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Abstract. The linear and quasi-linear plasma response tatke3 andn = 4 (n is the toroidal mode
number) resonant magnetic perturbation (RMP) fields, produced by-tfessel edge localised mode
control coils, is numerically studied for an ITER 15MA H-mode baseline &tenBoth single fluid
and fluid-kinetic hybrid models are used. The inclusion of drift kineticaffeloes not strongly alter
the plasma response compared to the fluid approximation for this ITER plasradulltoroidal drift
kinetic model is also used to compute the neoclassical toroidal viscous (téf)e, yielding results
close to that of an analytic model based on geometric simplifications. The cadrigtitétorque from
low-n RMP fields is generally smaller than the resonant electromagnetic torquasféFER plasma.
The linear response computations show a weak core kink responsergda a strong kink response
often computed for plasmas from present day tokamak devices. Initiad galasi-linear simulations,
including various torque models, show a localised damping of the plasma tdtoidaear the edge, as
a result of the applied RMP fields. This localised rotation damping can be ovestiiong depending on
whether a weakly unstable edge localised peeling mode is present. No qualitifférence is found
between then = 3 andn = 4 RMP field configurations, in both the linear and non-linear response
results.

1 Introduction

External three-dimensional (3D) magnetic field pertudiaj such as intrinsic error fields or
resonant magnetic perturbation (RMP) fields generated byetagoils, can have a profound
influence on tokamak plasmas, which generally possesgyaxngtric (2D) equilibria. Whilst
the lown (n is the toroidal mode number) components of the error fieldnaak known to
produce, among other effects, mode locking phenomenaamntaks [1], the RMP fields, often
with tailored toroidal and poloidal spectra, are intenditbyapplied to mitigate or suppress the
type-l edge localised modes (ELM) in ELMy H-mode plasmasg|&, 5, 6, 7]. In ITER, three
rows of in-vessel ELM control coils have been designed f@ plurpose.



Theoretical investigations of the effects, that exterafiglds have on tokamak plasmas, can
be carried out at various levels of complexity. For instaribe vacuum model [8], single
fluid model [9], 2-fluid models [15, 10, 11], and kinetic masl§l2, 13] have been adopted to
study the RMP problem. Within the fluid model, both reduced meaghydrodynamic (MHD)
formulation [14, 15, 16] and full MHD [9, 10] have been coresied. Following another
classification, it is of interest to study the linear, quiasear, and non-linear plasma response
to the external fields.

The linear response typically involves solving perturbedDlequations, sometimes also in
combination with linearised drift kinetic equations [12) steady state linear response so-
lution, superposed on the 2D equilibrium, produces thealed perturbed 3D equilibrium
[17, 18]. This study has been shown to be very helpful in ustdeding several important
aspects, including (i) the plasma induced 3D modificatiorihef magnetic field structure,
such as the field screening [19, 12], the field line ergodisatihe pitch resonant versus the
kink-peeling plasma response [20]; (ii) the plasma disptaent caused by the RMP fields as
a results of the steady state plasma response [21, 22, #Bthé effect of the 3D plasma
response field on energetic particle (EP) confinement.

The quasi-linear response study considers the self-densiateraction between thme£ 0 ex-
ternal field perturbation with the= 0 plasma equilibrium quantities such as the toroidal flow.
In this interaction, the plasma flow induced resonant fietdesaing and the flow damping due
to the 3D perturbation induced toques play key roles [24r&fore, the focus here is to in-
vestigate various possible torques acting on the plasneatadiine presence of 3D fields, such
as the resonant electromagnetic torque, the torque atswbaigth the neoclassical toroidal
viscosity (NTV) [25, 26], and the Reynolds torque associatgd the plasma inertia. In prin-
ciple, there can also be torques associated with the 3D fidletied redistribution of energetic
particles (EPs), as well as the 3D field induced modificatibmiinsic rotation. Since the
various torques scale not only with the amplitude but alsth wie spectrum of the applied
3D field, it is important to investigate, for example, how RBIP field at different toroidal
configurations (i.e. differemt numbers) can affect the flow damping.

The non-linear study of the plasma response can be furthssifiled into two categories:
the (static) 3D equilibrium approach [27] and the (dynammd)al value approach [29]. The
full 3D equilibrium approach, contrary to the perturbed 3fuidibrium approach (from the
linear response calculations), may provide a more accoratiel| of the plasma response (e.g.
the 3D displacement) in particular near rational surfaeétbough the final prediction may
be sensitive to the plasma models that are used (ideal vezsistive plasma, static versus
rotating plasma, etc.). The dynamic approach usually assussistive plasma, within either
reduced or full MHD models, single or two-fluid approximaiso

In this work, we focus our efforts on numerical modelling otlvthe linear and quasi-linear
plasma response to the RMP field, for a 15MA ITER baseline scepkasma [28]. We con-
sider the ELM control coil currents both in time= 3 andn = 4 configurations. Both a single
fluid model and a MHD-kinetic hybrid model have been consdefor the linear response
study. The single fluid response model has previously beewrshto successfully reproduce
the experimental observations in the DIII-D RMP experimgasdong as the plasma pressure
remains well below the Troyon beta limit [30]. The MHD-kirehybrid model is essential for
predicting the plasma response in high beta plasmas [31hI¥deuse the drift kinetic model
in the quasi-linear study, in order to provide more accucateputations of the NTV torque.
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The computations are carried out using the MARS-F code [1@]thea MARS-Q code [24],
for the linear and the quasi-linear response, respectively

Section 2 briefly introduces the toroidal response modedsti@ 3 describes the ITER equi-
librium as well as the RMP coil configuration that we use in ttisdy. Sections 4 and 5
report the computational results from the linear versugytiesi-linear models, respectively,
followed by the concluding Section 6.

2 Toroidal plasma response models

The toroidal plasma response models that we use in this wark previously been intro-
duced and tested. These include the single fluid RMP respoadelij®], the MHD-kinetic
hybrid model [12], as well as the quasi-linear model [24]tdlled discussions of the validity
conditions for these models can be found in the above refeserBelow we briefly describe
all these models, for the purpose of gathering all physissudisions associated with these
models together, and more importantly, for facilitatioruatierstanding the numerical results
to be presented in later Sections.

The fluid model that we use for the RMP response consists ained, single fluid, resistive

MHD equations, with subsonic toroidal flow and flow shear,ésblved in the plasma region;
the equation describing the RMP source term (the coil cusjdntbe solved in the vacuum
region where the coils are located; equations for the gegtlimagnetic fields in the vacuum
region; and where applicable (e.g. with the ac RMP coil cug)the equation for the resistive
wall(s), also located in vacuum. All these equations arec®lisistently solved together.

The fluid equations for the plasma are written for the plasmmpla@icement vectog, the per-
turbed velocity vectow, the perturbed magnetic field the perturbed plasma currgntand
the perturbed (fluid) pressuge

(%anz)z = v+ (£-0Q)Rg, (1)
p(%JrinQ)v = —0Op+jxB+Ixb—p[2QZ x v+ (v-0Q)Rg)

—pKy [k ven,i| v+ (€ - O)Val, (2)

(%HnQ)b = Ox(vxB)+(b-0Q)Rp—0x (nj), 3)

j = Oxb, (4)

(%—HnQ)p = —v-OP—TPO-v, (5)

whereR is the plasma major radiug the unit vector along the geometric toroidal angle
of the torus,Z the unit vector in the vertical direction in the poloidal péa The plasma
resistivity is denoted by). The equilibrium plasma density, field, current, and pressue
denoted byp, B, J, P, respectivelyl’ = 5/3 is the ratio of specific heats. A conventional unit
system is assumed with the vacuum permeahility= 1. It is important to note that we solve
for the full MHD equations. The solution variabterepresents theotal perturbed magnetic



field including the contributions from the plasma, the RMHA<as well as other conducting
structures.

We assume that the (subsonic) plasma equilibrium Hew= RQ&) has only the toroidal com-
ponent, withQ being the angular frequency of the toroidal rotation. A paraound wave
damping term is added to the momentum equation (2), witleing a numerical coefficient
determining the damping “strengthk = (n—my/q)/Ris the parallel wave number, with
being the poloidal harmonic number apbeing the safety factowp; = /2T /M; is the ther-
mal ion velocity, withT;, M; being the thermal ion temperature and mass, respectivélg. T
parallel component of the perturbed velocity is taken alihregequilibrium field line.

The RMP source term, i.e. the coil currgpip, is introduced via Ampere’s law
O x b= jrmp. (6)
Note that the above equation is solved in the vacuum regi@revine RMP coils are located.

In the presence of a resistive wall, the radial componernti@field diffusion equation, or an
equivalent form in the limit of the thin wall approximatiois,solved
oby

E:_[DX(UWDXM]U (7)

where the subscript “r” denotes the radial componggtis the resistivity of the wall.

The vacuum equations, for regions not occupied by any cdimdustructures, are written for
the (total) perturbed field

Oxb=0, O-b=0. (8)

Note that for the linear response model, if the source jefmp is a dc current, or an ac current
with given frequencywrvp, We are often interested in the steady state response, waith
found by solving all the above equations, where the timevdévied/dt is replaced bywrvp
(with wrmp = 0 corresponding to the dc excitation).

In the MHD-kinetic hybrid model, we replace the fluid clostwethe perturbed pressure, Eq.
(5), by the following drift kinetic closure

A A 1
p=pbb+p.(1-bb), p= Z/Mijfjldv, p. = Z/EMJVifjldVa 9)
] ]
where the summation is carried out for all particle specié® perturbed distribution function

f1, which is the solution of the perturbed drift kinetic eqoatifor each species, is normally
divided into an “adiabatic” part} and the “non-adiabatic” parf*

i1 = el (10)
~ 0f%  |b|afO
1 f— _— R ——
dfl 0f00HY 9fOgH? 1
dt T o at omy ap VoD (12)
Ze-~
HY = ““A-va—ulb], (13)
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Wherefo(P(p,s, W) is the equilibrium distribution function of the particlgexified in terms of
three constants of motion of the particle: the toroidal cacal momentun®Py, the energye
and the magnetic momenpt I5(p denotes the perturbefy,. H1 is the perturbed particle La-
grangian, withA being the perturbed magnetic vector potential eptieing the drift velocity
of the particle.vef is the effective collision frequency (of the Krook collisi@perator). We
have neglected the perturbed electrostatic potential irdoft kinetic model. The MARS-K
drift kinetic module has been successfully benchmarkedhagéhe HAGIS code [12] and
other hybrid codes based on the perturbative approachfi@2he stability computations of
the resistive wall mode.

The quasi-linear response model solves the above lingaomes equations together with the
n = 0 toroidal momentum balance equation o= p < R? > Q, as an initial value problem,

?9_It_ = D(L) + Tsourcet+ TNTV +zjb+TREY~ (14)
The right hand side of Eq. (14) includes the momentum difflasermD(L), the momentum
source termlgoyrce representing, e.g. the momentum input from neutral beaection, as
well as various momentum sink terms, such as the the toroataponent of the NTV torque
TnTv, the resonant electromagnetic tordiig,, and Reynolds torquirey associated with the
inertial termp(v-)v. Detailed description of each term can be found in Ref. [2dthe model
presented here, the NTV and b torques are due solely to the application of 3D RMP fields.
Therefore, if we assume that, before the application of théRiklds, an equilibrium torque
balance has been reached, we can solve for an equation fonainge of the momenturL.

In this equation, the momentum source term drops out.

We have two models to evaluate the NTV torque. One is baseteosrhoothly connected
analytic formulas [25] which have been implemented into MAR$24]. The drift kinetic
formulation in MARS-K provides another tool to compute the\Nfbrque which, as has been
shown [33, 34], is inherently related to the perturbed dhiifietic energy perturbation

TnTV = —2n|m(6\/\4<), (15)

wheredW, = —1/2 [(~0-p) - &% d®x. Reference [34] also numerically benchmarked these
two NTV models between MARS-Q and MARS-K, not only for the negtee amplitude but
also for the flux surface averaged radial torque density.

We also mention the typical boundary conditions that we yapm solving the momentum
balance equation. At the magnetic axis, the free (Neumaomjdiary condition is assumed.
At the plasma edge, we assume a homogeneous Dirichlet bguadadition forAL. For
tokamak plasmas, this is a reasonable approximation of thre eneric Robin boundary
condition, as demonstrated in Ref. [1].

An adaptive time-stepping scheme is envisaged for solViagtiasi-linear response problem.
The MARS-Q modelling results have been successfully congpaith the RMP experiments
in MAST [35].
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Figure 1: Equilibrium radial profiles for (a) the surface maged toroidal plasma current den-
sity, (b) the safety factag, (c) the plasma density, and (d) the plasma pressure, fdif ttie
baseline 15MA plasma at burning condition. The plasma miadius is labelled by the nor-
malised equilibrium poloidal flugy.

3 Equilibrium and coil configuration

We consider an ITER equilibrium from the 15M®&pT = 10 baseline scenario under burn-
ing condition. Figure 1 shows the key equilibrium radial fpes, obtained from the COR-
SICA [36] self-consistent transport simulations. The pladms a pedestal top temperature
of 4.4keV. The surface averaged toroidal plasma currensitler: J, > is normalised by
Jo = Bo/(HoRo), with By = 5.3Tesla,Ry = 6.2m, pg = 411x 10~ "H/m. The plasma number
density is normalised to unity at the magnetic axis. Therp&agressure is normalised by
Po= B(%/po. This H-mode plasma has a pedestal top temperature of 4.Zke\strong boot-
strap current near the plasma edge (Fig. 1(a)), due to tresyme pedestal (Fig. 1(d)), has a
clear effect on thej-profile near and beyond thggs surface (Fig. 1(b)).

There are three sets of in-vessel ELM control coils accgrdinthe ITER design: the upper
(U), middle (M) and lower (L) set, respectively. The modéloil geometry is shown in Fig.
2(a). Each set consists of 9 coils along the toroidal angtee khat the poloidal coverage of
the upper, middle and lower sets of coils vary, as more glesdrbwn in theR— Z plane in
Fig. 2(b). The plasma boundary shape, as well as the modg&dleble wall shapes, is also
shown in this figure. Note that we slightly smooth the plasmarigary near the X-point, since
our computational model, based on the magnetic flux basadic@abe system, cannot resolve
the exact X-point geometry. This smoothing has very litffec on theqgs value which is
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Y [mm] X [mm] 0 2 4 R [6m] 8 1‘0 12
Figure 2: (a) Geometry of the modelled in-vessel ELM contails in ITER. The location of
these three sets of coils is also indicated in the poloidai@khown in (b), together with the

plasma boundary and the double vacuum vessel.

about 3.18, but does sensitively change the epggdue at the plasma surface. For the plasma
surface shape shown here, tipevalue is 4.33 as shown in Fig. 1(b).

Outside the plasma surface, we have the vacuum region (apesaff-layer is modelled) and
other conducting structures. In particular, the doubld e@hducting structures are modelled
as complete walls in this work. This approximation is acabf& for low frequency RMP
response computations. Here we assume that the applied RMpotiates at 1Hz along the
toroidal direction. With this nearly static field perturlmat, the vacuum vessel, as well as other
conducting structures surrounding the plasma, plays amahe.

The coil currents are arranged to produce predominantlg a8 or then = 4 toroidal Fourier
components of the vacuum magnetic field. In the nominal niiogdetases, we consider either
then = 3 colil current at 45kAt, or th@ = 4 current at 30kAt. For tha = 3 configuration,

the toroidal phases of the upper and lower coil currentd) véspect to the middle one, are
@ = @u —827° and@. = @u — 30.7°, respectively. For th@ = 4 configuration, we set

@ = @u —487° and@. = @y — 34.7°. These current phases are optimal according to the
Chirikov parameter based vacuum field criteria [37].

4 Linear response

In the linear response computations, we are primarily @#ted in three aspects: the per-
turbed magnetic field with the inclusion of the plasma respoand a comparison with the
vacuum field; the RMP induced plasma boundary displacemerthi® ITER plasma; and
the toroidal torques acting on the plasma due to the applie® R&d, in particular the NTV
torque due to the presence of 3D magnetic field perturbatiédisthese aspects generally
depend on the plasma model. Here we compare the computlatsits from a single-fluid
resistive plasma response model and from a self-consisteit-drift kinetic hybrid model.
These models are described in Section 2. The plasma régistllows the Spitzer model,
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Figure 3: Poloidal spectrum of the perturbed radial figidrom (a) the vacuum approxima-
tion, (b) the resistive fluid plasma response, and (c) thistres drift kinetic plasma response.
Then = 3 RMP coil current configuration is assumed. The symbol '+igates the location
of rational surfaces for the= 3 perturbation.

which gives the on-axis Lundquist number ${0) = 8 x 10° for this ITER plasma, where
S=1R/Ta, TR = H0d%/N,Ta = Ro+/HoPo/Bo, With n being the plasma resistivity amg being
the on-axis plasma density. The radial profil&ssicales with the thermal electron temperature
asTeg/z. Both then = 3 andn = 4 colil configurations are investigated.

4.1 n= 3 RMP coil configuration

The poloidal spectra of the computed radial fields are coatpiar Fig. 3, for the vacuum ap-
proximation, the resistive fluid plasma response, and tifigkitretic plasma response, respec-
tively. The self-consistent kinetic plasma response ithetuthe precessional drift resonances
of both thermal ions and electrons, as well as the bouncerandit resonances of thermal
ions.

The perturbed radial field is defined as

Beq'D(PR%BO

Note that this is a dimensionless quantity according to th@ve definition. The poloidal
Fourier harmonics ob! are defined in the PEST-like straight field line coordinatstesy
(with the jacobian being proportional B?). Shown in Fig. 3 is the amplitude of the poloidal
harmonics inside the plasma, between /i, = 0.5 and 1. The field amplitude is small
in the plasma core, compared to that near the edge. With the EdMReometry and the
chosen toroidal phasing of the colil currents, the vacuurd fgatlose to, but does not perfectly
match, the maximal field pitch resonance. With the inclusdbithe plasma response, the
resonant field amplitude is significantly reduced almostyavkere inside the plasma except
near the very edge (where the high> ng, peeling mode harmonics is slightly amplified),
as shown in Figs. 3(b) and (c). For this ITER plasma, both fuid kinetic models produce
similar plasma response (both spectra and amplitude). k&iie typical plasma response
computed for MAST [35] or DIII-D [20] where a significant cokenk response induced field
amplification often (but not aways) occurs, no such kink oesge is observed for this ITER
case.
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Figure 4. Comparison of (a) the resonant harmonic amplitodehie perturbed radial field

bk, and (b) the normal displacement of the plasma surface deztihe resistive fluid plasma
response (solid lines and labelled “PB”) and the self-caestdrift kinetic plasma response
(dashed lines and labelled “SC”). The vacuum field (dashetkéddine) is also plotted in (a).

Then = 3 coil current configuration is assumed.

The amplitude of the pitch resonant fields is further comghamd=ig. 4(a). Again we observe
a significant reduction of the field amplitude compared tovtheuum field. The fluid and
the kinetic plasma models produce similar response not ionigrms of the response field,
but also in the plasma surface displacement as shown in K. Zhe similarity between
the two types of response is probably due to the fact that ldsa@ pressure is relative low
(Bn = 1.86) for this ITER plasma, so that the fluid approximation i# krgely valid for
describing the plasma response [30]. The predicted maytaama surface displacement is
about 30mm with the 45kAt of the= 3 RMP coil current. The fact that the displacement does
not peak near the outboard mid-plane (at the poloidal ardlg again reflects the lack of the
kink response - a correlation (between the core kink regpand the mid-plane displacement)
as has been found in the modelling of the MAST plasmas [22].

Figure 5(a) compares the NTV torque density computed by tedets - the MARS-Q model
[24] and the MARS-K model [12]. The MARS-Q model is based on tinesthly connected
analytic formulas obtained from analytic solution of theihoe averaged drift kinetic equation
under geometric simplifications. The MARS-K model is basedh@numerical solution of
the drift kinetic equation with full toroidal geometry. Téetwo models have been successfully
benchmarked on a large aspect ratio plasma [34]. The agrd¢dragveen these two models
still largely holds even for a more complicated equilibri@® shown here, as long as the
same physics are assumed in both models (i.e. the precakdidis of thermal ions in this
comparison). The net NTV torque mostly comes from the plasdge region, where the
MARS-K model predicts a somewhat higher torque density tharMARS-Q model.

The computed NTV torque is due mainly to the so-called h@omant component in most of
the plasma region. This can be understood from a comparisearious frequencies shown
in Fig. 5(b). The effective collision of thermal ions is velgw (compared to other drift
frequencies) in the ITER plasma, as expected. The factibatrecessional drift frequenay

of thermal ions is small, compared to tBex B drift frequencywe in the bulk of the plasma,
excludes the possibility of generating a large NTV torgusagmted with the resonance effect.
Therefore, the NTV torque is largely from the non-resonamtigbution in this ITER plasma.
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(b) various frequencies (thHe x B frequencywe, the thermal ion sound frequencyy, the
thermal ion precessional drift frequen@y at the particle thermal speed, as well as the thermal
ion effective collision frequencyef). The resistive fluid response is used for evaluating the
NTV torque. Then = 3 coil current configuration is assumed.

The above analysis does not apply to the very edge of the plasirere even the condition
of the bounce averaged drift kinetic approximation, asstimehe MARS-Q model, is not
anymore satisfied. This approximation assumes that allrifi¢réquencies should not exceed
the frequencywy,; associated with the particle thermal speed,

Due to the lack of the resonance induced enhancement, thetdlgue is relatively small in
this ITER plasma. In fact the computed NTV torque, as welhasReynolds stress torque, is
typically one order of magnitude smaller than the resonbatt®magnetic torque (thex b
torque) as will be shown in Section 5. This holds also forrhe 1 RMP response that we
have tested.

MARS-K also has the capability of computing the NTV torqueseyated by other drift mo-
tions of particles, such as the bounce (for trapped pasdi@ad transit (for passing particles)
motions. Figure 6 compares the torque density associatidvatious particle drifts, includ-
ing as well the contribution from the toroidal precessiotheirmal electrons. Even though the
bounce and transit drifts of thermal particles contributarger torque density in the plasma
core region, than the thermal ion precessional drift, thi¢orgue still largely comes from the
precessional drifts of thermal ions and electrons near ldenpa edge. The torque densities
shown in Fig. 6 are computed by using the (same) plasma resmmiution from the fluid
model. Using the same response function makes it easientpa@ the various contributions
of the NTV torque. This can be viewed as a perturbative afbroa

4.2 n=4RMP coil configuration

We also perform similar studies of the RMP response tathet coil configuration, in terms
of the perturbed field, the plasma surface displacementirenNTV torques. The results are
summarised in Figs. 7-9, respectively.
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Figure 7: Poloidal spectrum of the perturbed radial figldrom (a) the vacuum approxima-
tion, (b) the resistive fluid plasma response, and (c) thistres drift kinetic plasma response.
Then =4 RMP coil current configuration is assumed.
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vacuum field (dashed-dotted line) is also plotted in (a). Mhe4 coil current configuration is
assumed.

In general similar observations are made between th@ and then = 4 configurations, in all

of the above aspects. The agreement between the fluid resspndghe drift kinetic response
appears to be even better for the- 4 configuration. The computed maximal plasma surface
displacement is just below 20mm with the= 4 configuration, probably due to the combined
effects of smaller current amplitude (45kAt o= 3 versus 30kAt fon = 4), and the radially
faster decay of tha = 4 field.

5 Quasi-linear results

One free parameter in our quasi-linear model is the momeiliffosion coefficient, which
is generally assumed to be a function of the plasma minousa@4]. Various diffusion
models have been included into the MARS-Q implementaticoydgh generally no sensitive
dependence of rotation damping on the momentum diffusiofilpthas been found [24, 35].

In this work, we choose the diffusion profile that scales ngTw?’/ 2, with the core value of the
diffusion coefficient of the order 1n?/s.

It is known that for a limiter configuration (which is what wHeztively obtain after slightly
smoothing the plasma boundary surface near the X-poinhfotiginal ITER plasma in the
divertor configuration), the linear stability of the peglimode is sensitive to the edge safety
factor gz. Computational examples are shown in Ref. [38]. The quasealinnitial value
solution of the RMP response is also sensitiveifpas will be shown later on. In order to
demonstrate that it is the linear stability (as opposed érbn-linear interaction between
the field penetration and the rotational damping) that Isrgectates the evolution of the
quasi-linear solution, we first run MARS-Q without the nonelar coupling effect. To achieve
this, we (artificially) do not apply the momentum sink termar{ous torques) to the =0
momentum balance equation, thus effectively fixing the flpeesl at the initial, equilibrium
value.
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Figure 9: Comparison of the NTV torque density (a) due to thecgssional drift reso-
nance of thermal ions between Shaing’s analytic theorytisoland full toroidal MARS-K
solution, and (b) due to various drift resonance contrdngi(precessional drift of thermal
ions/electrons, bounce/transit drift of thermal ions)hatihe MARS-K model. The resistive
fluid response is used in all cases. The 4 coil current configuration is assumed.

Figure 10 compares the results from four such runs witmtae8 RMP configuration, witlgjy
values at 4.33,4.19,4.07,3.94, respectively. Note thattange ofj, is achieved by slightly
smoothing the plasma boundary shape near the X-point. €hisek unchanged the budk
profile, as well as the other global equilibrium parameteichsas the total plasma current.
In particular, theges remains the same at 3.18. The boundary shape shown in Fig. 2(b
corresponds tg, = 4.33. Figure 10 plots the time evolution of the computed nejues as an
indicator to the stability of the linear response. With pexsively more smoothing applied to
the X-point, corresponding to the decreasggfthe response becomes more unstable, which
manifests the transition from a linearly stable peeling ex@lg, = 4.33) to a linearly unstable
peeling mode (atj; = 3.94). The stability boundary is near the integer numbey0f 4 in

our case. We point out that the existence of an exact X-parresponds to an infinitg-
edge value (with a logarithmic weak singularity). The agsed stronger singularity of the
magnetic shear near the separatrix tends to make the edgséatpeeling mode marginally
stable [39, 40]. In real experiments, an infirgtealue is probably not expected. Nevertheless,
this ideal case of a marginally stable peeling mode respahseto the X-point stabilisation,

is mimicked here by studying the transition from a weaklytahke to a weakly stable peeling
mode, by tuning thej value.

The case (a) (witlgy = 4.33) is clearly a stable solution. The linear response coatjauts,
shown in Section 4, are performed for this case. It is exjkittat the saturated initial value
solution for this case should recover that found from theditinear response computation in
the frequency domain, as shown in Fig. 4. Indeed we checkéddotutions, and found that
they agree with each other.

We point out that the net torques shown in Fig. 10 mainly commfthe contribution near the
plasma edge. The core torque density is small. For a congpaoisthe order of magnitude,
Fig. 6 shows the computed core NTV torque density of the cofi@03[N/m?] (the highest
values), compared to the order of £{N/m?] negative neutral beam driven torque as predicted
by the TRANSP simulation for ITER H-mode plasmas [41].
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Figure 10: The amplitude of the computed net torques fromirthial value simulations of
the plasma response to the= 3 RMP fields with fixed flow (i.e. in the absence of non-linear
coupling to flow damping), for the same ITER plasma and caifigurations, but with slightly
different assumption on the edgevalue: (a)ga=4.33, (b)qa=4.19, (€)qa=4.07, (d)ga=3.94.
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Figure 11 compares the solutions at the end of the simuasbown in Fig. 10(a) and (d), in
terms of the radial plasma displacement. The radial pradiléisese poloidal harmonics show
the mode structure. The unstable case, Fig. 11(b) g4tk 3.94, shows an edge localised
peeling mode structure. The stable case, Fig. 11(a) gta 4.33, also has the peeling
structure near the edge but in addition has a more globabnsgan the plasma core.

We have performed quasi-linear simulations for all fouresaswith bothn = 3 andn = 4
RMP configurations. For each case, we also assume two diffdiévimodels (the MARS-Q
versus the MARS-K models). With the MARS-K model, we adopt atymbative” approach,
where the fluid MHD equations are still solved for the plasmsponse, but only the NTV
torque is computed via the MARS-K drift kinetic module. Thertual quasi-linear solution
depends on the linear stability of the peeling mode. Gelyerfar cases where the peeling
mode is linearly stable, we found little rotational dampuhge to the RMP fields, for both
n = 3 andn = 4 configurations. For cases where the peeling mode is Iyneadtable, the
toroidal flow is locally damped near the plasma edge.

Figures 12 and 13 show one example of the stable peelingwakdhen = 3 configuration.
The change of the rotation frequen&Q shown in Fig. 12(a), is very small during the non-
linear evolution. The total rotatiodQ plus the initial equilibrium rotation frequency) almost
does not change as shown in Fig. 12(b), for the rotation daugdiat all rational surfaces.

The solution fully saturates during the time period~eflOOms, as shown in Fig. 13. The
penetrated resonant field components saturate at a very amplitude, of several Gauss
level, indicating a good screening of the applied RMP field iy plasma flow in this case.
The resulting net torques are also small. In particular tioat the saturated net NTV torque
is about one order of magnitude smaller than the resonacireteagneticj(x b) torque. In
this simulation, the MARS-Q model is used for computing theMNdrque. By switching to
the MARS-K model, the resulting NTV torque is somewhat largershown in Fig. 14(b),
but the final quasi-linear solution, in terms of the field peatgon (Fig. 14(a)), as well as the
rotation braking, remains almost the same. Full saturatdfathe quasi-linear solution, with
almost no rotation braking, is also observed fornhe 4 RMP configuration.
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Figure 13: The evolution of the (a) amplitude of the resonawibidal harmonics (in the
PEST-like straight field line coordinate system) of the pdxed radial magnetic field, and (b)
amplitude of the net torques acting on the plasma, compubed the quasi-linean = 3 RMP
response simulations for the ITER equilibrium widg=4.33. The NTV torque is computed
using the MARS-Q model based on analytic formulas.
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PEST-like straight field line coordinate system) of the pdxéd radial magnetic field, and (b)
amplitude of the net torques acting on the plasma, computed the quasi-linean = 3 RMP
response simulations for the ITER equilibrium widk=4.33. The NTV torque is computed
using the full toroidal geometry based MARS-K model.

For both coil configurations, we also performed a sensytstiidy by doubling the coil current.
In these cases, still no appreciable rotation damping ioéd.

The quasi-linear solution is different with lowgg values. Figures 15 and 16 show the solution
atgs = 4.07, where the peeling mode is linearly marginally unstadéseshown in Fig. 10(c).
The quasi-linear run (Fig. 15) shows local damping of theittal flow near the plasma edge
for this case. At about 35ms after the application ofrtke3 RMP field, the rotation amplitude
in the region between thee= 9/3 rational surface and the plasma edge nearly vanishes. This
is accompanied by the dynamic penetration of the resonaaciienponents as shown in Fig.
16(a). Note that the amplitude of the resonant harmonicstayen here at each of the corre-
spondent rational surfaces. The high poloidal number haitem/n=12/3,11/3,10/3 have
the largest amplitude. The simulation is terminated afteredge rotation is fully damped and
the magnetic islands become large. This later stage caenutiperly captured by the quasi-
linear model anymore. Similar rotation braking, but ocigrat earlier time, is observed in
thegy = 3.94 case.

We point out that, even though only a local rotation dampsigredicted in this simulation,
his local rotation braking can nevertheless be importamtesit occurs in the edge pedestal
region, where probably most interesting physics occuraasta with the ELM mitigation by
the RMP fields.

For then = 4 configuration, the initial value runs show that the peetimae is linearly stable
for all the four cases considered in this work. At 30kAt noatim= 4 RMP coil current, the
guasi-linear response saturates as a low level of the fietdrpation inside the plasma. The
resulting weak torques do not lead to a noticeable dampinbeoplasma flow. In fact only
with a much higher coil current, any edge braking of the flovachieved. Figures 17 and
18 show one such an example, where we have assumed a 90kAuoahts in then =4
configuration. A weak sound wave damping model is used. Th&BA model is used for
computing the NTV torque. The rotation damping is weakerereh more localised near the
plasma edge, compared to that caused by the 46kA8 RMP fields.
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Figure 16: The evolution of the (a) amplitude of the resonasibidal harmonics (in the
PEST-like straight field line coordinate system) of the pdxéd radial magnetic field, and (b)
amplitude of the net torques acting on the plasma, computed the quasi-linean = 3 RMP
response simulations for the ITER equilibrium widg=4.07. The NTV torque is computed
using the MARS-Q model based on analytic formulas.
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Figure 18: The evolution of the (a) amplitude of the resonawibidal harmonics (in the
PEST-like straight field line coordinate system) of the pdxed radial magnetic field, and (b)
amplitude of the net torques acting on the plasma, compubed the quasi-linean = 4 RMP
response simulations for the ITER equilibrium widh=3.94. The NTV torque is computed
using the MARS-Q model based on analytic formulas.
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6 Summary and discussion

We have investigated both linear and quasi-linear respoinse ITER plasma from the 15MA
baseline scenario to the applied= 3 andn = 4 RMP fields, using the MARS-F and the
MARS-Q codes, respectively. The physics models that we assuenthe single fluid model
and the MHD-kinetic hybrid model. We solve full resistive NMas opposed to reduced
MHD) equations with toroidal flow. The drift kinetic model @the pure fluid model produce
similar response results, in terms of the total field pedtidm inside the plasma as well as the
plasma surface displacement for this ITER plasma, probdinéyto the fact that the plasma
pressure for this baseline scenario is relatively low (Wwelbw the Troyon no-wall beta limits).
Also, with the given RMP field configuration, our linear respertomputations do not show
a strong kink response for the ITER plasma, contrary to tinepeiational results obtained on
some of the present day tokamaks [35, 20].

The drift kinetic model is also used to compute the NTV torguwhich is compared to an
analytic solution based model [25]. The results are simildore importantly, both models
show that the NTV torque is smaller than the resonant ele@gmetic torque in this ITER
plasma. In fact the latter provides a dominant momentum w&nk for the flow damping
in the quasi-linear simulations. The relatively weak NTVoue is related to the fact that
the precessional drift resonance induced torque enhamtesiargely absent. Therefore the
non-resonant torque, which is often small, is mainly praabon the plasma.

The quasi-linear modelling with MARS-Q shows that, with 4%kA= 3 RMP coil current, the
toroidal flow can be damped, but only locally near the plasagee Furthermore, this local
flow damping is sensitive to the existence of an initially Wigainstable edge localised peeling
mode. We have carried out this sensitivity study by slightyying the edge safety factgg
across the integer number of 4, while keeping the logticofile unchanged (in particulags

is fixed at 3.18 as in the ITER target equilibrium). @&tbelow 4, then = 3 peeling mode is
weakly unstable. This eventually causes the rotation hgakear the plasma edge in the quasi-
linear simulations. Asgl; exceeds about 4.1, tme= 3 peeling modes are linearly stable. The
quasi-linear runs show full saturation of the solution widry little rotation braking. In the
ideal case, the presence of an exact X-point in the divedofiguration leads to a marginally
stable peeling mode. The resulting rotational dampingnyt & probably weaker than that
predicted for the case with a weakly unstable peeling modenF 4 peeling mode seems
to be stable for all foug, values considered in this work, thus leading to the full s&tan of
the quasi-linear solution. With 30kAt= 4 coil current, little flow damping is predicted for
this ITER plasma.

In this study, we have not yet included the influence of the-togrror field in ITER on the
plasma response. In the quasi-linear model, we neglectaiitue due to energetic particles
and the torque associated with the intrinsic flow. The isidmomentum flux has been shown
to have an interesting effect on the radial profile of the iplagoroidal rotation profile, e.g.
by inducing rotation reversal due to the collision regimarge (from banana to the plateau
regime) in Ohmic plasmas [42]. The role of this intrinsic mentum flux in the ITER H-
mode plasma, that we studied here, is not clear. At any ragerdtation reversal may not
occur in ITER, since the ion collision frequency is rather lgwe have estimated that tive
value is below 0.1 fos = /i, € [0.04,0.99 for this ITER equilibrium). Itis, on the other
hand, interesting to understand how the presence of the 3DfitldRzan change the intrinsic
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momentum flux. Such a model is not available yet.
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