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Abstract.   Landau damping is calculated using real variables, clarifying the physical mechanism. 
 
 

Landau’s calculation of electron plasma oscillations demonstrated the phenomenon now 

known as Landau damping
1
.  The calculation used a Fourier-Laplace transform and regarded 

the electron velocity as complex in order to properly locate the pole in the complex frequency 

plane that gives the dispersion relation containing the wave damping. 

 

Here, the same subject is examined using real variables and straightforward algebra. The aim 

is to understand the damping and growth of plasma oscillations, shown by Landau to arise 

from particles close to resonance with the plasma wave. It is found that the physics underlying 

the damped oscillations is different from that in the case of growth. 

 

The governing equations for both growth and damping are the linearised Vlasov equation for 

the distribution function f1 
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where E1 is the electric field, and Poisson’s equation 
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For simplicity the wavelength will be taken to be much larger than the Debye length, so that  

kvT << p where k is the wave number, vT the electron thermal velocity and p the plasma 

frequency.  

 

Since the Landau effect arises from particles travelling close to the wave velocity, the algebra 

is more transparent if the calculation is carried out in the frame of the wave, as illustrated in 

Fig.1. Damping and growth depend on the sign of (f0/v) at the wave velocity and as the 
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behaviour is different for the cases (f0/v)w > 0  and (f0/v)w < 0, the calculations will be 

made clearer by treating them separately.    

 

 

 

 

 

 

Fig.1. Illustrating the choice of frame. vw is the 

wave velocity in the frame of the plasma. 

 

 

The case with (f0/v)w > 0 

With (f0/v)w > 0 there are homogeneous solutions for which all of the terms in eqns 1 and 2 

have a factor e
γt 

. 

So the electric field can be written 

 1

tˆE Esin kx e


  (3) 

 

and the distribution function takes the form 

 

                                                    1

t
s c

ˆ ˆf f sin kx f coskx e .                                    (4)  

 

Substituting eqns 3 and 4 into eqn 1 and equating sine terms and cosine terms leads to the 

solution 
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In calculating n1 there are two contributions from f1.    One is the contribution, 1

wn , localised 

around v = 0, coming from velocities for which v ~ /k.  The other, 1

bn , comes from the basic 

thermal distribution around v = wv . Since vT  << vw and /k << vw  the two contributions are 

well separated and can be treated independently. The contribution 1

bn  is obtained by taking  
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 << kvw, writing   

                          0 0
1 2 2

b t
ˆ f fe 1

n dvsin kx dvcos kx e
m k v v kv v

   
  

  
   

 

and integrating by parts to obtain 
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The leading order terms in the required integrals are obtained by taking f0 to have the form of a 

delta function at the velocity wv   in the wave frame.  Thus 
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In the localised contribution from particles with velocities close to the wave velocity, f0/v 

can be taken to be constant, and the resulting contribution to n1 is 
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The integrand 
2 2 2k v



 
 has the form shown in Fig.2, the contribution to 1

wn  being 

independent of the magnitude of  . 
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The complete n1 is now given by 1 1

wbn n ,  
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and the dispersion relation is obtained by its substitution into eqn 2 to obtain 
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where  
1/ 2

2

0p ne / m .    

 

Equating the cos kx terms in eqn 7 gives the wave velocity vw =   p/k and for the present case 
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The sin kx term in eqn 7 is zero, and this condition determines   

 

3

p 0

2

w

f
.

2k n v

  
   

 
 (8) 

It is clear that eqn 8 does not allow a solution for (f0/v)w < 0, and for (f0/v)w >0 the  required 

solution is 

  Fig. 2. The form of the velocity dependence of the 

density contribution around the phase velocity.  
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It is seen from the equation for n1
w
 that the contribution that leads to growth comes from 

sojourning particles which, during a growth time, 1/, travel a distance v/γ that is less than 2π/k 

and so do not sample the whole wave.   

  

The sojourning particles do not make a direct growth of charge in phase with the basic charge of 

the wave, but produce an out-of-phase charge as illustrated in Fig. 3. This out-of-phase charge is 

 

 

 

 Fig.3. Sojourning particles produce an 

out-of-phase charge. 

 

 

 

balanced out by the modified contribution from the main particle distribution, which is 

proportional to .  The balancing of these two contributions determines γ, as given by eqn. 7.  

The growth of the charge in the wave actually arises simply from the divergence of the basic 

“flow” of the particles in the main distribution passing through the wave. 

 

The case with (f0/v)w < 0 

It is necessary now to determine the procedure that allows continuation of the case with 

(f0/v)w > 0 to that with (f0/v)w < 0. 

It was seen from eqn 8 that homogeneous solutions are only possible with (f0/v)w > 0. For 

(f0/v)w < 0 the out-of-phase sin kx part of n1 cannot be made zero and a solution with γ < 0 is 

not possible.  This constraint arises from eqn 4 at the outset of the calculation. 

Returning to eqn. 1, the treatment of f1 in calculating the contributions to n1 for (f0/v)w < 0 is 

unaffected except for the sin kx contribution for particles with velocities close to that of the 
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wave.  This contribution needs closer attention.  With no assumed e
t
 time dependence for f1 it 

can be written   

 1 s cf f sin kx f coskx .   

 

Substituting f1 into eqn 1 leads to the equation for fs   
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f fe ˆk v f e
t m v
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 
 . 

 

The calculation of w

sf , the wave contribution to fs , in the (f0/v)w > 0 case used the particular 

integral solution.  In the case with (f0/v)w <  0 it is necessary to add the complementary 

function to obtain 

                                      w t0
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The factor φ(v) represents the initial form of  the complementary function contribution to w

sf .  

The procedure now is to determine the solution for w

sf  that allows continuity with the  

(f0/v)w > 0  case. The first step is to choose φ(v) to make the functional form of w

sf (v, t = 0)  

the same as that for (f0/v)w > 0.  w

sf  then becomes 
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where α is a constant. 

 

Noting that the contribution from the cos(kvt) term is localised around v = 0 and that, for         

γ < 0,                                    

                                           
t
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integration of  w

sf (v) over v gives    
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Recalling that for  0 w
f v 0    

                                                   w to
1

w

ˆ fEe
n sin kx e

m v k

  
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 , (10) 

 

continuity of w

1n as expressed by eqns 9 and 10 requires 



dding the 
1

bn contribution, given in eqn 6, the complete sin kx component of  n1 now becomes     

                                                                                                                                                                                                                                                         

                                           S t0
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                  γ < 0                                                           

 

and putting this out-of-phase term to zero gives the damping rate for (f0/v)w < 0        
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  
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. 

 

The mechanism of damping is not an inverse form of the sojourning particle mechanism 

responsible for growth. The additional part of the f1 arising from the complementary function 

has introduced an out-of-phase component which has a time dependence cos(kvt). Initially 

cos(kvt) = 1, giving a full density contribution. As t increases the particles involved see 

increasingly different phases of the electric field and this phase mixing leads to damping, as 

shown in Fig. 4. Since the particles involved have v ~ γ/k, the characteristic time for phase 

mixing is 1/γ as would be expected. There are equal damping contributions from those particles 

moving faster than the wave and those moving slower. The sojourning particles are still there 

but their contribution is outweighed by the damping due to phase mixing. 
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                                   Fig. 4 The time development of the phase-mixing  

                                  component of f1(v) is illustrated by its form at t = 0, 

                                   t = 2/γ and t = 10/γ. 

 

Overview 

 

 Landau’s treatment of plasma oscillations as an initial value problem, with an arbitrary          

f1(x,v,t = 0), leads to a solution for E1(x,t) that is a sum of modes. Given this solution it is then 

possible to calculate f1(k,v,t). The expression for f1(k,v, t) includes the arbitrary initial 

distribution function f1(k,v,t = 0). 

In the present paper the aim is to analyse just the basic plasma oscillation, including the 

contribution of particles with velocities close to the wave velocity. This implies that there is a 

specific form of  f1(v, t = 0) that gives the required solution. The cases with (f0/v)w  > 0 and  

(f0/v)w < 0 require different initial conditions as shown below.  

The initial form of f1 can be written                                                                                                                           

 

                       f1 (v, t = 0)   =   s

1f (t = 0) sin kx   +   
ˆ e

m


0f

v




 

2 2 2

kv

k v 
 cos kx 
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and the solutions f1(v, t) obtained in the preceding sections can then be written in the general  

 

form 
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ˆ fe
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                                    t0

2 2 2
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m v k v
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                                                          (11)    

 

where, for  0

w

f
0

v

 
 
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
 , 

                                             s 0
1 2 2 2

ˆ fEe
f t 0

m v k v

 
  
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                                                 (12)                                 

   

                                                  

The specific form of the solutions obtained in previous sections is retrieved by substituting   

 

eqn 12 into eqn 11. 

 

Thus, for 0

w

f

v

 
 
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> 0 

                              t0
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 ,                             

and for 0

w

f

v

 
 
 

< 0 
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It is seen that the two cases differ only in the initial out-of-phase contribution f1
s
(t = 0), and 

given that  f1
s
(t = 0) is localised at the wave and  that γ(f0/v)w > 0, these contributions differ 

only in sign. 

 

Energy Balance  

 

In the present formulation, calculation of the energy balance is straightforward. 

The energy exchange is between the particles in the out-of-phase component of the distribution 

function f1 and the electric field. The power transfer per unit volume, P, is  
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s

1
P f ev E dv  . 

In the frame of the wave, vf = 0, the only contribution to the integral is that from the basic 

plasma, and using eqn 5 with γ << kvw 

0
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fEe
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Integrating by parts 

2 2

02 2

E e 1
P f dv

m k v


   

and putting v = - vw, 
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2 2

w

E e n
P

m k v


 . 

Recalling that E e
γt, putting k2vw2 = ωp2 and noting that  2 2 2

w 0ne / mk v   , the energy 

balance equation becomes 

                                                   
2

0Ed
P .

dt 2


                                          (13) 

Thus, in the wave frame damping of the electrical energy is solely due to energy transfer to the 

particles in the main thermal distribution. 

However, in the frame of the plasma, vf = -vw, there are two additional contributions, one from 

the basic plasma and the other from the particles around the wave speed.  Using the sine 

component of the basic plasma density perturbation given by eqn 6   

  b

s 2 3

w

2Een
n

mk v


   

       0

w

2 E

ev

 
   

the change in the power transferred by the basic plasma contribution is  
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                                                             0
b w

w

2 E
P . ev E

ev

 
    

                                                                     
2

0Ed
2

dt 2


  .   

So adding ΔPb to the P given in eqn 13, Pb in this frame is  

 

 

Since the out-of-phase density contribution of the particles close to the wave speed, w

sn ,  is 

equal to - ns
b
, their power contribution, which was zero in the wave frame, is now 

2

0
w

Ed
P 2

dt 2


 . 

Summing the two contributions, the total power is 

b wP P P   

        
2

0 Ed

dt 2


   

 as before. 

 

Discussion 

In Landau’s treatment, an arbitrary initial perturbation, f1(x,v,t = 0),  of the distribution function 

is taken and the time development of the electric field, E(x,t), is calculated using a Fourier-

Laplace transform. Each component of E(x,t) has a time dependence e
-iωt 

with an eigenvalue 

ω(k). “Landau damping” is associated with an eigenvalue for which the real part of ω is such 

that ωr /k >> vT, the thermal velocity, and the imaginary part gives damping, or growth, 

proportional to (f0/v)w. 

In Landau’s derivation of the damping rate there is no involvement of the specific associated 

perturbed distribution function, and little attention has been paid to it. However, using the 

2

0
b

Ed
P .

dt 2


 
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solution for E(x,t) the distribution function f1(x,v,t) can be calculated retrospectively, thus 

identifying the specific initial distribution function required to give the Landau damping mode. 

The present paper proceeds in a different way by solving the Vlasov equation directly to obtain 

f1(k,v,t) and substituting this solution into Poisson’s equation to obtain the dispersion relation 

giving the damping or growth rate.   

For (f0/v)w > 0 the oscillation is unstable, and in this case the calculation proceeds 

straightforwardly. But in the damped case with (f0/v)w < 0, calculation of the f1(k,v,t) requires 

the imposition of continuity with the (f0/v)w > 0 case, as in Landau’s calculation. 

The focus on the distribution function the present calculation makes explicit the underlying 

mechanisms of growth and damping. The growth associated with (f0/v) w > 0 arises from the 

charge produced by electrons with velocities sufficiently close to the wave velocity that they do 

not sample all phases of the wave during a growth time. The damping associated with      

f0/v)w < 0 is due to phase mixing of particles with velocities close to the wave velocity.   
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