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Abstract
Rotational stabilization of the resistive wall mode (RWM), with varying E ×B flow shear and the radial location of peak shear,
is systematically investigated using the MARS-K code (Liu et al 2008 Phys. Plasmas 15 112503), following a non-perturbative
magnetohydrodynamic–kinetic hybrid approach. The equilibrium is based on a 9 MA steady state target plasma from the ITER
design, except for the plasma flow profile, which is significantly varied in this study. Generally two branches of unstable n = 1
kinetic RWMs are computed (n is the toroidal mode number), depending on the flow amplitude. The first unstable branch,
which is normally the more unstable one, is sensitively affected by both the local flow shear as well as the radial location of the
peak amplitude of the shear. On the contrary, the second unstable branch, which is often weakly unstable, is less affected by the
flow shear. Consequently, stability domains are computationally mapped out in relevant two-dimensional parameter spaces.

Keywords: tokamak, plasma shear flow, kinetic effect, RWM

(Some figures may appear in colour only in the online journal)

1. Introduction

It is now well understood that stabilization of the resistive
wall mode (RWM) is the key solution for increasing the
fusion power production in advanced tokamak operations [1].
Provided that the RWM is stable, or is stabilized by certain
means, the plasma can in principle overcome the so called
Troyon no-wall beta limit [2], and reach the ideal-wall beta
limit, which can be significantly higher. For example, for an
ITER plasma studied in [3], the permissible stable β (where
β = 2µ0p0/B

2
0 is the ratio of the plasma pressure, p0, to the

magnetic pressure, and B0 is the vacuum toroidal magnetic
field at the magnetic axis) can be increased by about 40%
with stable RWM, resulting in doubling of the fusion power
production.

So far, both active control techniques [4–17] using
magnetic coils, and passive means, e.g. relying on plasma
flow [18–22] and/or kinetic resonance effects from thermal
and energetic particles [23–33], have been proposed and

a Authors to whom any correspondence should be addressed.

experimentally investigated as two effective ways for
suppressing the RWM. Whilst active control may have to be the
ultimate solution for guaranteeing robust stability of the RWM
in ITER, it does require additional hardware components and
additional power supplies. More critically, it is certainly not
easy, may not even be practical, to install an active control coil
system in the future fusion reactor environment. Therefore,
it is very desirable if the RWM can be made robustly stable
by employing passive control, for instance, by varying the
plasma flow and flow shear in a controllable manner. This
is the purpose of the present study.

Passive stabilization of the RWM depends on the release,
or, damping, of the free energy associated with the mode, via
various channels. The primary energy dissipation occurs in
the resistive wall, converting a fast growing ideal kink mode
into a slowly growing RWM. It is well known that this primary
damping mechanism does not change the stability margin of
the mode. Further energy damping, which may change the
stability margin, has to come from inside the plasma. Several
possible free energy-releasing channels inside the plasma
have been identified, including the sound wave continuum
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damping [18, 20], the Alfvén continuum damping [21, 22],
the drift kinetic damping due to the mode resonance with
particles [23–33], as well as the kinetic damping coupled
to additional energy dissipation through resistive layers near
rational surfaces [34].

In this work, we consider drift kinetic damping physics for
the RWM. We vary the toroidal E×B flow shear of the plasma,
which in turn affects the kinetic effects, and thus investigate
how the flow shear changes the RWM stability. Within the
single fluid theory, the plasma flow is represented by the bulk
ion flow, which is the superposition of the E × B flow and the
ion diamagnetic flow, with the latter varying roughly linearly
with the plasma equilibrium pressure. We choose an ITER
equilibrium from the 9 MA steady state scenario, but the flow
profile understandably does not follow that predicted for ITER,
as that shown in [10, 26]. We motivate our choice of the flow
profiles by two factors. One is the uncertainty associated with
the prediction of the ITER plasma rotation (both amplitude
and the radial profile). The other is the possibility of actively
controlling the flow profile by changing, for example, the
neutral beam injection angle or the radial deposition of the ion
cyclotron wave heating (which may induce toroidal flow due
to mode conversion). In this work, we consider only an ideal
plasma model. Only precessional drift resonances of thermal
ions and electrons are included, assuming that the achievable
toroidal E × B flow is relatively slow in ITER.

We mention that the effect of flow shear on the RWM has
been briefly studied in an early work [18], where a fixed shear is
assumed. Also only a fluid model was assumed there. Another
interesting fluid work reports Kelvin–Helmholtz type of flow
shear destabilization of ideal external kink mode, which occurs
at flow speed of a significant fraction of the Alfvén speed [35].
A semi-analytic result was recently reported showing the flow
shear stabilization of the RWM, by choosing a flow regime such
that the Landau damping resonance effect is excluded from the
consideration [36]. Here we perform a systematic study of the
flow shear effect within a kinetic model for the RWM, where
the precessional drift resonance plays the key role.

We compute the n = 1 RWM stability using the MARS-
K code and following a non-perturbative approach [24]. Even
though we do not include the finite drift orbit width effects,
our results are accurate up to the first order correction in
terms of the finite banana width, which holds for precessional
drift resonance as established in [37]. Our key finding is
that the toroidal flow shear, as well as the radial location of
the peak shear, plays a significant role in the stability of the
kinetic RWM.

The following section briefly describes the toroidal
equilibrium that we use. The shear flow is also specified
here. Section 3 reports the numerical results, followed by a
concluding section.

2. Equilibrium specifications

2.1. Equilibrium for an ITER 9 MA steady state plasma

Consider an ITER equilibrium designed for the 9 MA steady
state scenario, with qmin ∼ 1.5. The major radius is R0 =
6.2 m, with the on-axis vacuum toroidal field of B0 = 5.3 T.
The plasma cross section, as well as the double wall shape,

is shown in figure 1(a). A slightly simplified wall shape,
compared to the actual design, is adopted in this study. A
2D complete wall, with thin-wall approximation, is assumed,
with the wall penetration time of about 0.3 s for the double-
wall structure representing the ITER vacuum vessel. This
corresponds to the slowest eddy current decay time with the
n = 1 current pattern.

Figures 1(b) and (d) plot the radial profiles of the target
equilibrium pressure, safety factor q, and the surface averaged
toroidal current density, respectively. The plasma pressure
is normalized by the factor B2

0/µ0. The current density
is normalized by B0/(R0µ0). The equilibrium bootstrap
current is taken into account in constructing the current profile,
resulting in a slightly abnormal variation of the q-profile near
the plasma edge.

Shown in figure 1 is the ITER target equilib-
rium [27, 30, 38, 39], with the normalized beta βN =
β (%) a (m) B0 (T) /Ip (MA) = 2.93, where β is the plasma
volume averaged pressure normalized by the magnetic pres-
sure, and Ip the total plasma current. For the purpose of
parametric investigation, we also vary the plasma pressure
while fixing the edge q value at qa = 7.138, the same as
for the target plasma equilibrium. (The target plasma is in di-
vertor configuration. In MARS-K computations, the plasma
boundary is slightly smoothed near the X-point, resulting ef-
fectively in a limiter configuration for the equilibrium.) This
essentially keeps the total plasma current unchanged while
varying βN. This way, we compute the Troyon no-wall beta
limit, for the n = 1 ideal external kink instability, to be
βnw

N = 2.54 for this ITER plasma, and the ideal-wall (with
the ITER inner wall) beta limit is β iw

N = 3.54. As commonly
adopted for the RWM study, we define a linear scaling factor
Cβ = (βN − βnw

N )/(β iw
N − βnw

N ).

2.2. Specification of toroidal E × B flow and flow shear

For the purpose of systematic scans, we choose an analytic
specification of the radial profile for the toroidal E×B rotation
frequency �, with the following model.

�(ψ) =




−0.1ψ + c1; [0 � ψ � a]
−0.1ψ − S�

(
1
2ψ2 − aψ

)
+ c2

[a < ψ � ψ0]
−0.1ψ − S�

(
bψ − 1

2ψ2
)

+ c3

[ψ0 < ψ � b]
−0.1ψ + c4; [b < ψ � 1]




c4 = 0.1

c3 = 1

2
S�b2 + c4

c2 = S�ψ2
0 − S�(a + b)ψ0 + c3

c1 = 1

2
S�a2 + c2

ψ0 − δ = a

ψ0 + δ = b.

Here ψ is the normalized equilibrium poloidal flux labelling
the plasma minor radius, with ψ = 0 denoting the magnetic
axis, and ψ = 1 corresponding to the plasma boundary surface.
The above model allows, on top of a global rotation profile,
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Figure 1. (a) The shape of the equilibrium cross section for the ITER 9 MA steady state plasma chosen in this work, plotted together with
the simplified shapes of the double-wall vacuum vessel. Note that the (R, Z)-coordinates are normalized by R0 in the plot. Also shown are
the radial profiles of the equilibrium quantities for (b) the normalized pressure for the ITER target plasma, (c) the safety factor q, and (d) the
normalized surface averaged toroidal current density. The plasma minor radius is labelled by the normalized equilibrium poloidal flux ψ
and s = ψ1/2.

a local variation of the rotation shear near ψ = ψ0 (ψ0

corresponds to the radial location of the peak value of the
rotation shear amplitude). The local flow shear is determined
by the parameter S� in the model, which does not follow the
exact shear definition, but is closely related to the shear via the
following expression

S� = [d�/dψ]ψ=b − [d�/dψ]ψ=ψ0

δ
.

We shall call S� the normalized flow shear parameter, which
is a good indicator of the local flow shear. The parameter
δ defines the radial extent of the local shear variation. In
further numerical study, we fix δ = 0.1. We point out that
the above specification only defines the rotation profile. The
rotation amplitude is varied by introducing the on-axis rotation
frequency �0. While scanning �0, the entire plasma rotation
profile is scaled. Finally, we also introduce quantities s = √

ψ ,
s0 = √

ψ0. In further study, we shall exploit the RWM stability
in the parameter space specified by s0, S�, �0 and Cβ .

For the drift kinetic resonance effects considered in this
work, the crucial role is played by the matching between the
E × B flow frequency and the precessional drift frequency

of thermal ions and electrons. Figure 2 shows three E × B

flow profiles, constructed according to the above flow model
with �0 = 0.02�A(�A = R0 (µ0ρ0)

1/2 /B0 is the on-axis
Alfvén frequency, with ρ0 being the plasma core density),
S� = 9, and s0 = 0.35,0.55,0.75, respectively, together with
the thermal ion precessional drift frequency 〈�i

d〉, averaged
over the particle (Maxwellian) equilibrium distribution as well
as over the magnetic surface, for the ITER target plasma. The
electron toroidal precession has a reversed sign compared to
the ion precession. For comparison, we also plot the ion
diamagnetic rotation frequency �∗i for this ITER plasma.

Figure 2 shows that a proper resonance condition, between
the E × B flow and the averaged toroidal precession, is
satisfied only at slow plasma rotation. This is indeed
confirmed by further MARS-K computations shown in
section 3.

3. Numerical results and discussions

The computational results presented below are obtained by
the MARS-K code [24], following a non-perturbative MHD–
kinetic hybrid approach. In this approach, the single fluid
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Figure 2. Three examples of the E × B flow profiles with a large
local shear (S� = 9, �0 = 0.02�A) located at s0 = 0.35,0.55,0.75,
respectively, plotted together with the thermal ion precessional drift
frequency, averaged over the particle phase space (energy and pitch
angle) equilibrium distribution and along the magnetic flux surface,
and with the thermal ion diamagnetic frequency for the target
plasma. All frequencies are normalized by the on-axis Alfvén
frequency �A.

MHD equations, linearized around a given equilibrium, are
solved with a drift kinetic closure replacing the standard
adiabatic ideal gas assumption. This involves two key
changes to the standard MHD model. First, the perturbed
plasma pressure is kinetically evaluated by solving the
perturbed drift kinetic equation for plasma particles, resulting
in an anisotropic perturbed pressure (pressure tensor), which
replaces the scalar, isotropic perturbed pressure for the
equation of state in the standard fluid formulation. Secondly,
in the momentum equation, the force term associated with the
perturbed pressure gradient is now replaced by the divergence
of the perturbed pressure tensor.

The resulting coupled MHD–kinetic equations are solved
as a generalized eigenvalue problem, where the real and
imaginary parts of the (generally) complex eigenvalue
represent the growth rate and real frequency of the RWM,
respectively. Because the eigenvalue also enters, in a strongly
non-linear form, into drift kinetic integrals via the resonance
operator, this opens the possibility of existence of multiple
unstable branches for the same RWM [40, 41], which is often
referred to as the kinetic RWM in this work. For comparison,
we shall also compute the eigenvalue of the mode under fluid
approximation, where the drift fluid closure is replaced by the
standard equation of state for ideal gas. The resulting RWM is
referred to as the fluid RWM. Finally, we mention that in this
work, the fluid flow is also included into the MHD part of the
equation via inertial forces as in [33], under the assumption
of subsonic flow.

Detailed description of the MARS-K formulation is
reported in [24], with systematic code benchmarking efforts
presented in [39].

3.1. Generic characteristics of the non-perturbative kinetic
solution

For this ITER equilibrium, and with the chosen flow profile,
the MARS-K non-perturbative computations typically find two

unstable branches for the n = 1 kinetic RWM. Figures 3 and 4
show two examples at Cβ = 90% and 70%, respectively. We
choose the flow profile with s0 = 0.75 and S� = 9, and
scan the rotation amplitude �0. The toroidal precessional drift
resonance of thermal ions and electrons are taken into account
in the kinetic module.

Figures 3(a) and (b) plot the normalized growth rate
and the real frequency of the RWM, respectively. The
normalization factor is the MARS-K computed slowest n = 1
eddy current decay time, τw, of the double-wall structure in
vacuum. At Cβ = 90%, the two unstable branches co-exist at
a given rotation speed. The first branch, which is more unstable
at fast flow, has a large real frequency compared to the second
branch. On the other hand, the frequency range of the first
branch solution is still comparable to the mode growth rate,
which is relatively high since the plasma pressure is close to the
ideal-wall beta limit. What is unusual for this high beta case is
that the two branches have comparable growth rates at slower
rotation frequency around 0.01�A. With further decreasing
of the flow speed, the second branch becomes predominantly
unstable. Overall, due to the overlap of two unstable branches,
no stability window exists for this high beta equilibrium, with
varying plasma flow speed.

We point out that, at very high beta (when beta is
approaching the ideal-wall beta limit), the thin shell model
adopted in MARS-K may not be sufficiently accurate. This
is because the magnitude of the mode eigenvalue becomes
large, resulting in a thin skin depth in the wall. When the
skin depth is much smaller than the wall thickness, we expect
a substantial modification of the RWM stability by a thick
wall [42]. For the results shown in figure 3, the first unstable
branch has eigenvalue amplitude (normalized by the wall time)
varying between 20 and 50. We estimate the skin depth due
to this instability to be about 0.07 to 0.12 m for the ITER
wall. This range is slightly above the thickness of the vacuum
vessel, which is 0.06 m. We expect a slight modification of
the numerical results presented here for the first branch, if the
finite wall thickness effect were taken into account. For the
second branch, the amplitude of the eigenvalue is still small.
The thin-wall approximation should be accurate.

The co-existence of two unstable branches occurs only at
sufficiently high plasma pressures. At lower plasma pressure,
the two-solution structure is somewhat different, as shown by
figure 4. In this case, the two unstable branches do not co-exist
at a given rotation. Instead, at fast flow, �0 > 0.01�A, the
first branch appears, with relatively large mode frequency; at
slow flow, �0 < 0.006�A, the second unstable branch appears,
with small mode frequency. A stable window emerges between
�0 > 0.006�A and �0 < 0.01�A, where no unstable RWM
is found. As will be shown later on, this stable window also
depends on the amplitude and radial location of the flow shear.

The two-branch solution is primarily a consequence of
the drift kinetic effects. Figure 5 compares the kinetic solution
with the fluid solution where the kinetic physics are switched
off. Here we scan the plasma pressure factor Cβ while fixing
the rotation amplitude at �0 = 0.001�A, as well as the flow
shear at s0 = 0.75 and S� = 9. Figures 5(a) and (b) plot the
growth rate and frequency of the mode, respectively. Note that
the growth rate of the first kinetic RWM branch is multiplied
by a factor of 10 in figure 5(a) for a more clear comparison.
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frequency �0. The eigenvalue is normalized by the slowest n = 1 double-wall eddy current decay time τw in vacuum. An equilibrium with
Cβ = 90%, and a shear flow with s0 = 0.75 and S� = 9 are considered.
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Figure 7. The normalized growth rate of (a) the first branch of the kinetic RWM, and (b) the fluid RWM, versus the radial location s0 of the
flow shear peaking, for three choices of the on-axis E × B rotation frequency �0 = 0.016�A, 0.018�A and 0.02�A, respectively. An
equilibrium with Cβ = 90% is considered. The normalized flow shear parameter is fixed at S� = 9.
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Figure 8. The growth/damping rate for the first branch of the
kinetic RWM, plotted in the 2 D parameter space (�0, s0). An
equilibrium with Cβ = 90% is considered. The normalized flow
shear parameter is fixed at S� = 9. The dashed–dotted curve shows
the stability margin.

This branch appears only at sufficiently high beta. The second
branch follows the trend of the fluid solution, for both the
growth rate and the mode frequency. This branch can be
viewed as the drift kinetic version of the fluid RWM, but is
more stable than the fluid version [10, 18, 19]. In fact the
marginal stability point, in terms of Cβ , also shifts upwards
with the inclusion of the drift kinetic damping.

On the other hand, the characteristics of first branch
are rather different from that of the fluid solution. This
can be viewed as a kinetic-driven branch for the RWM.
The mode frequency is higher, though still remains in the
RWM frequency range, as shown by figure 5(b) (note that the
sign-reversed frequency is plotted here for the first branch).
More importantly, this branch is much more unstable at faster
rotation, as shown in figures 3 and 4. It is for this reason; we
shall systematically investigate the stability of the first branch
in later sub-sections.

Figure 6 compares the computed RWM eigenmode
structure, for selected data points from figures 3–5. We plot
the dominant poloidal Fourier harmonics (m = 0, . . . , 3
in an equal-arc magnetic coordinate system) of the radial
displacement. The amplitude of the eigenfunction is in
arbitrary units. Compared with the fluid RWM eigenmode
structure, the drift kinetic modification is not significant. A
slightly larger modification is observed for the second branch
at slow rotation. This seems to indicate that the occurrence of
the double branch kinetic solution is mainly associated with
the non-linear dependence of the kinetic resonance operators
on the RWM eigenvalue [40, 41, 43].

3.2. Varying radial location of peak flow shear

In this subsection, we investigate the stability of the kinetic
RWM, while varying the radial location of the peak flow shear.
We focus on the first branch of the kinetic solution, which
generally has much larger growth rate than the second branch.
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Figure 9. Comparison of the growth rate for the first branch of the
kinetic RWM, with varying radial location s0 of the flow shear
peaking, for two choices of the plasma pressure scaling parameter
Cβ = 70% and Cβ = 90%, respectively. Fixed are the on-axis
E × B rotation frequency �0 = 0.02�A, and the normalized flow
shear parameter S� = 9.
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Figure 10. Three examples of the E × B rotation profiles, with
different flow shear at S� = 1, 5, 9, respectively. The radial
locations of the flow shear peaking is fixed at s0 = 0.75.

Due to the large dimension of the possible parametric space, we
restrict ourselves on one choice of the rotation shear, namely
S� = 9. The effect of varying flow shear will be reported in
the next subsection.

Figures 7(a) and (b) plot the mode growth rate as a function
of s0, for the first kinetic branch and for the fluid RWM,
respectively, for the high beta case with Cβ = 90%. Three
relatively fast rotation frequencies are considered (for which
the first branch generally has large growth rates). Several
observations can be made from figure 7. (i) The flow shear
location has rather different effect on the kinetic RWM, than the
fluid counterpart. The dependence of the kinetic growth rate on
s0 is in general more complicated than that of the fluid growth
rate. (ii) For the kinetic RWM, a narrow stability window
can open around s0 = 0.7, whilst for the fluid model, a more
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Figure 11. The normalized growth rate of (a) the first branch of the kinetic RWM, and (b) the fluid RWM, versus the on-axis E × B
rotation frequency �0, with varying flow shear at S� = 1, 5, 9, respectively. The radial location s0 of the flow shear peaking is fixed at 0.75.
An equilibrium with Cβ = 70% is considered.
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Figure 12. The growth/damping rate for the first branch of the
kinetic RWM, plotted in the 2D parameter space (�0, S�). The
radial location s0of the flow shear peaking is fixed at 0.75. An
equilibrium with Cβ = 70% is considered. The dashed–dotted curve
shows the stability margin.

robust stabilization occurs at s0 > 0.7. (iii) The fact that
the kinetic stabilization of the mode occurs near s0 = 0.7, is
directly related to the peak location of the mode eigenfunction
as shown in figure 6. This implies that, according to the drift
kinetic theory, the strongest mode damping is achieved, if a
large flow shear can be tuned near the radial location where
the displacement associated with the RWM peaks.

Figure 7(a) also shows that the width of the stability
window for the kinetic RWM depends on the rotation
amplitude �0. A more comprehensive picture is shown in
figure 8, where the mode growth rate is plotted in the 2D
parameter space (�0, s0). The stability window opens up
at about �0 = 0.018�A. The width of the window, in
s0, increases with decreasing �0. It is interesting to note
that the lower boundary of the stability window, shown in
figure 8, hardly changes with �0, but the upper boundary
quickly expands.

The small stability window presented in figures 7(a) and 8
corresponds to the worst-case scenario, which holds at very
high beta (Cβ = 90%). The stable window can be significantly
wider for equilibria at lower beta. Figure 9 shows one example
for Cβ = 70%, compared with the Cβ = 90% case, at the flow
speed of �0 = 0.02�A. At Cβ = 70%, the lower boundary of
the stable window effectively disappears, resulting in a large
stable region in the s0 space. The upper boundary of the
stability window remains, with s0 = 0.65 for this case.

3.3. Varying peak amplitude of flow shear

In the results presented so far, we have fixed the peak amplitude
of flow shear, characterized by the normalized shear parameter
S� = 9. In what follows, we study the effect of varying S�

on the stability of the kinetic RWM. We fix the radial location
of the shear peak at s0 = 0.75. Figure 10 shows three rotation
profiles, with S� = 1, 5, 9, respectively.

Figure 11 compares the growth rate, as a function of the
flow amplitude, of the first branch of the kinetic RWM (a),
with that of the fluid RWM (b), for the Cβ = 70% case. We
use three rotation profiles as shown in figure 10. We first note
the qualitative difference of the flow shear effect on the RWM,
between the kinetic and the fluid models. With the kinetic
model, which offers a better description of the RWM physics
by properly including the mode-particle resonances, the flow
shear tends to stabilize the mode at fast flow, but slightly
destabilize the mode at slower flow speed. The transition from
stabilization to destabilization occurs at about �0 = 0.014�A

for our case. As a result of destabilization, the marginal
stability point, in terms of the rotation amplitude, shifts down
with increasing the local flow shear.

The flow and flow shear effect is qualitatively different
following the fluid model, as shown in figure 11(b). The
growth rate of the mode monotonically decreases with
increasing the flow speed. The local flow shear has a minor
influence on the mode stability. For our case, the fluid theory
predicts a full stabilization of the RWM at �0 > 0.025�A.

Figure 12 shows the stability diagram for the first unstable
branch of the kinetic RWM, from a more systematic scan of the
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Figure 13. The growth/damping rate for both branches of the kinetic RWM, plotted in the 2D parameter space (�0, Cβ), for (a) S� = 1,
and (b) S� = 9. The radial location s0 of the flow shear peaking is fixed at 0.75. The thick dashed–dotted curves show the overall stability
margin. The thin dashed–dotted lines show the approximate separation between the two unstable branches.

flow shear. The marginal stability curve, shown by the dash-
dotted line, is mapped out in the 2D parameter space (�0, S�).
The primary effect here is the full stabilization of the first
branch at slow flow speed, resulted from the precessional drift
resonance damping. The stable domain slightly shrinks with
increasing the flow shear. The other interesting effect is the
significant reduction of the RWM growth rate in the unstable
domain when �0 > 0.013�A, as the flow shear increases.

The kinetic stabilization shown in figures 11(a) and 12
occurs for the first unstable branch, which is the more unstable
one. However, at sufficiently high beta, the second branch
is also weakly unstable as shown by figures 3 and 4. This
second unstable branch is affected by the flow and flow shear
as well. As a result, the overall stability of the kinetic RWM
is determined by the stability of both unstable branches. This
is illustrated in figure 13, where we plot the RWM stability
diagrams in the 2D parameter space (�0, Cβ). Two cases,
with the normalized flow shear parameter (a) S� = 1, and
(b) S� = 9, are compared.

A stable domain still exists for the kinetic RWM when
both branches are taken into account. The marginal stability
curve (thick dashed–dotted line) is defined by both branches.
In particular, the first branch determines the stability boundary
from the right side of the stable domain, whereas the second
branch largely determines the stability boundary from the
top. At sufficiently slow flow and sufficiently low beta, the
RWM is fully stable according to the non-perturbative drift
kinetic computations. A larger flow shear slightly expands the
upper boundary of the stable domain by stabilizing the second
unstable kinetic RWM branch. A larger expansion occurs for
the right boundary of the stable domain, as a result of flow shear
stabilization of the first unstable branch. As a final observation,
we note that the instability of the second unstable branch is
generally very weak. This weak instability may easily be
overcome by including additional damping mechanisms that
are not considered in this work, for instance, that from trapped
energetic particles. This may results in a significant upwards
expansion of the stable domain in figure 13. On the other hand,
the right-wards expansion may be more problematic, due to the
strong instability of the first unstable branch.

4. Conclusion

A non-perturbative MHD-kinetic hybrid formulation is applied
to computationally study the RWM stability for an ITER 9 MA
steady state plasma. In particular, we focus on a systematic
investigation of the role of the plasma E × B flow shear on
the passive stabilization of the mode. This is motivated by the
uncertainty in the prediction of the flow profile in ITER, as
well as by the desire of actively (locally) controlling the flow
shear as a tool for the suppression of the RWM stability.

A general feature of the kinetic prediction is the existence
of two unstable branches for this ITER plasma. The first branch
has somewhat higher mode frequency, though still remains
in the frequency range for the RWM. More importantly, this
branch has much higher growth rate compared to the second
branch, and hence poses the most severe limitation on the
stability window for the mode.

We find that the first unstable branch is sensitively affected
by both the local flow shear as well as the radial location of
the peak amplitude of the shear. At high beta (Cβ = 90%), a
narrow stable window appears as we vary the radial location
of the shear peak. Not surprisingly, the optimal shear location
correlates to the peak location of the RWM eigenfunction (in
terms of the plasma radial displacement). The stable window
significantly expands as we lower the plasma pressure. At a
fixed radial location, a large local flow shear strongly reduces
the growth rate of the first unstable branch of the kinetic RWM,
but meanwhile slightly increases the critical flow amplitude
required for complete suppression of the mode.

The second unstable branch is generally only weakly
unstable. The flow shear has less dramatic effect on the
stability of this branch. However, even taking into account
this weak instability, there is still a reasonably wide stable
domain for the RWM, in the (�0, Cβ) space. A larger flow
shear further widens the stable domain, mainly by stabilizing
the first unstable branch.

In this work, we have not yet included the drift kinetic
effects from trapped energetic particles (EPs), produced either
by auxiliary heating or by the fusion reaction itself (i.e. DT born
alphas). The EPs normally have much higher precessional
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drift frequency than thermal particles, and hence can hardly
be in resonance with the RWM at slow flow. Despite this,
the EPs can still contribute to the kinetic damping of the
RWM [29, 30, 34, 44, 45], especially at higher flow speed. One
future work is to investigate the role of the flow shear on the
RWM, with the inclusion of the kinetic effects from EPs. We
also neglected the particle collisions in this study [46]. Whist
being a reasonable assumption for thermal ions in ITER, this
is an approximation for thermal electrons.
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