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A Constrained Density Functional for Non-Collinear Magnetism

Pui-Wai Ma∗ and S. L. Dudarev
CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom

Energies of arbitrary small- and large-angle non-collinear excited magnetic configurations are com-
puted using a highly accurate constrained density functional theory approach. Numerical conver-
gence and accuracy are controlled by the choice of Lagrange multipliers λI entering the constraining
conditions. The penalty part Ep of the constrained energy functional at its minimum is shown to be
inversely proportional to λI , enabling a simple, robust and accurate iterative procedure to be fol-
lowed to find a convergent solution. The method is implemented as a part of ab initio VASP package,
and applied to the investigation of non-collinear B2-like and 〈001〉 double-layer anti-ferromagnetic
configurations of bcc iron, Fe2 dimer, and amorphous iron. Forces acting on atoms depend on the
orientations of magnetic moments, and the proposed approach enables constrained self-consistent
non-collinear magnetic and structural relaxation of large atomic systems to be carried out.

PACS numbers: 71.15.-m, 75.50.Xx, 75.50.Kj

I. INTRODUCTION

Many materials have non-collinear magnetic ground
states, including geometrically frustrated magnets1–3,
spin-glasses4–6 or spin spirals that form, for example,
in face-centred cubic Fe7–13. Excited magnetic states
are almost always non-collinear14–16. For example, fer-
romagnetic metals often have collinear magnetic ground
states but at elevated temperatures magnetic moment
vectors are non-collinear and disordered. If temperature
exceeds the Curie temperature of the material, magnetic
long range order vanishes, and the material undergoes a
transition into a paramagnetic state17–19.
Although ab initio calculations often assume collinear

magnetic configurations, spin-polarized density func-
tional theory (DFT)20 does not impose any constraints
on the directions of atomic magnetic moments. Theoret-
ical foundations of unconstrained non-collinear DFT are
well established2,3,8,11,21–28 and are widely adopted in ab

initio programs29–31.
Magnetic DFT calculations are often performed in the

atomic sphere approximation3,8,11,21,22,28 (ASA) where
the local spin quantization axis (SQA) is associated with
a sphere centred at a particular atom. Non-collinear mag-
netism in the ASA is an inter-atomic phenomenon, where
magnetic moments of neighbouring atomic spheres have
different orientations. Spin density matrix is a contin-
uous spatially varying field23–27 enabling the treatment
of both inter- and intra-atomic non-collinear magnetism.
Spin density matrix-based methods also have the advan-
tage that atomic and magnetic relaxations can be per-
formed simultaneously and self-consistently.
Magnetic excitations influence the stability of phases,

defect structures and elastic constants in magnetic
iron-based alloys32–46. They also affect self-diffusion
in magnetic materials, especially near the Curie
temperature47,48. Within the DFT framework, the effect
of magnetic excitations on atomic positions can be inves-
tigated by requiring that atoms adopt a particular mag-
netic configuration, and compare forces acting on atoms
assuming different magnetic structures. ab initio spin

dynamics simulations49–52 can be performed through a
series of magnetic configurations generated in a sequen-
tial order53,54.

A non-collinear magnetic configuration does not in
general correspond to an energy minimum. Still it can be
investigated using a minimization principle by imposing
constraints on magnetic moments27,28,53–57. A scheme57

that requires fixing the direction of a local SQA works
only in the limit of small canting28. A more reliable way
of generating non-collinear configurations involves using
Lagrange multipliers27,28,53–56. A set of Lagrange multi-
pliers and a penalty term in the total energy functional
are introduced, resulting in a penalty potential in the
Kohn-Sham equations. This nudges the (local) charges
and (local) magnetic moments towards a particular de-
sired configuration. Using the method, interatomic ex-
change parameters57–59 can be elucidated, for example,
by comparing energies of collinear and spin spiral config-
urations.
There are several constrained DFT algorithms for gen-

erating non-collinear magnetic configurations. They use
different penalty energy term. In some cases27,28,53–55,
vector fields are used as Lagrange multipliers, requiring
a separate procedure for computing the fields at each it-
eration step. In VASP31, two constrained methods are
implemented, both involving scalar Lagrange multipli-
ers. One of the methods is invariant with respect to the
reversal of local magnetic moments, resulting in degener-
ate energy minima. The other method constrains all the
components of magnetic moment vectors, and not just
their directions.
None of the above approaches guarantees that the

penalty energy and penalty potential vanish for a chosen
set of Lagrange multipliers, whereas controlling accuracy
is crucial to an application of a constrained method. In
what follows, we describe a method that guarantees accu-
racy within a controlled interval. The convergence con-
ditions are established and proven analytically. In Sec.
II, we describe the method and show that the penalty
energy term at the minimum of the constrained energy
functional is inversely proportional to the magnitude of
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Lagrange multipliers. In Sec. III, we discuss numer-
ical convergence. Sec. IV describes applications of the
method to several atomic and magnetic structures of iron.
They are (i) B2-like and double-layer anti-ferromagnetic
configurations realized on bcc lattice, (ii) a Fe2 dimer
with atomic magnetic moment vectors pointing in pre-
scribed directions, and (iii) amorphous iron with random
directions of magnetic moments.

II. THEORY

Hobbs et al.25 proposed an algorithm for computing
unconstrained non-collinear magnetic configurations and
implemented it in VASP (Vienna ab initio simulation
package)31, using a projector augmented-wave (PAW)
method60. In our work, we follow similar methodology.
The advantage of the Hobbs et al.25 method is that

it assumes no pre-defined SQA and enables relaxation of
both atomic and magnetic degrees of freedom. However,
it contains an element of ambiguity associated with the
definition of local atomic magnetic moments. Local mag-
netic moments vary as functions of integration volumes,
and their values depend on the choice of the Wigner-Seitz
cell or the radius of the corresponding atomic sphere.
For example, the magnetic moment of an atom can be

defined as

MI =

∫

ΩI

m(r)d3r, (1)

where m(r) is a spatially varying magnetization density
vector, and ΩI is a sphere centred at atom I.
In what follows, instead of using MI directly, we use

an alternative definition of magnetic moment, namely

M
F
I =

∫

ΩI

m(r)FI(|r− rI |)d
3r, (2)

where FI(|r − rI |) = sin(x)/x and x = π(|r − rI |)/RI .
FI decreases monotonically to zero towards the bound-
ary of the atomic sphere. A similar definition of M

F
I

was adopted in VASP in relation to other constrained
methods.
The integration volume involved in a calculation of

a local magnetic moments can be defined in various
ways. For example, we may adopt the Bader charge
analysis61,62. It divides atoms by zero flux surfaces,
which are the surfaces corresponding to minimum charge
density. An alternative approach would be to equate the
integration volume to the volume of theWigner-Seitz cell.
However, these methods require using the functional form
of FI more complicated than the current one, which de-
pends only on a single parameter RI .
The constrained total energy functional now has the

form

E = E0 + Ep (3)

= E0 +
∑

I

λI

(∣

∣M
F
I

∣

∣− eI ·M
F
I

)

, (4)

where E0 is the DFT energy of the material, Ep is the
penalty energy term, eI is a unit vector in the desired
direction of the local magnetic moment, and λI is a La-
grange multiplier associated with site I. The dimension-
ality of λI is the same as of external magnetic field.
The penalty energy term in (4) introduces an effective

extra potential inside each sphere ΩI centred at atom I,
which is given by

VI(r) = −bp(r) · σ (5)

where σ is the vector of Pauli matrices, and

bp(r) = −
δEp

δm(r)
(6)

= −λI

(

M
F
I

|MF
I |

− eI

)

FI(|r− rI |) (7)

is an additional penalty “field” in the Kohn-Sham equa-
tions. Eq. 4 and 7 show that both Ep and VI(r) terms
vanish only if vector MF

I points in the same direction as
eI .
From Eq. (6) we find that function FI(|r − rI |) elim-

inates the discontinuity of the effective potential at the
boundary of atomic sphere ΩI . Separate the core and
interstitial regions, like in the approach by Kurz et al.27

or in the ASA, is not necessary. The part played by
the penalty term appears similar to the action of local
spatially-varying external magnetic field.
We now prove that in the limit λI → ∞, Ep → 0 and is

inversely proportional to λI . We rewrite the constrained
total energy (4) as

E = E0 +
∑

I

λI

∣

∣M
F
I

∣

∣ (1− cos θI) (8)

where θI is the angle between M
F
I and eI . At an ex-

tremum of the energy functional the first derivative of
the total energy with respect to θI must vanish, namely

0 =
δE

δθ

∣

∣

∣

∣

θI

=
δE0

δθ

∣

∣

∣

∣

θI

+ λI

∣

∣M
F
I

∣

∣ sin θI . (9)

From this equation it follows that

sin θI = −
1

λI |MF
I |

δE0

δθ

∣

∣

∣

∣

θI

. (10)

If θI is small, we approximate the left-hand side by
sin θI ≈ θI + O(θ3I ), and extend the Taylor expansion
to the first order in the right-hand side of the equation,
namely

θI = −
1

λI |MF
I |

(

δE0

δθ

∣

∣

∣

∣

0

+
δ2E0

δθ2

∣

∣

∣

∣

0

θI

)

. (11)

We now introduce notations K1 = δE0/δθ
∣

∣

∣

0
and K2 =

δ2E0/δθ
2

∣

∣

∣

0
. These quantities are the 1st and 2nd deriva-

tives of energy with respect to θ at θ = 0. K1 and K2 do
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not depend on θI , and we can write

θI = −
K1

λI |MF
I |+K2

. (12)

Similarly, if θI is small, we approximate the penalty en-
ergy Ep as (1− cos θI) ≈ θ2I/2 +O(θ4I ),

Ep ≈
∑

I

λI

∣

∣M
F
I

∣

∣

θ2I
2
. (13)

Inserting Eq. 12 into Eq. 13, we arrive at

Ep =
1

2

∑

I

λI

∣

∣M
F
I

∣

∣

(

K1

λI |MF
I |+K2

)2

. (14)

From the above analysis we conclude that in the limit
where λI is large

Ep ∝ 1/λI . (15)

This proves that Ep → 0 if λI → ∞.
Our method is not constrained by either the geometry

of the system or the choice of magnetic structure, since
functional (4) can be computed for any system described
by a spin density matrix. The direction of MI may not
be exactly the same as M

F
I , due to intra-atomic non-

collinearity, but they are fairly close if electrons are well
localized, which is indeed the case for d- and f-electrons.
We discuss this in detail in the context of applications of
the method described below.

III. NUMERICAL CONVERGENCE

In this section, we first examine numerical convergence
and the choice of Lagrange multipliers λI . Then, we
discuss the choice of radius RI in Eq. (1) above. In the
analysis given below, if the values of λ and R are not
referred to a particular atom, they are assumed to apply
to all the atoms in the simulation cell.

A. Choice of λI

A B2-like magnetic configuration can be constructed
in bcc Fe using a cubic unit cell with 2 atoms, where the
orientation of the magnetic moment of central atom is
different from the orientation of the magnetic moment
of the atom in the corner of the cell. Fig. 1 shows
a magnetic structure where the angle between the two
magnetic moments is 90 degrees. Our calculations are
performed in generalized gradient approximation (GGA)
using the Perdew-Burke-Ernzerhof (PBE)63 exchange-
correlation functional, which is known to predict the cor-
rect bcc ferromagnetic ground state36. We include rela-
tivistic corrections, but neglect spin-orbit coupling. We
use a pseudopotential with 14 valence electrons and a
24× 24× 24 k-point mesh. Energy cut-off for plane wave

FIG. 1: (Color online) A realisation of B2-like magnetic con-
figuration in bcc iron. The angle between magnetic moments
of atoms forming the two magnetic sublattices is 90 degrees.
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FIG. 2: Total energy E of a bcc Fe unit cell with two atoms
per cell, corresponding to the magnetic configuration shown
in Fig. 1. Parameter λ varies from 1 to 300.

expansion is set at 400 eV, periodic boundary conditions
are applied, and the lattice constant is assumed to be
2.83Å, which is the GGA-PBE equilibrium lattice con-
stant. The results agree well with literature data36,64.
Fig. 2 shows the total energy E of a unit cell as a

function of λ, where λ varies in the interval from 1 to
300. In the limit of large λ, the total energy asymptot-
ically approaches a constant value. Fig. 3 shows that
the penalty energy Ep is inversely proportional to λ, in
agreement with Eq. 14 and 15. At λ = 200 the value of
Ep does not exceed 1×10−3eV. This shows that the con-
vergence of the method with respect to the total energy
can be improved by simply increasing the magnitude of
Lagrange multipliers λI . Since Lagrange multipliers are
input parameters, they do not require tuning during the
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FIG. 3: Penalty energy Ep of a bcc Fe unit cell containing two
atoms per cell, corresponding to the magnetic configuration
shown in Fig. 1. Parameter λ varies from 1 to 300. In accord
with Eqns. 14 and 15, Ep is inversely proportional to λ.
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FIG. 4: (Color online) The magnitude of atomic magnetic
moment of Fe in ferromagnetic bcc structure. The moment
is evaluated as (i) a sum of projections onto s, p, d orbitals
within a sphere of a given radius RI , or (ii) a projection of the
total magnetization density onto a sphere of radius RI , and
(iii) an integral of the magnetization density over the entire
unit cell. For RI = 1.393Å, ΩI equals the volume of the unit
cell.

self-consistent iteration procedure. A moderate value of
λ should be used initially, to avoid causing numerical in-
stabilities in the iterative procedure due to the large ini-
tial value of the penalty potential (Eq. 5 to 7). This does
not present a problem in applications, since the value of
λ can be adjusted during the search for a minimum.
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FIG. 5: (Color online) Magnitude of atomic magnetic moment
in anti-ferromagnetic bcc structure of Fe computed using a
two-atom cubic unit cell. The moment is calculated as (i) a
sum of projections onto s-, p-, d-orbitals within a sphere of
radius RI , (ii) a projection of the total magnetization density
onto a sphere of radius RI . The total magnetic moment of
the cell is zero.

B. Choice of RI

Since the magnetic moment density m(r) is a spatially
varying quantity, the magnitude of MI depends on the
choice of radius RI of sphere ΩI . Fig. 4 shows how
atomic magnetic moment |MI | of ferromagnetic bcc Fe
varies as a function of RI . A primitive unit cell is used
for this calculation, and the moment is evaluated as (i)
a sum of projections onto s-, p-, and d-orbitals within a
sphere of radius RI , (2) a projection of the total charge
density within a sphere of particular radius RI , and (3)
an integral of the total magnetization density over the
entire unit cell. For R = 1.393Å, Ω equals the volume of
the unit cell. Similarly, in Fig. 5, we show the average
value of |MI | calculated as a sum of orbital projection
and magnetization density projection onto a sphere in
an antiferromagnetic Fe bcc structure, where the unit
cell contains two atoms.

Both figures show that |MI | increases as a function of
R, and is maximum at 1.2Å in Fig. 4, and 1.3Å in Fig.
5. There is no unambiguously defined asymptotic value
of magnetic moment. From Fig. 4 we can define the mag-
netic moment of a single Fe atom as 2.2µB by integrating
the magnetization density over the entire unit cell. How-
ever, this definition does not apply to anti-ferromagnetic
configurations since the total magnetic moment of a cell
is zero. Choosing R is only necessary when calculating
MI or Ep, since in the limit of large λ this parameter
does not affect the computed values of DFT energy E0,
or the forces acting on atoms. Using the data shown in
Fig. 4 and 5, we choose R in the range from 1.0 to 1.6Å.
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FIG. 6: (Color online) (a) Magnitudes of magnetic moments
and (b) the total energy of a cell shown as a function of the
angle between magnetic moments of the two atoms forming
a B2-like magnetic structure similar to that shown in Fig. 1.
Calculations were performed for bcc lattice constant of 2.83Å.

IV. APPLICATIONS

In what follows we apply the method described above
to several non-collinear atomic magnetic configurations.
First, we explore B2-like and 〈100〉 double layer anti-
ferromagnetic configurations in bcc iron. Then we ana-
lyze a simple magnetic molecule, a Fe2 dimer. Finally,
we apply our method to magnetic structure of amorphous
Fe. Unless stated otherwise, all the calculations described
below were performed for λ = 200.

A. BCC Fe: B2-like and 〈100〉 double layer

anti-ferromagnetic configurations

A B2-like magnetic configuration on the bcc lattice (cf.
Fig. 1) can also be realized for an arbitrary angle between
magnetic moments of atoms forming the two sublattices.
Fig. 6 shows the magnitude of magnetic moment vectors
|MI | of both atoms, and the energy E of a unit cell as

FIG. 7: (Color online) 〈100〉 double layer anti-ferromagnetic
(DLAFM) configuration of bcc iron, before ionic relaxation.
The lattice constant is 2.83Å. (a) Directions of magnetic mo-
ments. The magnitude of each magnetic moment is 2.08µB .
(b) Forces induced in the structure by the imposed magnetic
order. The magnitude of force on each atom is 0.25 eV/Å.
Forces are attractive (repulsive) if the magnetic moments of
atoms in the two adjacent layers are parallel (antiparallel).

a function of angle between the moments, assuming that
the moment vectors are co-planar. Vectors MI are cal-
culated as projections of the total magnetization density
onto spheres Ω, where the volume of the spheres equals
the volume of an atom. We see that |MI | = 2.22µB in
the ferromagnetic state and |MI | = 1.52µB in the anti-
ferromagnetic state. The difference between the energies
of anti-ferromagnetic and ferromagnetic configurations is
0.45 eV per atom.

Similarly, Herper et al.36 found, using WIEN95
code and full-potential linearized augmented plane-wave
(FLAPW) calculations, that the atomic magnetic mo-
ment in the ferromagnetic state is 2.17µB and in the
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FIG. 8: (Color online) (a) Energy per atom plotted as a func-
tion of lattice constant for relaxed and unrelaxed 〈100〉 double
layer anti-ferromagnetic and ferromagnetic configurations re-
alized on bcc lattice. (b) Magnitude of atomic magnetic mo-
ments plotted as a function of lattice constant for relaxed and
unrelaxed configurations. (c) Distance between atomic layers
in the 〈100〉 direction in relaxed atomic configurations com-
puted for the parallel and antiparallel orientations of magnetic
moments.

anti-ferromagnetic state it is 1.25µB. The difference
between the energies of the two states is 0.44 eV per
atom. Soulairol et al.37 also found 0.44 eV per atom
energy difference using the PWscf code and the PAW
method. They found that the atomic magnetic moment

varied from 2.19µB to 2.25µB in the ferromagnetic state,
and from 1.3µB to 1.9µB in the anti-ferromagnetic state,
depending on DFT approximations used in the calcula-
tions. Recently, Wróbel et al.65 used an unconstrained
collinear method in VASP and found that the energy dif-
ference between FM and AFM configurations was 0.444
eV per atom, whereas the magnitude of atomic magnetic
moments was |MI | = 2.199µB in the ferromagnetic and
|MI | = 1.290µB in the anti-ferromagnetic states.

Kurz et al.27 used a constrained method with FLAPW
to investigate the above magnetic structures. Variation
of energy and magnetic moment as functions of angle be-
tween the moments were very similar to our results. The
atomic magnetic moment was found to be 2.1µB in the
ferromagnetic and 1µB in the anti-ferromagnetic states,
and the energy difference was 0.35 eV per atom. Our
analysis shows that the magnitude of atomic magnetic
moments |MI | is maximum when the angle between the
moments is close to 50 degrees.

We now consider a 〈100〉 double layers anti-
ferromagnetic (DLAFM) configuration of bcc Fe. We use
this example to perform self-consistent relaxation of both
magnetic moments and atomic positions using the con-
strained method described above. We also investigate
the effect of magnetic excitations on atomic configura-
tions. Such analysis cannot be performed using any other
means but a constrained density functional. Indeed, since
DLAFM is a meta-stable magnetic state, conventional
magnetic relaxations would drive the system towards fer-
romagnetic ground state regardless of the choice of the
initial magnetic configuration.

A unit cell now contains four atoms, and we use a
24 × 24 × 12 k-point mesh. The c/a aspect ratio of the
simulation cell is kept fixed to ensure that changes in
atomic positions do not interfere with magnetic relax-
ation. Fig. 7(a) shows the directions of magnetic mo-
ments in the unrelaxed DLAFM configuration computed
for lattice constant of 2.83Å. Magnetic moments are cal-
culated as projections of the total magnetization density
onto spheres with radii RI = 1.0Å. Fig. 7(b) shows di-
rections of forces induced as a result of imposed magnetic
order. The magnitude of forces is close to 0.25 eV/Å.

Fig. 8 shows the energy and magnetic moment per
atom in the DLAFM configuration computed for relaxed
and unrelaxed atomic structures. Energy per atom in
the ferromagnetic state, also computed as a function of
the lattice constant, is shown for comparison. Fig. 8 also
shows the distance between magnetically ordered relaxed
atomic layers.

The difference between the energies of relaxed and
unrelaxed configurations is relatively small, for exam-
ple for the equilibrium lattice constant of 2.85Åit is ap-
proximately 0.015eV/atom. Magnetic moments of re-
laxed and unrelaxed configurations differ by only a small
amount, too. Our results are in agreement with those
by Wróbel et al.65, who carried out calculations in the
collinear approximation, finding the equilibrium volume
of 11.34Å3/atom, |MI | = 2.104µB and the energy differ-
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ence between the DLAFM and ferromagnetic configura-
tions of 0.163eV/atom.
At the same time, by examining the relaxed configu-

rations, we find non-negligible variation of spacing be-
tween the atomic layers. Atomic layers with parallel ori-
entations of magnetic moments relax towards each other.
Separation between the layers decreases from exactly half
of lattice constant a to 0.49a, for a = 2.76Å. The two lay-
ers move even closer to 0.475a if a = 2.95Å. On the other
hand, if magnetic moments of the adjacent layers are an-
tiparallel, the inter-layers spacing increases accordingly.
The above example illustrates the significance of taking

into account directions of local magnetic moments in the
context of discussion of forces acting on atoms. It also
shows that magnetic excitations induce additional inter-
atomic forces and modify the geometry of atomic config-
urations. Our conclusions agree with the recent analysis
by Körmann et al.18,19 who find the occurrence of strong
phonon-magnon coupling in iron at high temperatures.
Körmann et al.18,19 note the limitations of the collinear
approximation in the treatment of temperature-induced
interatomic forces. The constrained method offers a way
forward in the ab initio treatment of non-collinear mag-
netic excitations essential for the first-principles analysis
of finite temperature effects in magnetic materials.

B. Fe2 dimer

In this section we investigate a Fe2 dimer. Calculations
are performed for two Fe atoms placed in a rectangular
box with dimensions 10Å×10Å×10Å, with k-point sam-
pling reduced to a single Γ-point. While constraining the
angle between magnetic moments of the two atoms, we al-
low full relaxation of the bond length Rb. The results are
compared with energies computed for collinear ferromag-
netic and anti-ferromagnetic configurations. The differ-
ence between the energies found using a non-constrained
conventional DFT functional, and the new constrained
functional, is found to be less than 0.1 meV.
Fig. 9(a) shows the binding energy EB plotted as a

function of the angle between magnetic moments. EB is
maximum for the ferromagnetic state, where EB = 3.02
eV. EB then decreases as a function of the angle and
reaches minimum at 180 degrees. The anti-ferromagnetic
state of a Fe2 molecule is metastable. The binding en-
ergy in the anti-ferromagnetic state is EB = 1.59eV. The
difference between the energies of ferromagnetic and anti-
ferromagnetic states is 1.43 eV, and the energy landscape
is fairly flat in the vicinity of 0 and 180 degree points.
Fig. 9(b) shows the calculated equilibrium bond length

Rb plotted as a function of the angle between the two mo-
ments. In the ferromagnetic state the value of Rb is the
lowest, and is equal to 2.03Å. It is maximum at approxi-
mately 160 degrees, where it approaches 2.29Å, and then
it decreases to 2.25Å in the anti-ferromagnetic configu-
ration where the angle between the moments equals 180
degrees.
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FIG. 9: (a) Binding energy EB, (b) relaxed bond length Rb,
and (c) average magnitude of atomic magnetic moment |MI |
in a Fe2 dimer. All the values are plotted as functions of the
angle between magnetic moments of the two atoms forming
the dimer.

Fig. 9(c) shows atomic magnetic moment |MI | cal-
culated by projecting the magnetization density onto a
sphere with radius R = 1.0Å. At the point where mag-
netic moments are ferromagnetically ordered (this cor-
responds to 0 degrees) |MI | = 2.796µB. The moments
then decrease gradually, reaching maximum at approx-
imately 160 degrees, and then decrease again. In the
anti-ferromagnetic state, |MI | = 2.753µB. The scale of
variation of moments is relatively small, of the order of
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0.1µB. Far more substantial variation is observed in bulk
bcc iron, as shown in Fig. 6. Since the bond length de-
creases when the angle exceeds 160 degrees, whereas the
binding energy remains almost constant, this appears to
be the result of interplay between bonding and charge
density distributions. This interpretation agrees with the
fact that magnetic moment magnitude also changes it
slope near 160 degrees.

Using rare gas matrix isolation and extended X-ray
absorption fine structures (EXAFS) technique, Rb of a
Fe2 dimer in argon66 was measured experimentally to be
1.87±0.13Å, and in neon67 it is 2.02±0.02Å, where the
latter value should be considered as corresponding to a
mixture of multimers. Using collision-induced dissocia-
tion, EB is determined to be68 1.14± 0.10eV. Using the
Stern-Gerlach deflection method, the total magnetic mo-
ment of a dimer was found to be69 6.5± 1µB.

Magnetic and electronic structures of a Fe2 dimer
were extensively studied in literature. Chen et al.70

used an all-electron linear combination of atomic or-
bitals (LCAO) method in the local spin density ap-
proximation (LSDA) and found equilibrium bond length
Rb = 1.98Å, EB = 4.095eV, and |MI | = 3µB/atom
in the ferromagnetic, and Rb = 2.20Å, EB = 1.95eV,
and |MI | = 4.8µB/atom in the anti-ferromagnetic con-
figuration. Diéguez et al.71 used LSDA and 8 va-
lence electrons, and found Rb = 1.96Å, EB = 4.5eV,
|MI | = 3µB/atom in the ferromagnetic ground state
of the molecule. Castro et al.72,73 used all-electron lin-
ear combination of Gaussian-type orbitals, and LSDA,
GGA-P8674 and GGA-P86 functional with non-spherical
(NS) charge density. In LSDA, the predicted bond
length and the binding energy are Rb = 1.95Å and
EB = 4.38eV. Using GGA-P86 they found Rb = 2.00Å
and EB = 3.24eV. In the GGA-NS the binding energy
is relatively small EB = 2.08eV. Hobbs et al.25 found
Rb = 1.98Å, EB = 3.54eV and |MI | = 2.83µB/atom in
the ferromagnetic state, and Rb = 2.24Å, EB = 2.246eV
and |MI | = 2.98µB/atom in the anti-ferromagnetic state.
The latter calculations were performed using the GGA-
P9275 functional, with the plane wave energy cutoff of
350eV, and R = 1.2Å. We listed those experimental and
calculated results in table I.

While the absolute values of energies predicted by DFT
for molecules are known to be of limited validity, the
above analysis confirms that calculations performed us-
ing the new constrained functional methodology com-
pare well with literature data on ferromagnetic and anti-
ferromagnetic states. The scatter of results is largely due
to the choice of exchange correlation functionals. Here we
used the same GGA-PBE functional as in the rest of the
paper, where we apply it to the treatment of high-density
atomic configurations where DFT methodology is known
to have high predictive capability.

FIG. 10: (Color online) Directions and magnitudes of mag-
netic moments in amorphous Fe. (a) Unconstrained collinear
configuration computed using full ionic relaxation. (b) Con-
strained non-collinear calculation with random orientations of
magnetic moments, generated using atomic positions derived
from the unconstrained collinear calculation. (c) Constrained
non-collinear calculation with the same magnetic moments
as in (b) but with full ionic relaxation. Colors refer to the
magnitude of atomic magnetic moments.
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Authors DFT functional / Exp. method state EB (eV) Rb (Å) |MI | (µB)

Current work GGA-PBE63 FM 3.02 2.03 2.796

AFM 1.59 2.25 2.753

Chen et al.70 LSDA FM 4.095 1.98 3

AFM 1.95 2.20 4.8

Diéguez et al.71 LSDA FM 4.5 1.96 3

Castro et al.72,73 LSDA FM 4.38 1.95 -

GGA-P8674 FM 3.24 2.00 -

GGA-P86 (Non-spherical) FM 2.08 - -

Hobbs et al.25 GGA-P9275 FM 3.54 1.98 2.83

AFM 2.246 2.24 2.98

Lian et al.68 Exp. - Collision-induced dissociation ? 1.14±0.10 - -

Montano et al.66 Exp. - EXAFS (argon) ? - 1.87±0.13 -

Purdum et al.67 Exp. - EXAFS (neon) ? - 2.02±0.02 -

Cox et al.69 Exp. - Stern-Gerlach deflection ? - - 3.25±0.5

TABLE I: The calculated and experimental values of the binding energy EB, bond length Rb and magnetic moment of an atom
|MI | in a Fe2 dimer
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FIG. 11: (Color online) Histogram distribution of angles be-
tween the local magnetic moments MI and their directions
eI defined in the constraining functional, evaluated for the
configuration shown in fig. 10(c).

C. Amorphous Fe

An atomic configuration for amorphous Fe containing
54 atoms in a unit cell was derived from molecular dy-
namic (MD) simulations performed using the Dudarev-
Derlet interatomic potential76. A 54-atom bcc Fe cell
was heated up dynamically to 10000K and then relaxed
using conjugate gradient minimization. The resulting
atomic configurations are used as input for VASP cal-
culations, performed using GGA-PBE and a 4 × 4 × 4
k-point mesh. Other parameters are the same as in cal-
culations described above. Ionic relaxation is performed
in the unconstrained collinear approximation until the
interatomic forces decrease below 0.01eV/Å. Magnetic
moments are evaluated by projecting the magnetization

FIG. 12: (Color online) Interatomic forces resulting from the
non-collinearity of local magnetic moments. The atomic con-
figuration is the same as in Fig. 10(b), with colors showing
magnitudes of forces acting on atoms, in eV/Å units.

density onto spheres with radius R = 1.0Å.
Fig. 10(a) shows a fully relaxed atomic and magnetic

configuration derived from an unconstrained collinear
magnetic calculation. The magnitude of forces acting on
atoms is smaller than 0.01eV/Å. This example shows that
directions and magnitudes of magnetic moments fluctu-
ate strongly depending on local atomic environment. The
magnitude of |MI | varies from 0.034µB to 2.59µB.
We now generate a random magnetic configuration and

impose it onto the atomic configuration shown in Fig.
10(a) through the application of the constrained method.
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FIG. 13: (Color online) Atomic displacements corresponding
to the difference between atomic positions in configurations
shown in Figs. 10(b) and (c). Colors denote the magnitude
of atomic displacements, in Å units.

Fig. 10(b) shows directions and magnitudes of magnetic
moments in the resulting magnetic structure. The mag-
nitudes of magnetic moments |MI | vary from 0.86µB to
2.46µB, showing that magnetic moment magnitudes are
highly sensitive to the local magnetic environment, since
in constrained calculations the positions of atoms remain
constant. The energies of configurations shown in Fig.
10(b) are 2.98eV higher than the energies of collinear
configuration shown in Fig. 10(a).

To investigate the effect of magnetism on atomic po-
sitions we now relax the atomic coordinates, keeping
the same directions of magnetic moments as in Fig.
10(b). Atomic relaxation is performed until the forces
acting on atoms, shown in Fig. 10(c), become smaller
than 0.01eV/Å. The magnitude of |MI | in the resulting
atomically relaxed configuration spans the interval from
0.22µB to 2.42µB. The energy of configuration shown in
Fig. 10(c) is 0.75eV lower than the energy of configura-
tion shown in Fig. 10(b), showing that atomic and di-
rectional magnetic degrees of freedom are fundamentally
linked, with forces acting on atoms being sensitive to the
directions of magnetic moments and atomic relaxations
affecting the magnitudes of local magnetic moments.

In Fig. 11 we show a histogram of angles between the
local magnetic moments MI and their directions eI pre-
scribed in the constrained functional, computed for the
configuration shown in Fig. 10(c). The values deviate
by no more than 0.02 degrees, confirming that the con-
strained functional can be applied to arbitrary atomic
and magnetic configurations.

Fig. 12 shows atomic forces in the configuration shown
in Fig. 10(b). The maximum force on an atom is
0.77eV/Å. In agreement with the case of a diatomic

molecule, we find that magnetic excitations induce forces
and modify equilibrium atomic configurations. To quan-
tify this, in Fig. 13 we show atomic displacements cor-
responding configurations shown in Figs. 10(b) and (c).
The maximum displacement of atoms from their initial
position is approximately 0.039Å.
We therefore conclude that directional degrees of free-

dom of magnetic moments affect interatomic forces and
equilibrium atomic positions. Practical calculations re-
quired for quantifying the effect of directional magnetic
excitations on atomic forces and positions of atoms, for
even fairly complex atomic configurations, can be per-
formed using the constrained density functional method
with appropriately chosen Lagrange multipliers, as illus-
trated by the examples given above.

V. CONCLUSIONS

In this paper we develop the formalism and give ex-
amples of application of a constrained density functional
method for generating non-collinear magnetic configu-
rations. We show that the method exhibits good con-
vergence and is fairly easy to implement. Using VASP
platform for its implementation, we explored the effect
of magnetic non-collinearity on atomic configurations of
iron. The main advantage of the method is that it makes
it possible to explore magnetic configurations where mag-
netic moments point in arbitrary directions, like in real-
istic thermal excitations, whereas the majority of calcu-
lations described in literature focus solely on collinear
ferromagnetic and anti-ferromagnetic states. For the
collinear configurations, the energies and atomic config-
urations predicted using the constrained method agree
well with published data. For the non-collinear configu-
rations, we are able to quantitatively assess the effect of
magnetic non-collinearity on interatomic forces and equi-
librium atomic positions.

APPENDIX A: VASP IMPLEMENTATION

There are two constrained approaches to the treatment
of non-collinear magnetic configurations presently imple-
mented in VASP. The first constrains atomic magnetic
moments to prescribed directions but is invariant with
respect to the reversal of directions of moments. The
second method exhibits good convergence in the limit of
large λ. However, since no convergence analysis is avail-
able in the literature, we present such analysis here.
The constrained total energy functional described

above has the form

E = E0 + Ep (A1)

= E0 +
∑

I

λ (∆MI)
2 , (A2)

where ∆MI = MI −M
0
I and M

0
I is the desired magnetic

moment vector. At an extremum, for example in the
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magnetic ground state of the system, the derivative of
the total energy with respect to any moment ∆MI must
vanish, namely

0 =
δE

δMI

∣

∣

∣

∣

∆MI

=
δE0

δMI

∣

∣

∣

∣

∆MI

+ 2λ∆MI . (A3)

Hence

∆MI = −
1

2λ

δE0

δMI

∣

∣

∣

∣

∆MI

. (A4)

For small ∆MI we perform Taylor expansion up to the
1st order in the right-hand side, and find that

∆MI = −
1

2λ
(K1 +K2 ·∆MI) , (A5)

where

K1 =
δE0

δMI

∣

∣

∣

∣

0

(A6)

K2 =
δ2E0

δM2
I

∣

∣

∣

∣

0

. (A7)

Here K2 is a 3× 3 matrix. After re-arranging the terms,
we arrive at

∆MI = −
1

2λ

(

I +
1

2λ
K2

)

−1

·K1, (A8)

where I is a 3 × 3 identity matrix. We see that ∆MI ∝
1/λ in the limit where λ is large. Hence we conclude
that Ep ∝ 1/λ and in the limit where λ → ∞ we have
Ep → 0.
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