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Abstract
The linear and quasi-linear plasma response to the n = 3 and n = 4 (n is the toroidal mode number) resonant magnetic
perturbation (RMP) fields, produced by the in-vessel edge localized mode control coils, is numerically studied for an ITER
15 MA H-mode baseline scenario. Both single fluid and fluid-kinetic hybrid models are used. The inclusion of drift kinetic
effects does not strongly alter the plasma response compared to the fluid approximation for this ITER plasma. The full toroidal
drift kinetic model is also used to compute the neoclassical toroidal viscous (NTV) torque, yielding results close to that of an
analytic model based on geometric simplifications. The computed NTV torque from low-n RMP fields is generally smaller than
the resonant electromagnetic torque for this ITER plasma. The linear response computations show a weak core kink response,
contrary to a strong kink response often computed for plasmas from present day tokamak devices. Initial value quasi-linear
simulations, including various torque models, show a localized damping of the plasma toroidal flow near the edge, as a result of
the applied RMP fields. This localized rotation damping can be weak or strong depending on whether a weakly unstable edge
localized peeling mode is present. No qualitative difference is found between the n = 3 and n = 4 RMP field configurations,
in both the linear and non-linear response results.

Keywords: momentum flux, RMP fields, single fluid models, MHD-kinetic hybrid models

(Some figures may appear in colour only in the online journal)

1. Introduction

External three-dimensional (3D) magnetic field perturbations,
such as intrinsic error fields or resonant magnetic perturbation
(RMP) fields generated by magnetic coils, can have a profound
influence on tokamak plasmas, which generally possess axi-
symmetric (2D) equilibria. Whilst the low-n (n is the toroidal
mode number) components of the error field are well known
to produce, among other effects, mode locking phenomena
in tokamaks [1], the RMP fields, often with tailored toroidal
and poloidal spectra, are intentionally applied to mitigate or
suppress the type-I edge localized modes (ELM) in ELMy H-
mode plasmas [2–7]. In ITER, three rows of in-vessel ELM
control coils have been designed for this purpose.

Theoretical investigations of the effects, that external 3D
fields have on tokamak plasmas, can be carried out at various
levels of complexity. For instance, the vacuum model [8],
single fluid model [9], 2-fluid models [10, 11, 15], and kinetic
models [12, 13] have been adopted to study the RMP problem.
Within the fluid model, both reduced magnetohydrodynamic
(MHD) formulation [14–16] and full MHD [9, 10] have been
considered. Following another classification, it is of interest to
study the linear, quasi-linear, and non-linear plasma response
to the external fields.

The linear response typically involves solving perturbed
MHD equations, sometimes also in combination with
linearised drift kinetic equations [12]. A steady state linear
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response solution, superposed on the 2D equilibrium, produces
the so-called perturbed 3D equilibrium [17, 18]. This study
has been shown to be very helpful in understanding several
important aspects, including (i) the plasma induced 3D
modification of the magnetic field structure, such as the
field screening [12, 19], the field line ergodization, the pitch
resonant versus the kink-peeling plasma response [20]; (ii) the
plasma displacement caused by the RMP fields as a results
of the steady state plasma response [21–23]; (iii) the effect
of the 3D plasma response field on energetic particle (EP)
confinement.

The quasi-linear response study considers the self-
consistent interaction between the n �= 0 external field
perturbation with the n = 0 plasma equilibrium quantities such
as the toroidal flow. In this interaction, the plasma flow induced
resonant field screening and the flow damping due to the 3D
perturbation induced toques play key roles [24]. Therefore,
the focus here is to investigate various possible torques acting
on the plasma, due to the presence of 3D fields, such as
the resonant electromagnetic torque, the torque associated
with the neoclassical toroidal viscosity (NTV) [25, 26], and
the Reynolds torque associated with the plasma inertia. In
principle, there can also be torques associated with the 3D
field induced redistribution of energetic particles (EPs), as
well as the 3D field induced modification of intrinsic rotation.
Since the various torques scale not only with the amplitude but
also with the spectrum of the applied 3D field, it is important
to investigate, for example, how the RMP field at different
toroidal configurations (i.e. different n numbers) can affect the
flow damping.

The non-linear study of the plasma response can be further
classified into two categories: the (static) 3D equilibrium
approach [27] and the (dynamic) initial value approach [29].
The full 3D equilibrium approach, contrary to the perturbed 3D
equilibrium approach (from the linear response calculations),
may provide a more accurate model of the plasma response
(e.g. the 3D displacement) in particular near rational surfaces,
although the final prediction may be sensitive to the plasma
models that are used (ideal versus resistive plasma, static versus
rotating plasma, etc). The dynamic approach usually assumes
resistive plasma, within either reduced or full MHD models,
single or two-fluid approximations.

In this work, we focus our efforts on numerical modelling
of both the linear and quasi-linear plasma response to the
RMP field, for a 15 MA ITER baseline scenario plasma
[28]. We consider the ELM control coil currents both in
the n = 3 and n = 4 configurations. Both a single
fluid model and a MHD-kinetic hybrid model have been
considered for the linear response study. The single fluid
response model has previously been shown to successfully
reproduce the experimental observations in the DIII-D RMP
experiments, as long as the plasma pressure remains well
below the Troyon beta limit [30]. The MHD-kinetic hybrid
model is essential for predicting the plasma response in high
beta plasmas [31]. We also use the drift kinetic model in
the quasi-linear study, in order to provide more accurate
computations of the NTV torque. The computations are
carried out using the MARS-F code [12] and the MARS-
Q code [24], for the linear and the quasi-linear response,
respectively.

Section 2 briefly introduces the toroidal response models.
Section 3 describes the ITER equilibrium as well as the RMP
coil configuration that we use in this study. Sections 4 and
5 report the computational results from the linear versus the
quasi-linear models, respectively, followed by the concluding
section 6.

2. Toroidal plasma response models

The toroidal plasma response models that we use in this work
have previously been introduced and tested. These include the
single fluid RMP response model [9], the MHD-kinetic hybrid
model [12], as well as the quasi-linear model [24]. Detailed
discussions of the validity conditions for these models can be
found in the above references. Below we briefly describe
all these models, for the purpose of gathering all physics
discussions associated with these models together, and more
importantly, for facilitation of understanding the numerical
results to be presented in later Sections.

The fluid model that we use for the RMP response consists
of perturbed, single fluid, resistive MHD equations, with
subsonic toroidal flow and flow shear, to be solved in the plasma
region; the equation describing the RMP source term (the coil
currents) to be solved in the vacuum region where the coils
are located; equations for the perturbed magnetic fields in the
vacuum region; and where applicable (e.g. with the ac RMP
coil currents) the equation for the resistive wall(s), also located
in vacuum. All these equations are self-consistently solved
together.

The fluid equations for the plasma are written for the
plasma displacement vector ξ , the perturbed velocity vector
v, the perturbed magnetic field b, the perturbed plasma current
j, and the perturbed (fluid) pressure p(

∂

∂t
+ in�

)
ξ = v + (ξ · ∇�)Rφ̂, (1)

ρ

(
∂

∂t
+ in�

)
v = −∇p + j × B + J × b

−ρ
[
2�Ẑ × v + (v · ∇�)Rφ̂

]
−ρκ‖|k‖vth,i| [v + (ξ · ∇)V0]‖ , (2)

(
∂

∂t
+ in�

)
b = ∇ × (v × B) + (b · ∇�)Rφ̂ − ∇ × (ηj),(3)

j = ∇ × b, (4)
(

∂

∂t
+ in�

)
p = −v · ∇P − �P∇ · v, (5)

where R is the plasma major radius, φ̂ the unit vector along the
geometric toroidal angle φ of the torus, Ẑ the unit vector in the
vertical direction in the poloidal plane. The plasma resistivity
is denoted by η. The equilibrium plasma density, field, current,
and pressure are denoted by ρ, B, J, P , respectively. � = 5/3
is the ratio of specific heats. A conventional unit system
is assumed with the vacuum permeability µ0 = 1. It is
important to note that we solve for the full MHD equations.
The solution variable b represents the total perturbed magnetic
field including the contributions from the plasma, the RMP
coils as well as other conducting structures.
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We assume that the (subsonic) plasma equilibrium flow
V0 = R�φ̂ has only the toroidal component, with � being the
angular frequency of the toroidal rotation. A parallel sound
wave damping term is added to the momentum equation (2),
with κ being a numerical coefficient determining the damping
‘strength’. k‖ = (n − m/q)/R is the parallel wave number,
with m being the poloidal harmonic number and q being the
safety factor. vth,i = √

2Ti/Mi is the thermal ion velocity,
with Ti, Mi being the thermal ion temperature and mass,
respectively. The parallel component of the perturbed velocity
is taken along the equilibrium field line.

The RMP source term, i.e. the coil current jRMP, is
introduced via Ampere’s law

∇ × b = jRMP. (6)

Note that the above equation is solved in the vacuum region
where the RMP coils are located.

In the presence of a resistive wall, the radial component of
the field diffusion equation, or an equivalent form in the limit
of the thin wall approximation, is solved

∂br

∂t
= −[∇ × (ηw∇ × b)]r , (7)

where the subscript ‘r’ denotes the radial component. ηw is the
resistivity of the wall.

The vacuum equations, for regions not occupied by any
conducting structures, are written for the (total) perturbed field

∇ × b = 0, ∇ · b = 0. (8)

Note that for the linear response model, if the source term
jRMP is a dc current, or an ac current with given frequency
ωRMP, we are often interested in the steady state response,
which can found by solving all the above equations, where the
time derivative ∂/∂t is replaced by iωRMP (with ωRMP = 0
corresponding to the dc excitation).

In the MHD-kinetic hybrid model, we replace the fluid
closure for the perturbed pressure, equation (5), by the
following drift kinetic closure

p = p‖b̂b̂ + p⊥(I − b̂b̂), p‖ =
∑

j

∫
Mjv

2
‖f

1
j dv,

p⊥ =
∑

j

∫
1

2
Mjv

2
⊥f 1

j dv, (9)

where the summation is carried out for all particle species. The
perturbed distribution function f 1, which is the solution of the
perturbed drift kinetic equation for each species, is normally
divided into an ‘adiabatic’ part f 1

a and the ‘non-adiabatic’
part f 1

L

f 1 = f 1
a + f 1

L, (10)

f 1
a = P̃φ

∂f 0

∂Pφ

− µ
|b|
B

∂f 0

∂µ
, (11)

df 1
L

dt
= ∂f 0

∂ε

∂H 1

∂t
− ∂f 0

∂Pφ

∂H 1

∂φ
− νefff

1
L, (12)

H 1 = Ze

c
Ã · vd − µ|b|, (13)

where f 0(Pφ, ε, µ) is the equilibrium distribution function of
the particle, specified in terms of three constants of motion of
the particle: the toroidal canonical momentum Pφ , the energy ε

and the magnetic moment µ. P̃φ denotes the perturbed Pφ . H 1

is the perturbed particle Lagrangian, with Ã being the perturbed
magnetic vector potential and vd being the drift velocity of
the particle. νeff is the effective collision frequency (of the
Krook collision operator). We have neglected the perturbed
electrostatic potential in our drift kinetic model. The MARS-
K drift kinetic module has been successfully benchmarked
against the HAGIS code [12] and other hybrid codes based on
the perturbative approach [32], for the stability computations
of the resistive wall mode. The same kinetic module is used
in the NTV computations discussed below, as well as in the
numerical results to be reported in sections 4 and 5.

The quasi-linear response model solves the above linear
response equations together with the n = 0 toroidal
momentum balance equation for L = ρ〈R2〉�, as an initial
value problem,

∂L

∂t
= D(L) + Tsource + TNTV + Tj×b + TREY. (14)

The right hand side of equation (14) includes the momentum
diffusion term D(L), the momentum source term Tsource

representing, e.g. the momentum input from neutral bean
injection, as well as various momentum sink terms, such as
the the toroidal component of the NTV torque TNTV, the
resonant electromagnetic torque Tj×b, and Reynolds torque
TREY associated with the inertial term ρ(v·)v. Detailed
description of each term can be found in [24]. In the model
presented here, the NTV and j×b torques are due solely to the
application of 3D RMP fields. Therefore, if we assume that,
before the application of the RMP fields, an equilibrium torque
balance has been reached, we can solve for an equation for the
change of the momentum �L. In this equation, the momentum
source term drops out. In particular, the equilibrium J × B
torque, if any, produced due to auxiliary heating such as NBI or
ICRF, is also excluded. The remaining j × b torque, discussed
in this work, comes from the 3D RMP field perturbation only.

We have two models to evaluate the NTV torque. One is
based on the smoothly connected analytic formulas [25] which
have been implemented into MARS-Q [24]. The drift kinetic
formulation in MARS-K provides another tool to compute the
NTV torque which, as has been shown [33, 34], is inherently
related to the perturbed drift kinetic energy perturbation

TNTV = −2nIm(δWk), (15)

where δWk = −1/2
∫
(−∇ · p) · ξ ∗

⊥d3x. Reference [34] also
numerically benchmarked these two NTV models between
MARS-Q and MARS-K, not only for the net torque amplitude
but also for the flux surface averaged radial torque density.

We also mention the typical boundary conditions that
we apply for solving the momentum balance equation. At
the magnetic axis, the free (Neumann) boundary condition is
assumed. At the plasma edge, we assume a homogeneous
Dirichlet boundary condition for �L. For tokamak plasmas,
this is a reasonable approximation of the more generic Robin
boundary condition, as demonstrated in [1].

An adaptive time-stepping scheme is envisaged for solving
the quasi-linear response problem. The MARS-Q modelling

3
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Figure 1. Equilibrium radial profiles for (a) the surface averaged toroidal plasma current density normalized by B0/(µ0R0), (b) the safety
factor q, (c) the plasma density normalized by the on-axis value, and (d) the plasma pressure normalized by B2

0 /µ0 , for the ITER baseline
15MA plasma at burning condition. The plasma minor radius is labelled by the normalized equilibrium poloidal flux ψp.

results have been successfully compared with the RMP
experiments in MAST [35].

3. Equilibrium and coil configuration

We consider an ITER equilibrium from the 15 MA, QDT = 10
baseline scenario under burning condition. Figure 1 shows the
key equilibrium radial profiles, obtained from the CORSICA
[36] transport simulations. The plasma has a pedestal top
temperature of 4.4 keV. The surface averaged toroidal plasma
current density 〈Jφ〉 is normalized by J0 ≡ B0/(µ0R0), with
B0 = 5.3 Tesla, R0 = 6.2 m, µ0 = 4π × 10−7 H m−1. The
plasma density is normalized to unity at the magnetic axis.
Three types of density profiles are considered in the CORSICA
simulation, differing by the peakiness of the radial profile near
the plasma edge. The so called reference density profile, shown
in figure 1(c), is chosen for this study. The plasma pressure
is normalized by P0 ≡ B2

0/µ0. This H-mode plasma has
a pedestal top temperature of 4.4 keV. The strong bootstrap
current near the plasma edge (figure 1(a)), due to the pressure
pedestal (figure 1(d)), has a clear effect on the q-profile near
and beyond the q95 surface (figure 1(b)).

There are three sets of in-vessel ELM control coils
according to the ITER design: the upper (U), middle (M) and
lower (L) set, respectively. The modelled coil geometry is

shown in figure 2(a). Each set consists of 9 coils along the
toroidal angle. Note that the poloidal coverage of the upper,
middle and lower sets of coils vary, as more clearly shown in the
R−Z plane in figure 2(b). The plasma boundary shape, as well
as the modelled double wall shapes, is also shown in this figure.
Note that we slightly smooth the plasma boundary near the X-
point, since our computational model, based on the magnetic
flux based coordinate system, cannot resolve the exact X-point
geometry. This smoothing has very little effect on the q95 value
which is about 3.18, but does sensitively change the edge q

value at the plasma surface. For the plasma surface shape
shown here, the qa value is 4.33 as shown in figure 1(b).

Outside the plasma surface, we have the vacuum region
(no scrape-off-layer is modelled) and other conducting
structures. In particular, the double wall conducting structures
are modelled as complete walls in this work. This
approximation is acceptable for low frequency RMP response
computations. Here we assume that the applied RMP field
rotates at 1Hz along the toroidal direction. With this nearly
static field perturbation, the vacuum vessel, as well as other
conducting structures surrounding the plasma, plays a minor
role.

The coil currents are arranged to produce predominantly
the n = 3 or the n = 4 toroidal Fourier components of the
vacuum magnetic field. In the nominal modelling cases, we
consider either the n = 3 coil current at 45 kAt, or the n = 4

4
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Figure 2. (a) Geometry of the modelled in-vessel ELM control coils in ITER. The location of these three sets of coils is also indicated in the
poloidal plane shown in (b), together with the plasma boundary and the double vacuum vessel.

current at 30 kAt. For the n = 3 configuration, the toroidal
phases of the upper and lower coil currents, with respect to the
middle one, are φU = φM − 82.7◦, and φL = φM − 30.7◦,
respectively. For the n = 4 configuration, we set φU =
φM − 48.7◦ and φL = φM − 34.7◦. These current phases are
optimal according to the Chirikov parameter based vacuum
field criteria [37].

4. Linear response

In the linear response computations, we are primarily
interested in three aspects: the perturbed magnetic field with
the inclusion of the plasma response and a comparison
with the vacuum field; the RMP induced plasma boundary
displacement for this ITER plasma; and the toroidal torques
acting on the plasma due to the applied RMP field, in particular
the NTV torque due to the presence of 3D magnetic field
perturbations. All these aspects generally depend on the
plasma model. Here we compare the computational results
from a single-fluid resistive plasma response model and from
a self-consistent MHD-drift kinetic hybrid model. These
models are described in section 2. The plasma resistivity
follows the Spitzer model, which gives the on-axis Lundquist
number of S(0) = 8 × 109 for this ITER plasma, where S =
τR/τA, τR = µ0a

2/η, τA = R0
√

µ0ρ0/B0, with η being the
plasma resistivity and ρ0 being the on-axis plasma density. The
radial profile of S scales with the thermal electron temperature
as T

3/2
e . Both the n = 3 and n = 4 coil configurations are

investigated.

4.1. n = 3 RMP coil configuration

The poloidal spectra of the computed radial fields are compared
in figure 3, for the vacuum approximation, the resistive
fluid plasma response, and the drift kinetic plasma response,
respectively. The self-consistent kinetic plasma response
includes the precessional drift resonances of both thermal ions
and electrons, as well as the bounce and transit resonances of
thermal ions.

The perturbed radial field is defined as

b1 = b · ∇ψ

Beq · ∇φ

q

R2
0B0

. (16)

Note that this is a dimensionless quantity according to the
above definition. The poloidal Fourier harmonics of b1 are
defined in the PEST-like straight field line coordinate system
(with the jacobian being proportional to R2). Shown in figure 3
is the amplitude of the poloidal harmonics inside the plasma,
between s ≡ √

ψp = 0.5 and 1. The field amplitude is small
in the plasma core, compared to that near the edge. With
the RMP coil geometry and the chosen toroidal phasing of
the coil currents, the vacuum field is close to, but does not
perfectly match, the maximal field pitch resonance. With the
inclusion of the plasma response, the resonant field amplitude
is significantly reduced almost everywhere inside the plasma
except near the very edge (where the high m > nqa peeling
mode harmonics is slightly amplified), as shown in figures 3(b)
and (c). For this ITER plasma, both fluid and kinetic models
produce similar plasma response (both spectra and amplitude).
Unlike the typical plasma response computed for MAST [35]
or DIII-D [20] where a significant core kink response induced
field amplification often (but not always) occurs, no such kink
response is observed for this ITER case.

The amplitude of the pitch resonant fields is further
compared in figure 4(a). Again we observe a significant
reduction of the field amplitude compared to the vacuum
field. The fluid and the kinetic plasma models produce similar
response not only in terms of the response field, but also in
the plasma surface displacement as shown in figure 4(b). The
similarity between the two types of response is probably due to
the fact that the plasma pressure is relative low (βN = 1.86) for
this ITER plasma, so that the fluid approximation is still largely
valid for describing the plasma response [30]. The predicted
maximal plasma surface displacement is about 30 mm with
the 45 kAt of the n = 3 RMP coil current. The fact that
the displacement does not peak near the outboard mid-plane
(at the poloidal angle �0), again reflects the lack of the kink
response—a correlation (between the core kink response and
the mid-plane displacement) as has been found in the modelling
of the MAST plasmas [22].
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Figure 3. Poloidal spectrum of the perturbed radial field b1 from (a) the vacuum approximation, (b) the resistive fluid plasma response, and
(c) the resistive drift kinetic plasma response. The n = 3 RMP coil current configuration is assumed. The symbol ‘+’ indicates the location
of rational surfaces for the n = 3 perturbation.
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Figure 4. Comparison of (a) the resonant harmonic amplitude for the perturbed radial field b1
m, and (b) the normal displacement of the

plasma surface, between the resistive fluid plasma response (solid lines and labelled ‘PB’) and the self-consistent drift kinetic plasma
response (dashed lines and labelled ‘SC’). The vacuum field (dashed-dotted line) is also plotted in (a). The n = 3 coil current configuration
is assumed.

Figure 5(a) compares the NTV torque density computed
by two models—the MARS-Q model [24] and the MARS-
K model [12]. The MARS-Q model is based on the
smoothly connected analytic formulas obtained from analytic
solution of the bounce averaged drift kinetic equation under
geometric simplifications. The MARS-K model is based on
the numerical solution of the drift kinetic equation with full
toroidal geometry. These two models have been successfully
benchmarked on a large aspect ratio plasma [34]. The
agreement between these two models still largely holds even
for a more complicated equilibrium as shown here, as long
as the same physics are assumed in both models (i.e. the
precessional drifts of thermal ions in this comparison). The
net NTV torque mostly comes from the plasma edge region,
where the MARS-K model predicts a somewhat higher torque
density than the MARS-Q model.

The computed NTV torque is due mainly to the so-called
non-resonant component in most of the plasma region. This
can be understood from a comparison of various frequencies
shown in figure 5(b). The effective collision of thermal ions is
very low (compared to other drift frequencies) in the ITER
plasma, as expected. The fact that the precessional drift
frequency ωD of thermal ions is small, compared to the E × B
drift frequency ωE in the bulk of the plasma, excludes the
possibility of generating a large NTV torque associated with

the resonance effect. Therefore, the NTV torque is largely from
the non-resonant contribution in this ITER plasma. The above
analysis does not apply to the very edge of the plasma, with
ψp > 0.99, where even the condition of the bounce averaged
drift kinetic approximation, assumed in the MARS-Q model,
is not any more satisfied. The validity of the MARS-Q model
assumes that all the drift frequencies should not exceed the
frequency ωthi associated with the particle thermal speed. On
the other hand, the MARS-K model does not assume the above
approximation. This limitation of the MARS-Q NTV model
does affect the quasi-linear results to be reported in section 5,
where the effects of the model difference on the predicted edge
flow damping are compared.

Due to the lack of the resonance induced enhancement, the
NTV torque is relatively small in this ITER plasma. In fact the
computed NTV torque, as well as the Reynolds stress torque,
is typically one order of magnitude smaller than the resonant
electromagnetic torque (the j × b torque) as will be shown in
section 5. This holds also for the n = 1 RMP response that we
have tested.

MARS-K also has the capability of computing the NTV
torques generated by other drift motions of particles, such
as the bounce (for trapped particles) and transit (for passing
particles) motions. Figure 6 compares the torque density
associated with various particle drifts, including as well the
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Figure 5. Comparison of (a) the NTV torque density due to the precessional drift resonance of thermal ions (Shaing’s analytic theory
solution versus full toroidal MARS-K solution), and (b) various frequencies (the E × B frequency ωE, the thermal ion sound frequency ωthi,
the thermal ion precessional drift frequency ωD at the particle thermal speed, as well as the thermal ion effective collision frequency νeff ).
The resistive fluid response is used for evaluating the NTV torque. The n = 3 coil current configuration is assumed.
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Figure 6. Comparison of the NTV torque density from various drift
resonance contributions (precessional drift of thermal
ions/electrons, bounce/transit drift of thermal ions). The fluid
plasma response solution is used for evaluating the NTV torque.
The n = 3 coil current configuration is assumed.

contribution from the toroidal precession of thermal electrons.
Even though the bounce and transit drifts of thermal particles
contribute a larger torque density in the plasma core region,
than the thermal ion precessional drift, the net torque still
largely comes from the precessional drifts of thermal ions and
electrons near the plasma edge. The torque densities shown in
figure 6 are computed by using the (same) plasma response
solution from the fluid model. Using the same response
function makes it easier to compare the various contributions
of the NTV torque. This can be viewed as a perturbative
approach.

4.2. n = 4 RMP coil configuration

We also perform similar studies of the RMP response to the
n = 4 coil configuration, in terms of the perturbed field,
the plasma surface displacement, and the NTV torques. The
results are summarised in figures 7–9, respectively.

In general similar observations are made between the
n = 3 and the n = 4 configurations, in all of the above aspects.
The agreement between the fluid response and the drift kinetic
response appears to be even better for the n = 4 configuration.
The computed maximal plasma surface displacement is just
below 20 mm with the n = 4 configuration, probably due to
the combined effects of smaller current amplitude (45 kAt for
n = 3 versus 30 kAt for n = 4), and the radially faster decay
of the n = 4 field.

5. Quasi-linear results

One free parameter in our quasi-linear model is the momentum
diffusion coefficient, which is generally assumed to be a
function of the plasma minor radius [24]. Various diffusion
models have been included into the MARS-Q implementation,
though generally no sensitive dependence of rotation damping
on the momentum diffusion profile has been found [24, 35].
In this work, we choose the diffusion profile that scales with
T

−3/2
e , with the core value of the diffusion coefficient of the

order ∼1 m2 s−1. This is one of the heuristic models for the
momentum diffusion coefficient adopted in MARS-Q, based
on the assumption that the momentum diffusion is similar to
the plasma current diffusion, which is usually well described
by the Spitzer scaling of T

−3/2
e . For the future, it is certainly

desirable to introduce a more accurate momentum diffusion
(and pinch) model into these ITER simulations. On the other
hand, our simulation results indicate that the eventual rotation
damping effect, or lack of it, is less sensitive to the momentum
diffusion model, than the direct momentum sink terms such as
the electromagnetic and the NTV torques.

It is known that for a limiter configuration (which is
what we effectively obtain after slightly smoothing the plasma
boundary surface near the X-point for the original ITER plasma
in the divertor configuration), the linear stability of the peeling
mode is sensitive to the edge safety factor qa . Computational
examples are shown in [38]. The quasi-linear initial value
solution of the RMP response is also sensitive to qa , as will be
shown later on. In order to demonstrate that it is the linear
stability (as opposed to the non-linear interaction between

7
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Figure 7. Poloidal spectrum of the perturbed radial field b1 from (a) the vacuum approximation, (b) the resistive fluid plasma response, and
(c) the resistive drift kinetic plasma response. The n = 4 RMP coil current configuration is assumed.
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Figure 9. Comparison of the NTV torque density (a) due to the precessional drift resonance of thermal ions between Shaing’s analytic
theory solution and full toroidal MARS-K solution, and (b) due to various drift resonance contributions (precessional drift of thermal
ions/electrons, bounce/transit drift of thermal ions) with the MARS-K model. The resistive fluid response is used in all the cases. The n = 4
coil current configuration is assumed.

the field penetration and the rotational damping) that largely
dictates the evolution of the quasi-linear solution, we first run
MARS-Q without the non-linear coupling effect. To achieve
this, we (artificially) do not apply the momentum sink terms
(various torques) to the n = 0 momentum balance equation,
thus effectively fixing the flow speed at the initial, equilibrium
value.

Figure 10 compares the results from four such runs with
the n = 3 RMP configuration, with qa values at 4.33, 4.19,

4.07, 3.94, respectively. Note that the change of qa is achieved
by slightly smoothing the plasma boundary shape near the
X-point. This leaves unchanged the bulk q-profile, as well
as the other global equilibrium parameters such as the total
plasma current. In particular, the q95 remains the same at
3.18. The boundary shape shown in figure 2(b) corresponds
to qa = 4.33. Figure 10 plots the time evolution of the
computed net torques as an indicator to the stability of the
linear response. With progressively more smoothing applied to

8



Nucl. Fusion 55 (2015) 063027 Y. Liu et al

0 20 40 60 80 100 120 140
10

−1

10
0

10
1

10
2

10
3

(a)

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

10
3

(b)

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

0 5 10 15 20 25 30
10

−2

10
0

10
2

10
4

10
6

(c)

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

0 20 40 60 80 100 120
10

0

10
2

10
4

10
6

10
8

10
10

(d)

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

Figure 10. The amplitude of the computed net torques from the initial value simulations of the plasma response to the n = 3 RMP fields
with fixed flow (i.e. in the absence of non-linear coupling to flow damping), for the same ITER plasma and coil configurations, but with a
slightly different assumption on the edge q-value: (a) qa = 4.33, (b) qa = 4.19, (c) qa = 4.07, (d) qa = 3.94.

the X-point, corresponding to the decrease of qa , the response
becomes more unstable, which manifests the transition from
a linearly stable peeling mode (at qa = 4.33) to a linearly
unstable peeling mode (at qa = 3.94). The stability boundary
is near the integer number of qa = 4 in our case. We point
out that the existence of an exact X-point corresponds to an
infinite q-edge value (with a logarithmic weak singularity).
The associated stronger singularity of the magnetic shear near
the separatrix tends to make the edge localized peeling mode
marginally stable [39, 40]. In real experiments, an infinite q

value is probably not expected. Nevertheless, this ideal case of
a marginally stable peeling mode response, due to the X-point
stabilization, is mimicked here by studying the transition from
a weakly unstable to a weakly stable peeling mode, by tuning
the qa value.

The case (a) (with qa = 4.33) is clearly a stable solution.
The linear response computations, shown in section 4, are
performed for this case. It is expected that the saturated initial
value solution for this case should recover that found from the
direct linear response computation in the frequency domain,
as shown in figure 4. Indeed we checked both solutions, and
found that they agree with each other.

We point out that the net torques shown in figure 10
mainly come from the contribution near the plasma edge.
The core torque density is small. For a comparison of the
order of magnitude, figure 6 shows the computed core NTV

torque density, within the radial range of ψp < 0.8, of the
order of 10−3 [N m−2] (the highest values among all curves),
compared to the order of 10−1 [N m−2] negative neutral beam
driven torque as predicted by the TRANSP simulation for ITER
H-mode plasmas [41].

Figure 11 compares the solutions at the end of the
simulations shown in figures 10(a) and (d), in terms of the
radial plasma displacement. The radial profiles of these
poloidal harmonics show the mode structure. The unstable
case, figure 11(b) with qa = 3.94, shows an edge localized
peeling mode structure. The stable case, figure 11(a) with
qa = 4.33, also has the peeling structure near the edge but in
addition has a more global response in the plasma core.

We have performed quasi-linear simulations for all four
cases, with both n = 3 and n = 4 RMP configurations. For
each case, we also assume two different NTV models (the
MARS-Q versus the MARS-K models). With the MARS-K
model, we adopt a ‘perturbative’ approach, where the fluid
MHD equations are still solved for the plasma response, but
only the NTV torque is computed via the MARS-K drift kinetic
module. The eventual quasi-linear solution depends on the
linear stability of the peeling mode. Generally, for cases where
the peeling mode is linearly stable, we found little rotational
damping due to the RMP fields, for both n = 3 and n = 4
configurations. For cases where the peeling mode is linearly
unstable, the toroidal flow is locally damped near the plasma
edge.

9



Nucl. Fusion 55 (2015) 063027 Y. Liu et al

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

ψ
p
≡ s2

|(
ξ⋅

∇
s

) m
|

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

ψ
p
≡ s2

|(
ξ⋅

∇
s

) m
|

Figure 11. The normalized amplitude of the poloidal Fourier harmonics for the radial displacement, from the plasma response computations
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system.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
3/3

4/3

5/3
6/3
7/3
8/39/310/3

11/3

12/313/3

time (ms)

(b)

Ω
 (

kr
ad

/s
)

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x10−5

(a)

ψ
p

∆Ω
/ω

A

Figure 12. The evolution of the (a) rotation radial profile, and (b) rotation amplitude at rational surfaces, computed from the quasi-linear
45 kAt n = 3 RMP response simulations for the ITER equilibrium with qa = 4.33. The arrow in (a) indicates increasing time, for the time
interval shown in (b). Note the very small magnitude of the change of the rotation frequency. The NTV torque is computed using the
MARS-Q model based on analytic formulas.

Figures 12 and 13 show one example of the stable peeling
case, with the n = 3 configuration. The change of the rotation
frequency, �� shown in figure 12(a), is very small during the
non-linear evolution. The total rotation (�� plus the initial
equilibrium rotation frequency) almost does not change as
shown in figure 12(b), for the rotation amplitude at all rational
surfaces.

The solution fully saturates during the time period of
∼100 ms, as shown in figure 13. The penetrated resonant
field components saturate at a very small amplitude, of several
Gauss level, indicating a good screening of the applied RMP
field by the plasma flow in this case. The resulting net
torques are also small. In particular, note that the saturated net
NTV torque is about one order of magnitude smaller than the
resonant electromagnetic (j×b) torque. In this simulation, the
MARS-Q model is used for computing the NTV torque. By
switching to the MARS-K model, the resulting NTV torque
is larger as shown in figure 14(b), but the final quasi-linear
solution, in terms of the field penetration (figure 14(a)), as
well as the rotation braking, remains almost the same. The
larger net NTV torque with the MARS-K model, compared

to the MARS-Q model, results mainly from the plasma edge
contribution, similar to that shown in figure 5(a). Full
saturation of the quasi-linear solution, with almost no rotation
braking, is also observed for the n = 4 RMP configuration.

For both coil configurations, we also performed a
sensitivity study by doubling the coil current. In these cases,
still no appreciable rotation damping is obtained.

The quasi-linear solution is different with lower qa values.
Figures 15 and 16 show the solution at qa = 4.07, where
the peeling mode is linearly marginally unstable, as shown
in figure 10(c). The quasi-linear run (figure 15) shows local
damping of the toroidal flow near the plasma edge for this
case. At about 35 ms after the application of the n = 3 RMP
field, the rotation amplitude in the region between the q = 9/3
rational surface and the plasma edge nearly vanishes. This
is accompanied by the dynamic penetration of the resonant
field components as shown in figure 16(a). Note that the
amplitude of the resonant harmonics are shown here at each
of the correspondent rational surfaces. The high poloidal
number harmonics m/n = 12/3, 11/3, 10/3 have the largest
amplitude. The simulation is terminated after the edge rotation
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Figure 13. The evolution of the (a) amplitude of the resonant poloidal harmonics (in the PEST-like straight field line coordinate system) of
the perturbed radial magnetic field, and (b) amplitude of the net torques acting on the plasma, computed from the quasi-linear 45 kAt
n = 3 RMP response simulations for the ITER equilibrium with qa = 4.33. The NTV torque is computed using the MARS-Q model based
on analytic formulas.
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Figure 14. The evolution of the (a) amplitude of the resonant poloidal harmonics (in the PEST-like straight field line coordinate system) of
the perturbed radial magnetic field, and (b) amplitude of the net torques acting on the plasma, computed from the quasi-linear 45 kAt
n = 3 RMP response simulations for the ITER equilibrium with qa = 4.33. The NTV torque is computed using the full toroidal geometry
based MARS-K model.

is fully damped and the magnetic islands become large. This
later stage cannot be properly captured by the quasi-linear
model any more. Similar rotation braking, but occurring at
earlier time, is observed in the qa = 3.94 case.

We point out that, even though only a local rotation
damping is predicted in this simulation, this local rotation
braking can nevertheless be important since it occurs in the
edge pedestal region, where probably most interesting physics
occur associated with the ELM mitigation by the RMP fields.

For the n = 4 configuration, the initial value runs show
that the peeling mode is linearly stable for all the four cases
considered in this work. At 30 kAt nominal n = 4 RMP coil
current, the quasi-linear response saturates as a low level of
the field perturbation inside the plasma. The resulting weak
torques do not lead to a noticeable damping of the plasma flow.
In fact only with a much higher coil current, any edge braking
of the flow is achieved. Figures 17 and 18 show one such
an example, where we have assumed a 90 kAt coil currents
in the n = 4 configuration. A weak sound wave damping
model is used. The MARS-K model is used for computing
the NTV torque. The rotation damping is weaker and even

more localized near the plasma edge, compared to that caused
by the 45 kAt n = 3 RMP fields. On the other hand, the time
required for braking the edge flow is shorter with the n = 4
current, compared to the n = 3 configuration. This is partially
due to the twice larger current amplitude for n = 4.

6. Summary and discussion

We have investigated both linear and quasi-linear response
of an ITER plasma from the 15 MA baseline scenario to the
applied n = 3 and n = 4 RMP fields, using the MARS-F and
the MARS-Q codes, respectively. The physics models that we
assume are the single fluid model and the MHD-kinetic hybrid
model. We solve full resistive MHD (as opposed to reduced
MHD) equations with toroidal flow. The drift kinetic model
and the pure fluid model produce similar response results,
in terms of the total field perturbation inside the plasma as
well as the plasma surface displacement for this ITER plasma,
probably due to the fact that the plasma pressure for this
baseline scenario is relatively low (well below the Troyon no-
wall beta limits). Also, with the given RMP field configuration,
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Figure 15. The evolution of the (a) rotation radial profile, and (b) rotation amplitude at rational surfaces, computed from the quasi-linear
45 kAt n = 3 RMP response simulations for the ITER equilibrium with qa = 4.07. The arrow in (a) indicates increasing time, for the time
interval shown in (b). The NTV torque is computed using the MARS-Q model based on analytic formulas.

0 5 10 15 20 25 30 35
10

−2

10
0

10
2

10
4

10
6

(b)

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

3/3

4/3

5/3

6/3
7/3

8/3
9/3
10/3

11/3
12/3

time (ms)

|b
1 |x

B
   

(G
au

ss
)

0

(a)

Figure 16. The evolution of the (a) amplitude of the resonant poloidal harmonics (in the PEST-like straight field line coordinate system) of
the perturbed radial magnetic field, and (b) amplitude of the net torques acting on the plasma, computed from the quasi-linear 45 kAt
n = 3 RMP response simulations for the ITER equilibrium with qa = 4.07. The NTV torque is computed using the MARS-Q model based
on analytic formulas.
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Figure 17. The evolution of the (a) rotation radial profile, and (b) rotation amplitude at rational surfaces, computed from the quasi-linear
90 kAt n = 4 RMP response simulations for the ITER equilibrium with qa = 3.94. The arrow in (a) indicates increasing time, for the time
interval shown in (b). The NTV torque is computed using the MARS-Q model based on analytic formulas.

12



Nucl. Fusion 55 (2015) 063027 Y. Liu et al

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

4/4

5/4
6/4
7/4
8/4
9/4
10/4
11/4
12/4
13/4

14/4
15/4

time (ms)

|b
1 |x

B
   

(G
au

ss
)

0

0 1 2 3 4 5 6
10

−2

10
0

10
2

10
4

10
6

time (ms)

|n
et

 t
o

rq
u

e|
 (

N
m

)

JXB

NTV

REYNOLDS

(b)(a)

Figure 18. The evolution of the (a) amplitude of the resonant poloidal harmonics (in the PEST-like straight field line coordinate system) of
the perturbed radial magnetic field, and (b) amplitude of the net torques acting on the plasma, computed from the quasi-linear 90 kAt
n = 4 RMP response simulations for the ITER equilibrium with qa = 3.94. The NTV torque is computed using the MARS-Q model based
on analytic formulas.

our linear response computations do not show a strong kink
response for the ITER plasma, contrary to the computational
results obtained on some of the present day tokamaks [20, 35].

The drift kinetic model is also used to compute the
NTV torque, which is compared to an analytic solution based
model [25]. The results are similar. More importantly,
both models show that the NTV torque is smaller than the
resonant electromagnetic torque in this ITER plasma. In fact
the latter provides a dominant momentum sink term for the
flow damping in the quasi-linear simulations. The relatively
weak NTV torque is related to the fact that the precessional
drift resonance induced torque enhancement is largely absent.
Therefore the non-resonant torque, which is often small, is
mainly produced on the plasma.

The quasi-linear modelling with MARS-Q shows that,
with 45 kAt n = 3 RMP coil current, the toroidal flow can be
damped, but only locally near the plasma edge. Furthermore,
this local flow damping is sensitive to the existence of an
initially weakly unstable edge localized peeling mode. We
have carried out this sensitivity study by slightly varying the
edge safety factor qa across the integer number of 4, while
keeping the bulk q-profile unchanged (in particular q95 is fixed
at 3.18 as in the ITER target equilibrium). At qa below 4,
the n = 3 peeling mode is weakly unstable. This eventually
causes the rotation braking near the plasma edge in the quasi-
linear simulations. As qa exceeds about 4.1, the n = 3 peeling
modes are linearly stable. The quasi-linear runs show full
saturation of the solution with very little rotation braking. In
the ideal case, the presence of an exact X-point in the divertor
configuration leads to a marginally stable peeling mode. The
resulting rotational damping, if any, is probably weaker than
that predicted for the case with a weakly unstable peeling mode.
Then = 4 peeling mode seems to be stable for all fourqa values
considered in this work, thus leading to the full saturation of
the quasi-linear solution. With 30 kAt n = 4 coil current, little
flow damping is predicted for this ITER plasma.

In this study, we have not yet included the influence of
the low-n error field in ITER on the plasma response. In the
quasi-linear model, we neglected the torque due to energetic
particles and the torque associated with the intrinsic flow. The
intrinsic momentum flux has been shown to have an interesting

effect on the radial profile of the plasma toroidal rotation
profile, e.g. by inducing rotation reversal due to the collision
regime change (from banana to the plateau regime) in Ohmic
plasmas [42]. The role of this intrinsic momentum flux in the
ITER H-mode plasma, that we studied here, is not clear. At
any rate, the rotation reversal may not occur in ITER, since
the ion collision frequency is rather low (we have estimated
that the ν∗ value is below 0.1 for s ≡ √

ψp ∈ [0.04, 0.99] for
this ITER equilibrium). It is, on the other hand, interesting to
understand how the presence of the 3D RMP field can change
the intrinsic momentum flux. Such a model is not available yet.

Acknowledgments

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement number 633053 and from the RCUK Energy
Programme [grant number EP/I501045]. Work is also part
funded by National Natural Science Foundation of China
(NSFC) [grant number 11428512]. The views and opinions
expressed herein do not necessarily reflect those of the
European Commission or the ITER Organization.

References

[1] Fitzpatrick R. 1993 Nucl. Fusion 33 1049
[2] Evans T.E. et al 2006 Nat. Phys. 2 419
[3] Loarte A. et al 2007 Nucl. Fusion 47 S203
[4] Liang Y. et al 2007 Phys. Rev. Lett. 98 265004
[5] Nardon E. et al 2009 Plasma Phys. Control. Fusion 51 124010
[6] Kirk A. et al 2010 Nucl. Fusion 50 034008
[7] Suttrop W. et al 2011 Phys. Rev. Lett. 106 225004
[8] Schaffer M. et al 2008 Nucl. Fusion 48 024004
[9] Liu Y.Q. et al 2010 Phys. Plasmas 17 122502

[10] Ferraro N.M. 2012 Phys. Plasmas 19 056105
[11] Waelbroeck F.L. et al 2012 Nucl. Fusion 52 074004
[12] Liu Y.Q. et al 2008 Phys. Plasmas 15 112503
[13] Park G. et al 2010 Phys. Plasmas 17 102503
[14] Huysmans G. et al 2007 Nucl. Fusion 47 659
[15] Becoulet M. et al 2012 Nucl. Fusion 52 054003
[16] Orain F. et al 2013 Phys. Plasmas 20 102510
[17] Park J.-K. et al 2007 Phys. Rev. Lett. 99 195003
[18] Turnbull A. et al 2013 Phys. Plasmas 20 056114

13

http://dx.doi.org/10.1088/0029-5515/33/7/I08
http://dx.doi.org/10.1038/nphys312
http://dx.doi.org/10.1088/0029-5515/47/6/S04
http://dx.doi.org/10.1103/PhysRevLett.98.265004
http://dx.doi.org/10.1088/0741-3335/51/12/124010
http://dx.doi.org/10.1088/0029-5515/50/3/034008
http://dx.doi.org/10.1103/PhysRevLett.106.225004
http://dx.doi.org/10.1088/0029-5515/48/2/024004
http://dx.doi.org/10.1063/1.3526677
http://dx.doi.org/10.1063/1.3694657
http://dx.doi.org/10.1088/0029-5515/52/7/074004
http://dx.doi.org/10.1063/1.3008045
http://dx.doi.org/10.1063/1.3487733
http://dx.doi.org/10.1088/0029-5515/47/7/016
http://dx.doi.org/10.1088/0029-5515/52/5/054003
http://dx.doi.org/10.1063/1.4824820
http://dx.doi.org/10.1103/PhysRevLett.99.195003
http://dx.doi.org/10.1063/1.4805087


Nucl. Fusion 55 (2015) 063027 Y. Liu et al

[19] Heyn M.F. et al 2008 Nucl. Fusion 48 024005
[20] Haskey S. et al 2014 Plasma Phys. Control. Fusion 56 035005
[21] Chapman I.T. et al 2007 Nucl. Fusion 47 L36
[22] Liu Y.Q. et al 2011 Nucl. Fusion 51 083002
[23] Chapman I.T. et al 2012 Plasma Phys. Control. Fusion

54 105013
[24] Liu Y.Q. et al 2013 Phys. Plasmas 20 042503
[25] Shaing K.C. et al 2010 Nucl. Fusion 50 025022
[26] Sun Y. et al 2010 Phys. Rev. Lett. 105 145002
[27] Hirshman S.P. et al 1983 Phys. Fluids 26 3553
[28] ITER 2012 Private communication ABT4ZL version 1.0
[29] Suzuki Y. et al 2006 Nucl. Fusion 46 L19
[30] Lanctot M. et al 2010 Phys. Plasmas 17 030701
[31] Wang Z.R. et al 2015 Phys. Rev. Lett. 114 145005
[32] Berkery J.W. et al 2014 Phys. Plasmas 21 056105

[33] Park J.-K. 2011 Phys. Plasmas 18 110702
[34] Wang Z.R. et al 2014 Phys. Plasmas 21 042502
[35] Liu Y.Q. et al 2012 Plasma Phys. Control. Fusion

54 124013
[36] Crotinger J. et al 1997 Corsica: a comprehensive simulation of

toroidal magnetic fusion devices. Final report to the LDRD
program Technical Report (CA, USA: Lawrence Livermore
National Lab)

[37] Evans T.E. et al 2013 Nucl. Fusion 53 093029
[38] Liu Y.Q. et al 2010 Plasma Phys. Control. Fusion 52 045011
[39] Huysmans G.T.A. et al 2005 Plasma Phys. Control. Fusion

47 2107
[40] Webster A.J. et al 2009 Phys. Rev. Lett. 102 035003
[41] Budny R.V. et al 2008 Nucl. Fusion 48 075005
[42] Barnes M. et al 2013 Phys. Rev. Lett. 111 055005

14

http://dx.doi.org/10.1088/0029-5515/48/2/024005
http://dx.doi.org/10.1088/0741-3335/56/3/035005
http://dx.doi.org/10.1088/0029-5515/47/11/L02
http://dx.doi.org/10.1088/0029-5515/51/8/083002
http://dx.doi.org/10.1088/0741-3335/54/10/105013
http://dx.doi.org/10.1063/1.4799535
http://dx.doi.org/10.1088/0029-5515/50/2/025022
http://dx.doi.org/10.1103/PhysRevLett.105.145002
http://dx.doi.org/10.1063/1.864116
http://dx.doi.org/10.1088/0029-5515/46/11/L01
http://dx.doi.org/10.1063/1.3335237
http://dx.doi.org/10.1103/PhysRevLett.114.145005
http://dx.doi.org/10.1063/1.4872307
http://dx.doi.org/10.1063/1.3662039
http://dx.doi.org/10.1063/1.4869251
http://dx.doi.org/10.1088/0741-3335/54/12/124013
http://dx.doi.org/10.1088/0029-5515/53/9/093029
http://dx.doi.org/10.1088/0741-3335/52/4/045011
http://dx.doi.org/10.1088/0741-3335/47/12/003
http://dx.doi.org/10.1103/PhysRevLett.102.035003
http://dx.doi.org/10.1088/0029-5515/48/7/075005
http://dx.doi.org/10.1103/PhysRevLett.111.055005

	1. Introduction
	2. Toroidal plasma response models
	3. Equilibrium and coil configuration
	4. Linear response
	4.1. n=3 RMP coil configuration
	4.2. n=4 RMP coil configuration

	5. Quasi-linear results
	6. Summary and discussion
	 Acknowledgments
	 References

