transit and preces-
sional drift resonances, we only consider the magnetic preces-
sion drift resonance in this work, assuming that the ×E B flow 
velocity is much below the particle bounce/transit velocity.

As a final remark on the kinetic formulation, we point out 
that our model is similar to the standard δf -method that has 
been used in several MHD-kinetic codes and in PIC simula-
tions [42–45]. The major difference is that our drift kinetic 
assumption, as well as neglecting or approximating the finite 

orbit width effect (the finite banana width for trapped parti-
cles), allows a semi-analytic formulation for the perturbed 
kinetic pressure tensor, which is then effectively used as the 
closure for the MHD equations.

2.2. The vacuum and wall models

In the vacuum region, v and p vanish. The perturbed magnetic 
field satisfies

∇ × =
∇ ⋅ =

b
b

0
0

� (11)

The equation  for the resistive wall follows a thin shell 
approximation

⎛
⎝
⎜

⎞
⎠
⎟γ

η
μ χ

= ∇ Δ ∂
∂

− Δ ∇
∂

χb
h

r
b

r
b

rr
r

w

0 w
� (12)

where ηw and hw are the resistivity and thickness of the wall, 
respectively. br and χb  are the contravariant components of 
the field perturbation, represented in a curvilinear coordinate 
system χ ϕ( )r, ,  for a torus

χ ϕ ϕ χ= ∇ × ∇ + ∇ × ∇ + ∇ × ∇χ ϕb b r b rb r

where r is the radial coordinate, defined as square root of the 
normalized poloidal magnetic flux (here we use ‘r’ to denote 
the radial coordinate, in order to avoid confusion of notions to 
be introduced in the following subsection). χ is the general-
ized poloidal angle depending on the choice of Jacobian.

2.3. The feedback model

The coil current in the active coils is assumed to be a surface 
current (similar to the wall eddy current), with the toroidal 
component of the coil current density represented as δ-
functions along the poloidal angle. The poloidal component 
of the coil current density follows from the divergence-free 
condition. For a given toroidal mode number n, the toroidal 
component of the surface current density, for each set of the 
active coils, can be generally represented as

χ ϕ δ δ χ χ δ χ χ( ) = ( − )[ ( − ) − ( − )]ϕ
ϕJ r I r r, , e ncoil

f f U L
i

where rf is the radial location of the active coils; χU and χL are 
the upper and lower legs of the window frame coils, respec-
tively; If is the total coil current, generally being a complex 
number. Note that the above expression for the coil current 
density is valid for a single array of window frame coils 
along the poloidal angle. With multiple arrays of active coils, 
extra δ-functions, along the poloidal angle, are added to the 
expression.

In the numerical implementation, since all the perturbed 
quantities (including the coil current density) are decomposed 
in Fourier harmonics along the poloidal angle, the above δ-
functions along χ are replaced by narrow Gaussian functions. 
By including a sufficiently large number of poloidal Fourier 
harmonics (from  −29 to 29 in this study after a numerical 
convergence test), the full poloidal spectrum of the window 
frame coils, that affects the RWM control, is resolved. The 
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above coil current representation has been extensively bench-
marked for accuracy in producing the vacuum field, compared 
with the Biot–Savart law based field computation technique, 
while MARS-F is applied for modelling the plasma response 
to resonant magnetic perturbations (RMP) [46, 47].

The equation for the feedback coils depends on the choice 
of the feedback law. For a negative, proportional feedback, 
that controls the current If in the coils using the magnetic 
signal ψ ( )ts  measured by a set of sensor loops as input, the 
feedback equation reads [3]

ψ= − ( )M I G tsf f s� (13)

where G is the dimensionless proportional gain. ψ ( )ts  is 
assumed to be a point-wise poloidal field signal in this work. 
Msf is the free-space mutual inductance between the feedback 
coil and the sensor loop, which is a constant for fixed geo-
metrical locations of the feedback and sensor coils. Since this 
quantity only plays a role of scaling the gain value, we set Msf 
to be unity in this work.

We also define an open-loop transfer function ( )P s  [48]

ψ
( ) =P s

M I
s

sf f
� (14)

where s is the Laplace variable representing the mode eigen-
value. It is important to note that the above open-loop transfer 
function can be computed without directly solving the feed-
back equation  (13). Instead, we can compute ( )P s  by com-
puting the plasma response to a given current source flowing in 
the active coils. In this work, we follow both approaches—the 
plasma response approach and the direct feedback approach—
to study the synergy effect between the kinetic damping and 
the magnetic feedback on the RWM.

Equations (13) and (14) are combined to yield the closed 
loop characteristic equation

+ ( ) =s1 GP 0� (15)

The solution of the characteristic equation gives the closed-
loop eigenvalue s, for a chosen feedback gain G.

2.4.  Boundary conditions and numerical aspects

At the plasma-vacuum interface, the boundary condition is 
equivalent to the conventional perturbed force balance con-
dition for ideal plasma-vacuum interface. This boundary 
condition is applied to the unperturbed plasma boundary. At 
the computational boundary (which is assumed to be suffi-
ciently far away), the radial component of the perturbed field 
is assumed to be zero.

The whole MARS-K formulation can be regarded as a gen-
eralized eigenvalue problem, written in a compact form

γ =X XD A� (16)

where the matrices D and A symbolically represent the linear-
ized MHD-kinetic-vacuum operators, with D essentially asso-
ciated with inertia. In the pure fluid formulation, the operator 
A only depends on equilibrium quantities and does not depend 
on the mode eigenvalue γ. With the fluid-kinetic hybrid for-
mulation, however, A is a strongly non-linear function of γ, 

via the resonance operator (10). The vector X symbolically 
represents all the perturbation variables. The solution X is 
decomposed in Fourier harmonics along the poloidal angle χ 
and the toroidal angle ϕ

∑ ∑χ ϕ( ) = ( ) χ ϕ( − )X r X r, , e
m n

mn
m ni

� (17)

For linear perturbations in an axisymmetric torus, the 
toroidal components decouple from each other. Therefore, 
we solve for each n-component separately. After the Fourier 
decomposition along periodic directions, the resulting system 
of ordinary differential equations along the radial coordinate r 
is solved using a finite element method [49].

For the pure fluid formulation, the generalized eigenvalue 
problem (16) is solved using a standard inverse vector itera-
tion scheme [49, 50]. For the hybrid formulation, an extra 
outer-loop, based on Newton–Raphson iteration scheme, is 
employed in order to resolve the non-linear dependence of A 
on γ.

3.  Specification of equilibrium

We consider a toroidal equilibrium, with an up-down sym-
metric plasma boundary shape as shown in figure 1. This cor-
responds to a plasma in limiter configuration. The shape of 
the resistive wall conforms to the plasma boundary surface. 
We also assume two sets of active coils located just inside 
the resistive wall, near the top (referred to as ‘Upper’) and 
bottom (referred to as ‘Lower’) of the torus. One set of sensor 
coils is assumed to be located at the outboard mid-plane, mea-
suring the poloidal magnetic field at the χ = 0 poloidal angle. 
We mention that this choice of the geometrical configurations 

Figure 1.  Geometry of a toroidal equilibrium with up-down 
symmetric plasma boundary shape, a resistive wall conformal to the 
plasma boundary, two sets of active coils and one set of poloidal 
sensor coils located just inside the wall.
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for feedback coils reflects that of several of the present-day 
tokamak devices such as DIII-D, MAST, ASDEX-Upgrade, 
KSTAR, EAST.

Figure 2 shows the radial profiles for some key equilibrium 
quantities. These profiles are either analytically or numeri-
cally specified. One of the key features is the slightly reversed 
magnetic shear in the plasma core, which is often compat-
ible with the advanced tokamak scenario in the presence of 
an internal transport barrier [51]. The safety factor has the 
on-axis value of =q 1.76,0  the minimal value of =q 1.60,min  
and the edge value of =q 3.28.e  The normalized beta value is 
β β= (%) ( ) ( ) ( ) =a m B T I/ MA 3.37,N 0 p  where β is the ratio of 
the volume averaged plasma pressure to the magnetic pres-
sure, and Ip is the total plasma current. The no-wall beta limit 
(the stability margin for the =n 1 ideal external kink mode 

without wall) is computed as β = 2.54,N
no-wall  and the beta 

limit with an ideal wall is β = 3.72.N
ideal-wall  A linear scaling 

factor for the equilibrium pressure, βC , is consequently defined 

as β β β β= ( − ) ( − )βC / .N N
no-wall

N
ideal-wall

N
no-wall  The radial profile 

of the safety factor slightly varies as we scan the plasma pres-
sure while keeping qmin fixed. Examples are shown in figure 3. 
The wall time is assumed to be τ μ η τ= = ×h r / 1.0 10w 0 w w w

4
A 

(rw is the wall radius, τ = Ω1/A A is the Alfven time).

4.  Numerical results

In this work, we consider the stabilization of the =n 1 RWM. 
Since we are mostly interested in the mode stability at rela-
tively slow plasma rotation, we only consider the magnetic 

Figure 2.  (a) Equilibrium profiles for the safety factor q, the plasma pressure P normalized by μB / ,0
2

0  the toroidal current density ϕJ  
normalized by μ( )B R/0 0 0  and the plasma mass density ρ normalized to unity at the magnetic axis. (b) The radial profile of the angular 
frequency for the plasma toroidal rotation, normalized to unity at the magnetic axis. Here ψp is the normalized equilibrium poloidal flux.
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precession drift resonance in all the computations. Only 
kinetic effects from bulk plasma particles are included. A 
systematic investigation has been carried out in four aspects 
reported below.

4.1.  Precessional drift kinetic effects on the RWM stability

Earlier studies of the RWM stability, relying on the ideal fluid 
theory [13, 14], predicted that the critical rotation velocity 
required to fully suppress the mode was a few percent of the 
Alfven speed. Similar magnitude of critical rotation velocities 
were also measured in early experiments [52], where an ini-
tially fast plasma flow, generated by unbalanced neutral beam 
momentum injection, was slowed down by subsequent non-
linear interaction with either the RWM itself or with external 
3D magnetic fields. Recent experiments, with balanced beam 
injection and hence much slower plasma flow, found much 
slower critical flow velocity (if at all exists) [21, 22]. These 
experiments cannot be easily explained by the standard fluid 
theory, which involves only the sound wave continuum or the 
shear Alfven wave continuum damping on the mode. This 
motivates our search for additional mode-particle resonance 
damping based on the drift kinetic theory.

We mention that different neutral beam injection configura-
tions (unbalanced versus balanced injections) create different 
hot ion equilibrium distributions, which may also affect the 
kinetic stabilization of the RWM [53]. This aspect is however 
beyond the scope of this work. In this study, we shall only 
consider the drift kinetic effects from thermal particles.

In particular, we are interested in the transition from the 
fluid prediction to the kinetic prediction. For this purpose, 
we introduce a numerical parameter αD in MARS-K, as the 
fraction factor of the additional kinetic contribution to the 
RWM damping. Thus α = 0D  recovers the fluid limit, whilst 
α = 1D  corresponds to the physical fluid-kinetic hybrid result. 
Figure 4 shows growth rate and mode frequency of the RWM 

while scanning αD gradually from 0 to 1, for two choices of 
on-axis rotation frequency (normalized by the on-axis Alfven 
frequency) Ω = 0.0030  (solid circles) and Ω = 0.0050  (solid 
squares), respectively. Since the plasma rotation is slow, there 
is little difference in the eigenvalues at the fluid limit. However, 
at the full fraction of the kinetic contribution α( = )1 ,D  the 
growth rate of the mode substantially decreases compared to 
the fluid prediction, as a result of the resonance damping from 
the precessional drift motion of trapped thermal electrons and 
ions.

Figures 5(a) and (b) plot the growth rate and the mode 
frequency, respectively, of the kinetic RWM (i.e. at α = 1D ), 
in the 2D parameter space of on-axis rotation frequency and 
the equilibrium pressure scaling factor βC . The plasma cen-
tral rotation frequency Ω0 varies between × Ω−3.0 10 3

A and 
× Ω−1.0 10 .2

A  A full stabilization of the mode, denoted by 
black dots in figure 5(a), is achieved. This finding, which is 
similar to other kinetic studies [54], better explains the recent 
experimental results. Moreover, if we vary the wall radius as 
traditionally performed in the fluid study for the RWM [13], 
we find that decreasing the plasma flow speed enlarges the 
stable domain, as shown by figure 6. A stable window opens 
by the kinetic damping as the resistive wall moves away 
from the plasma boundary. Such behavior, as well as some of 
other computational results shown below, can be qualitatively 
explained by a simple analytic model presented in appendix 
A. Figure 7 summarizes some of the findings from this ana-
lytic model.

Figure 3.  Radial profiles of the safety factor q with varying plasma 
pressure scaling factor βC . The minimal q value is fixed 1.6.

0 0.2 0.4 0.6 0.8 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

s

q

 

 

C =0.45

C =0.70

C =0.81

C =0.88

Figure 4.  Growth rate (solid lines) and mode frequency (dashed 
lines) of the RWM versus the kinetic scaling factor α ,D  for 
different plasma rotation frequencies, Ω = 0.0030  (solid circles) 
and Ω = 0.0050  (solid squares), respectively. Factor αD denotes the 
fraction of the kinetic contribution to the total potential energy, such 
that α = 0D  corresponds to the case of fluid RWM, whilst α = 1D  
corresponds to the full kinetic RWM. The other parameters are 

=βC 0.70, η = 0.0, κ =∥ 0.0 and =d a/ 1.25. The on-axis rotation 
frequency Ω0 is normalized by the Alfven frequency Ω .A  No 
feedback is included in these computations.
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The results shown in figure 6 are qualitatively similar to 
the conventional ideal fluid prediction. However, qualitatively 
new features emerge if we assume a resistive plasma model, 
as reported below.

4.2.  Effects of plasma resistivity on the RWM stability

It has been shown in early analytic work [30–32] that, in the 
presence of toroidal flow, the plasma resistivity can enhance 
the passive stabilization of the RWM by the fluid model, com-
pared to the ideal MHD prediction, although the stable window 
is shown to be narrow (and hence not robust) for a toroidal 
plasma [33]. The recent analytic work [34], combining the 
resistive layer damping with the kinetic effects in the pres-
ence of toroidal flow, demonstrates a strong damping of the 
mode due to the coupling to the favourable average curvature 

stabilization inside the resistive layer. [34] assumes a simple 
cylindrical geometry and one resistive layer near the plasma 
boundary, in order to facilitate analytic treatment. Here we 
numerically investigate the effect of the plasma resistivity on 
the mode stability, based on full toroidal computations.

We start with the fluid model. The parallel sound wave 
damping model as described in section 2, with a numerical 
damping coefficient κ =∥ 1.5, is assumed. Figure 8 compares 
the growth rates of the fluid RWM with varying plasma pres-
sure and resistivity. Two cases are compared in figures 8(a) 
and (b), with vanishing plasma flow, and with a relatively fast 
flow at Ω = 0.03,0  respectively. A finite plasma resistivity 
destabilizes the RWM in the absence of equilibrium flow. This 
is largely due to the fact that the resistive model poses less 
constraints on the plasma (the plasma is allowed to reconnect 
near rational surfaces), therefore the mode is more unstable, 
although the increase of the mode growth by the plasma resis-
tivity is not substantial—the mode is still primarily driven by 
the high equilibrium pressure.

The effect of the plasma resistivity is however qualitatively 
different in the presence of the plasma flow, as shown by 
figure 8(b). In this case, the growth rate of the mode decreases 
with increasing the plasma resistivity (i.e. decreasing the 
Lundquist number S). Again a small quantitative change of the 
mode growth rate is observed at large S value ( > × )S 1.0 10 .7  
A larger change occurs as the S value is further decreased as 
shown in figure 9. Here we compute the mode growth rate and 
frequency in the 2D parameter space Ω0 and S, while fixing 
the pressure at =βC 0.70. Again the fluid model is used. Again 
we note the very interesting effect of the plasma resistivity on 
the mode stability, depending on the flow speed. At slow flow, 
the plasma resistivity destabilizes the RWM; at fast flow, it 

Figure 5.  2D plots of (a) growth rate and (b) mode frequency of 
the kinetic RWM, predicted by self-consistent kinetic computations 
with MARS-K. The parameters are η = 0.0, κ =∥ 0.0 and =d a/ 1.25. 
Only precessional drift resonance damping of bulk plasma particles 
is included. The black dots indicate stable RWMs with practically 
vanishing growth rates.

Figure 6.  Growth rates of the RWM γ( )R  and the XK γ( )K  versus 
the normalized wall position d a/  for different plasma rotation 
frequencies Ω = 0.0030  (solid circles), Ω = 0.0040  (solid squares) 
and Ω = 0.0050  (solid stars), respectively. The other parameters 
are η = 0.0, κ =∥ 0.0 and =βC 0.70. Only precessional resonance 
damping is included. Ω0 is normalized by the Alfven frequency Ω .A
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stabilizes the mode. The transition from the destabilization to 
the stabilization occurs at Ω ∼ Ω0.0150 A in our case. The com-
puted mode frequency also becomes large in this transition 
region. At sufficiently fast flow, the plasma resistivity changes 
the stability margin of the RWM. This effect is associated with 
the Glasser stabilization inside the resistive layer [34]. Similar 
effect leads to the modification of the stability boundary for 
the tearing mode in a toroidal plasma [35].

The general picture remains similar when we add the drift 
kinetic contributions, as shown in figure 10. The kinetic effects 
bring in two major changes to the results. (i) The transition 
region from destabilization to stabilization shifts towards 
higher rotation frequency. (ii) A (nearly) stable region exists 
at slow flow and high Lundquist number. This is the conse-
quence of the kinetic drift resonance damping for a plasma 
that is close to ideal.

4.3.  Synergy between magnetic feedback and drift kinetic 
effects

In an earlier work [36], we investigated the synergetic effect 
between magnetic feedback and plasma flow on the RWM sta-
bilization, based on a fluid model. We found that the feedback 
system, combined with plasma rotation, helps open a new sta-
bility window. In this work, we study the synergy between 
feedback and drift kinetic effects, based on the self-consistent 
MHD-kinetic hybrid model.

Inclusion of kinetic damping again opens two stability 
windows, as a synergetic effect together with magnetic feed-
back, as shown by figures  11(a) and (b). In figure  11(a), 
we fix the plasma rotation at Ω = 0.0030  while varying the 
amplitude of the feedback gain G , whilst in figure 11(b), we 

keep the gain amplitude at =G 1.0 while varying the plasma 
rotation frequency Ω .0  An ideal plasma model is considered 
here for the slow flow cases. As shown in figure 9, the plasma 
resistivity does not result in qualitative change of the RWM 
stability at slow flow. Nevertheless, quantitative investiga-
tion of the combined effects of the drift kinetic damping, the 
magnetic feedback, as well as the destabilizing effect from 
the plasma resistivity at slow plasma flow, remains a future 
work. In both (a) and (b), we choose internal poloidal sensors 
with vanishing phase for the feedback gain. The plots show 
that the growth rate of the RWM is reduced, and the width 
of the new stable window (the inner one) in d a/  is increased, 
either with increase of the feedback gain or decrease of the 
rotation frequency. The latter occurs at relatively slow flow, 
where smaller rotation frequency leads to a better resonance 
with precessional drift of thermal particles. The appearance 
of this new stability window is mainly due to the feedback 
stabilization of the RWM, when the wall is closer to the 
plasma that reduces the mode growth rate. The results shown 
in figure 11 are qualitatively reproduced by the analytic model 
from appendix A, with results shown in figure 7.

The conventional stability window (the outer one) is narrow 
for our case, and is not significantly affected by the choice of 
the feedback gain, as shown by figure  11(a). The variation 
of the flow speed, on the other hand, substantially modifies 
the conventional stability window, as shown by figure 11(b). 
Neither feedback nor rotation has appreciable effect on the 
stability of the external kink branch (XK).

Figure 11(a) shows that variation of the feedback gain, near 
the normalized value of 1, mainly affects the width of the new 
(inner) stability window. This is systematically demonstrated 
by figure 12, where we plot the marginal stability curve in the 

Figure 7.  Summary of results obtained from a simple analytic model presented in appendix A. (a) Growth rate of the kinetic RWM versus 
the ×E B drift frequency. (b) Growth rate of the kinetic RWM versus the growth rate of the initial fluid RWM without the kinetic effects. 
The growth rate of the fluid RWM effectively represents the wall radial position. Compared are two cases: one with feedback, =G 0.2 
(solid line) and one without feedback =G 0.0 (dashed line). (c) Growth rate of the kinetic RWM versus the parameter a (representing the 
kinetic contribution). (d) The stability boundary in the γ τ−G f w plane.
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−G d a/  space, at a fixed plasma flow Ω = 0.003.0  The dashed 
horizontal line indicates the stability boundary for the XK. As 
mentioned above, this margin is insensitive to the feedback 
gain nor the plasma rotation speed. The solid curve represents 
the stability margin for the RWM. Note a flat upper boundary 
(associated with the conventional stability window) at rela-
tively small feedback gain. However, at sufficiently large gain 
amplitude, the two stable windows merge, resulting in a fully 
stabilized RWM by both feedback and kinetic damping. The 
critical value of the feedback gain, for the full stabilization, is 
about 1.5 in this case.

As already demonstrated in [36], there are two approaches 
for computing the critical amplitude of the feedback gain for 
the mode stabilization. One is a straightforward approach, by 

directly tracking the growth rate of the closed loop system, in 
the presence of drift kinetic effects. The alternative approach 
(referred to as the Nyquist approach) is to compute the open 
loop plasma response transfer function ( )P s , defined by equa-
tion (14). Both methods should produce the same results, which 
is numerically verified by the results shown in figure 13. Here 
we compare four critical curves in the domain of − ( )G Garg , 
for two choices of the wall radius. The plasma flow speed is 
fixed. Again an ideal plasma assumption is adopted. First of 
all, the two approaches recover the same critical curves as 
expected. Secondly, we find that negative phase of the feed-
back gain requires less critical gain amplitude. This is because 
the feedback with negative gain phase (within the reference 
system as defined in MARS-K) enhances the mode rota-
tion, which follows the direction of the plasma flow, and thus 
yielding a stronger damping for the RWM.

Figure 8.  Growth rates of the fluid RWM versus βC  for different 
values of magnetic Lundquist number S: = ×S 1.0 108 (solid 
circles), = ×S 2.0 107 (solid squares) and = ×S 1.0 107 (solid stars), 
respectively, predicted by MARS-F at (a) vanishing plasma flow 
Ω = 0.000  and (b) Ω = 0.03.0  The other parameters are κ =∥ 1.5 and 

=d a/ 1.25.
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Figure 9.  (a) Growth rate and (b) mode frequency of the fluid 
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Lundquist number S. The other parameters are κ =∥ 1.5, =βC 0.70 
and =d a/ 1.25. The solid curve shows the stability boundary in the 
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4.4.  Effects of phase difference between upper and lower 
active coil currents

In our feedback system, we assume that the toroidal phase of 
the feedback gain can be independently varied for the upper 
and lower sets of active coils. Since these two sets share the 
same sensor signal, the phase difference in the feedback gain 
is equivalent to that of the coil currents, between the upper and 
lower sets. Obviously this phase difference can be optimized, 
in order to obtain the best synergetic performance between 
feedback and kinetic damping.

We first examine the symmetry issue with the upper and 
lower coils. Figure 14 shows the closed loop growth rate in 

the presence of a finite (slow) flow and the drift kinetic effects, 
where we only turn on one set of the active coils at a time. We 
find that the two sets of coils do not perform symmetrically for 
the mode stabilization, assuming the same (zero) phase for the 
feedback gain. The symmetry is broken by the finite toroidal 
flow, which induces a finite mode rotation frequency. In our 
case, the upper coil feedback further enhances the mode rota-
tion, yielding a stronger stabilization of the mode. Similar to 
earlier results reported in this work, the asymmetry of the coil 
configuration does not affect the stability of the XK.

Figure 10.  (a) Growth rate and (b) mode frequency of the 
kinetic RWM with varying plasma rotation frequency Ω0 and the 
magnetic Lundquist number S, predicted by self-consistent kinetic 
computations with MARS-K. Only the precessional drift resonance 
damping of bulk plasma particles is included. The other parameters 
are κ =∥ 0.0, =βC 0.70 and =d a/ 1.25. The solid curve shows the 
stability boundary in the Ω − S0  plane.

Figure 11.  Growth rates of the kinetic RWM γ( )R  and the XK γ( )K  
versus the normalized wall position d a/  for (a) different values 
of the feedback gain, =G 0.8 (solid circles), =G 1.0 (solid 
squares) and =G 1.2 (solid stars), at fixed rotation frequency 
Ω = 0.003,0  and (b) different rotation frequencies, Ω = 0.00250  
(solid circles), Ω = 0.0030  (solid squares) and Ω = 0.0040  (solid 
stars), at fixed feedback gain =G 1.0. The other parameters are 
κ =∥ 0.0, =βC 0.70, ( ) = °Garg 0 , and η = 0.0. The feedback gains 
are the same for the upper and the lower coils. Ω0 is normalized by 
the Alfven frequency ΩA and G  is normalized by μ=G R / .0 0 0  The 
poloidal sensor is used in the feedback logic.
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Figure 15 shows results where we keep the feedback gain 
amplitude the same for both sets of coils, but vary the toroidal 
phase of the feedback gain for these two sets. We note that 
variation of the feedback gain does modify the stability 
windows. In this case, the stabilization from the synergetic 

effects is stronger with a larger phase difference. A more 
systematic phase scan will be reported in figure 17. Next we 
examine the effects of the (relative) gain amplitude (between 
upper and lower coils) on the mode stability, while fixing the 
phase difference between two coils. The results are reported 
in figure 16. Two observations can be made here. (i) At fixed 
gain phase for both the upper and lower sets of coils, 40° 

Figure 12.  Stability boundary in the −G d a/  plane with the 
−θb sensor, predicted by self-consistent kinetic computations with 

MARS-K. Only precessional drift resonance damping of bulk 
plasma particles is included. The other parameters are κ =∥ 0.0, 

=βC 0.70, ( ) = °Garg 0 , Ω = 0.0030  and η = 0.0. The feedback gains 
for the upper and the lower coils are the same.
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and 20°, respectively, in this case, different gain amplitude 
changes outer stability window. In particular, a larger gain 
for the lower set of coils is counter-productive for the mode 
stabilization in this case. (ii) Keeping the gain phase differ-
ence the same (20°) but varying the individual phase values 
also leads to different stability window. This leads to the con-
clusion that the optimal gain phase can only be obtained by 
simultaneous optimization of both gains for the upper and 
lower coils.

Figure 17 reports results from such a 2D space scan. Here 
we keep the gain amplitude of the upper and lower coils the 
same, =G 0.6, 0.6. The normalized plasma on-axis rotation 
frequency is also fixed at Ω = 0.003.0  Both the real and imagi-
nary parts, in figures 17(a) and (b), respectively, are plotted as 
we vary the toroidal phase for the upper and lower coil gains. 
The solid curve shows the stability boundary in the ϕ ϕ−U L 
plane. The area circled by this curve corresponds to the full 
stabilization of the RWM, and hence represents the optimal 
choice for the feedback phasing.

The pattern (stabilization versus destabilization 
depending on the choice of the feedback phasing) shown in 
figure 17 is inherently related to the toroidal phasing intro-
duced by the active control system, with that by the pas-
sive system as a result of the drift kinetic damping. This 
can be qualitatively understood from a single-pole ana-
lytic model, which is presented in appendix C. The results 
from this single model are plotted in figure 18, where we 
choose an open loop unstable RWM, with the growth rate 
γ = ×1.77 100

4 and the mode frequency ω = ×2.59 10 .0
4  

The gain amplitude is again fixed at = =G G 0.6.U L  
The (complex) residuals of the single-pole approxima-
tion, representing the mode response to the upper and 

lower coils, are specified as = ×R 1.75 10 ,U
4  ϕ = − °ˆ 20 ;U  

= × −R 1.85 10 ,L
4  ϕ = °ˆ 100 ,L  respectively. These choices 

of fitting parameters produce qualitatively very similar 

results, as that from directly MARS-K computations (see 
figure 17). Examination of the single-pole model shows that 
the optimal coil phasing corresponds to the case, when the 
toroidal phase of the feedback gain cancels that of mode 
response (i.e. the residual) to the upper and lower coils, 
respectively. To the lowest order (single-pole) approxima-
tion, and assuming the same gain amplitude for upper and 
lower coils, the optimal coil phasing does not depend on 
the open-loop mode eigenvalue. In other words, it does not 
depend on specific passive damping physics of the RWM.

Figure 17.  (a) Growth/damping rate and (b) mode frequency 
of the MARS-K computed kinetic RWM with varying phase of 
feedback gains for both the upper coil ϕU and lower coil ϕ .L  The 
other parameters are κ =∥ 0.0, =βC 0.70, =G 0.6, 0.6, Ω = 0.003,0  
η = 0.0 and =d a/ 1.25. The solid curve shows the stability 
boundary in the ϕ ϕ−U L plane.

Figure 16.  Growth rates of the kinetic RWM and the XK versus 
the wall position d a/ , with varying both amplitude and phase of 
feedback gains between upper and lower coils, ( ) = ° − °Garg 10 , 10 , 

=G 0.8, 0.4 (solid circles), ( ) = ° °Garg 40 , 20 , =G 0.8, 0.4 (solid 
squares) and ( ) = ° °Garg 40 , 20 , =G 0.8, 1.2 (solid stars). The other 
parameters are κ =∥ 0.0, =βC 0.70, Ω = 0.0030  and η = 0.0.
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5.  Conclusions

We have carried out detailed numerical investigation of the 
synergetic effect among the drift kinetic effects, the plasma 
flow, the plasma resistivity, as well as the magnetic feedback 
on the RWM stabilization, based on a fully toroidal resistive 
MHD-kinetic, non-perturbative hybrid model.

By gradually increasing the drift kinetic contribution to the 
passive damping of the RWM, we identify a strong stabilizing 
role played by the precessional drift resonance effects, in par-
ticular at slow or even vanishing plasma flow. The plasma 
resistivity can also contribute to the passive stabilization, but 
only at a finite flow. In fact a critical flow speed exists, across 
which the role of the plasma resistivity switches from destabi-
lization to stabilization.

The drift kinetic effects from trapped thermal particles, 
combined with the magnetic feedback and plasma flow, help 
to open two stability windows as the wall radius changes. The 
resulting double stability window is shown in various combi-
nations of parameter spaces. Finally, we find that the optimal 
choice of the toroidal phase of the feedback gain enhances the 
synergy effect, producing fully stable domain for the RWM.
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Appendix A.  A simplified analytic model for the 
kinetic RWM

Below we show a simplified, 0D model of the kinetic RWM, 
which can be used to qualitatively explain the numerical find-
ings report in this work. In the presence of the drift kinetic 
damping, the dispersion relation for the RWM can be devised 
based on an extended energy principle,

δ γτ δ
γτ

δ γ ω+
+

+ + ( + ) =∞W W
W D

1
i 0w b

w
k E� (A.1)

where δ ∞W  and δWb are the perturbed fluid potential ener-
gies without wall and with an ideal wall at location b, respec-
tively. The second term δWk denotes the perturbed drift kinetic 
energy. The last term in equation (A.1) represents additional 
damping physics (parallel sound wave damping, Alfven or 
sound wave continuum damping etc). The key physics effect 
in the drift kinetic term (the second term) is the mode-particle 
resonances [55]. Therefore, as a gross simplification, we keep 
only the resonance operator in δW ,k  neglecting the particle 
energy and pitch angle dependence, as well as all geometrical 
effects associated with the equilibrium magnetic geometry. 
This leads to a simple expression for the drift kinetic energy 
perturbation [23],

⎡
⎣⎢

⎤
⎦⎥

δ ω ω γ
ω ω γ

ω ω γ
ω ω γ

∼ * + −
+ −

+ * + −
+ −

W c
i

i

i

i
k

i E

di E

e E

de E
� (A.2)

where ω*i and ω*e are the diamagnetic drift frequencies for 
thermal ions and electrons, respectively. ωdi and ωde are the 
toroidal magnetic precession drift frequencies for these two 
particle species. ωE is the ×E B drift frequency. The coef-
ficient c can be viewed as a ‘lumped’ factor over all other 
effects that we have neglected.

For simplicity, we shall consider a case with 
ω ω ω* = − * = *i e  and ω ω ω= − = .di de d  Inserting equa-
tions (A.2) into (A.1), we obtain a nonlinear dispersion rela-
tion for the eigenvalue of the kinetic RWM,

Figure 18.  (a) Growth/damping rate and (b) mode frequency 
of the RWM from a single-pole analytic model, with varying 
feedback gain phase of the upper coil ϕU and the lower coil ϕ .L  
The choices of parameters in the model, described in appendix 
C, are γ = × −1.77 10 ,0

4  ω = × −2.59 10 ,0
4  =G 0.6, ϕ = − °ˆ 20 ,U  

ϕ = °ˆ 100 ,L  = × −R 1.75 10 ,U
4  = × −R 1.85 10 .L

4
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where the mode’s eigenvalue, as well as all the other 
frequencies, is normalized by the wall time τ ,w  and 
γ γ τ δ δ= = − ∞W Wˆ / ,f f w b  δ= − ∞a c W2 / , τ δ= − ∞D D Wˆ / .w  The 
dispersion relation (A.3) is a fourth order algebraic equa-
tion with respect to the mode’s eigenvalue γ̂. Among the four 
roots, two are degenerated, at the limit of →a 0, to satisfy the 
condition of vanishing denominator for the second equation of 
(A.3). These two roots are therefore introduced mainly by the 
gross simplification of the drift kinetic integrations in the par-
ticle velocity space. Among the remaining two physical roots, 
one is always stable, representing the so-called plasma mode 
[13]. The other is the kinetically modified RWM. This branch 
qualitatively re-produces all the parametric dependences that 
we find from the full toroidal MARS-K computations. A set 
of results, obtained using this analytic model, are reported in 
figure 7.

Appendix B.  An energy principle for the RWM 
with drift kinetic damping and magnetic feedback 
stabilization

In order to demonstrate the synergistic effect between the drift 
kinetic damping and the active control, below we construct an 
analytic model based on the perturbed energy principle for the 
RWM. Unlike the straightforward energy analysis approach 
employed in [56], here we use a short-cut technique which 
allows to quickly establish energy principle in the presence 
of feedback. We first introduce this technique by a simple 
example without kinetic terms.

Assuming a case of fluid RWM in the presence of feed-
back, the energy principle, without any additional damping 
and without the plasma inertia, can generally be written as

δ
δ γτ δ

γτ
δ+

+
+

+ =∞W
W W

W
1

0p

v
w b

v

w
fb� (B.1)

where δWp is the perturbed fluid potential energy within 
the plasma, δ ∞Wv and δWb

v are the perturbed vacuum energy 
without and with an ideal conducting wall, respectively. δWfb 
is the perturbed energy associated with the feedback system 
(the control coils). On the other hand, the open loop response 
of this simple fluid RWM system can be exactly represented 
by a single pole transfer function

( ) =
−

P s
R

s s0
� (B.2)

where δ δ= − ∞s W W/0 b is the open loop eigenvalue of the 
RWM. The residual factor R measures the response of the 
mode to the feedback system. This factor is essentially deter-
mined by the feedback coil geometry. The eigenvalue of the 
closed loop system, with a control gain G, satisfies the fol-
lowing equation

+ ( ) =s1 GP 0� (B.3)

Combining equations (B.2) and (B.3), and comparing the 
result with equation (B.1), we easily find the perturbed energy 
associated with the feedback system

δ δ=
+

W
GR W

s1
fb

b
� (B.4)

where γτ=s w is the closed loop eigenvalue of the RWM. Thus 
equation  (B.1), together with (B.4), represents the energy 
principle for the feedback controlled RWM. We note that our 
approach here is rather different from that of [56]. The latter 
was proposed essentially for the purpose of computational 
implementation for the toroidal code, without introducing 
analytically tractable quantities.

The inclusion of the drift kinetic term complicates the deri-
vations. However, if we assume a simple structure for the per-
turbed drift energy contribution such as δ δ ω= ( − )W c W s/ i ,k 2 b d  
which represents the key physics of the drift kinetic resonance 
(here between the mode and the precessional drifts of a single 
particle species), the generic energy balance equation

δ
δ γτ δ

γτ
δ δ+

+
+

+ + =∞W
W W

W W
1
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v
w b

v

w
k fb� (B.5)

can be simplified into

ω
δ
δ

− +
+

+
−
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d
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b
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Again note that the open-loop RWM response for this case 
can be exactly represented by a two-pole transfer function 
(one pole comes from the fluid part, whilst the other comes 
from the drift kinetic contribution)

( ) =
−

+
−

P s
R

s s

R

s s
1

1

2

2
� (B.7)

where the two poles satisfy the open loop dispersion relation, 
i.e. equation (B.6) without the feedback contribution
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Combining equations  (B.3), (B.7), (B.8), and comparing 
with equation (B.6), we find

δ δ
ω

= + − ( + )
( + )( − )

W G W
R s R s R R s

s s
i

1 i
fb b

1 2 2 1 1 2

d
� (B.9)

Equation (B.5), together with (B.9), thus gives the RWM 
dispersion relation in the presence of both the drift kinetic and 
the feedback contributions. As one particular aspect, it shows 
the (self-consistent) modification of the drift kinetic resonance 
by the feedback action.

Appendix C.  A single-pole model of the coil  
phasing for the RWM control

Here with a simple analytic model, we shall try to elucidate 
important physics associated with the feedback-kinetic syn-
ergy study, that is numerically carried out in this work. We 
assume a single pole model for the mode’s response to two 
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sets of active coils. The response is specified by two fre-
quency-dependent transfer functions, for the upper and lower 
control coils, respectively,

( ) =
−

( ) =
−

P s
R

s s
P s

R

s s
,U

U

0
L

L

0
� (C.1)

where γ ω= +s i0 0 0 is the RWM eigenvalue with flow and 
kinetic effects, but without feedback (open-loop). γ ω= +s i  
is the closed loop eigenvalue. The (complex) residuals fac-
tors = ϕR R eU U

i ˆ
U and = ϕR R eL L

i ˆ
L characterize the mode’s 

response to the coil currents. Note that generally speaking, 
s0 is also a complex number as a result of passive stabiliza-
tion of the mode by plasma flow, kinetic effects, resistive layer 
damping, etc.

Assuming that both active coil currents are driven by the 
same sensor signal, the closed-loop eigenvalue is determined 
by the solution of the following equation

+ ( ) + ( ) =G P s G P s1 0U U L L� (C.2)

where = ϕG G eU U
i U and = ϕG G eL L

i L are the complex feed-
back gain. If we further assume = =G G G ,U L  the eigen-
value of the closed-loop system is easily found to be

= − [ + ]ϕ ϕ ϕ ϕ( + ) ( + )s s G R Re e0 U
i ˆ

L
i ˆ

U U L L� (C.3)

which can be re-written for the mode growth/damping rate 
and the mode frequency separately,

⎪

⎪
⎧
⎨
⎩

γ γ ϕ ϕ ϕ ϕ

ω ω ϕ ϕ ϕ ϕ

= − [ ( + ) + ( + )]

= − [ ( + ) + ( + )]

G R R

G R R

cos ˆ cos ˆ

sin ˆ sin ˆ
0 U U U L L L

0 U U U L L L
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This shows that the optimal coil phasing, resulting in the 
strongest damping of the mode, corresponds to the choices 
of ϕ ϕ= − ˆ ,U U  ϕ ϕ= − ˆ ,L L  i.e. when the toroidal phase of the 
feedback gain cancels that of mode response (the residual) to 
the upper and lower coils, respectively.

Within the single-pole approximation, and assuming the 
same gain amplitude for upper and lower coils, the optimal 
coil phasing does not depend on the open-loop mode eigen-
value. In more realistic cases, a single-pole model is often 
insufficient [48]. And the coil phasing effects can be more 
complicated. In general, the stability of the closed-loop will 
depend on not only on the passive eigenvalue γ0 and the mode 
response to the active coil currents, but also on both amplitude 
and phase of the feedback gain.
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