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Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is
especially important in the scrape-off layer, but to be useful there the non-local model requires consis-
tent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic
equation using a diagonalized moment expansion has been previously reported. We derive a method for
imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To
make it feasible to implement the boundary conditions in the code, we are lead to transform the non-
local model to a different moment basis, better adapted to describe parallel dynamics. The new basis
has the additional benefit of enabling substantial optimization of the closure calculation, resulting in
an Oð10Þ speedup of the non-local code.

� 2014 EURATOM/CCFE Fusion Association. Published by Elsevier B.V. All rights reserved.
1. Introduction

Kinetic effects on parallel dynamics may be important in cases
where we would otherwise like to use fluid models: in the scrape-
off layer (SOL), as the collision length is often comparable to the
parallel connection length; or if, for example, we wish to include
some Landau damping physics. To avoid the computational
expense of moving to fully kinetic simulations, we can introduce
these kinetic effects into fluid models through non-local closures
that come from solving (approximately) the electron kinetic prob-
lem in quasi-steady-state; the fluid variables are evolved as usual,
but with the closures (the higher moments, such as heat-flux and
viscosity, needed in the fluid equations) being calculated as non-
local operators on the fluid variables (i.e. integrals along field lines,
calculated numerically at each time step).

Here we discuss some new developments to the non-local clo-
sure model implemented in BOUT++ [1], first described in [2] and
based on the method of [3], in which the 1d kinetic equation is
solved using a moment expansion truncated at very high order
(up to several hundred moments). A particular advantage of this
method is that it naturally includes the collisional limit. This
regime is, in contrast, particularly challenging for fully kinetic
models (Vlasov–Fokker–Planck or Particle-in-Cell) that must
resolve the electron collision time and therefore require very small
time steps if the simulation domain contains any strongly
collisional region. This model allows fluid simulations to be
extended to situations where strong spatial and/or temporal vari-
ation of the collisionality regime makes fully kinetic simulations
impractical and ad hoc corrections (flux-limiters) inaccurate
[2,4]. Moreover it has the advantage over flux-limiters that it has
no free parameters to be set by comparison with experiment or
kinetic simulations, so it can be predictive.

In order for a non-local closure to be useful in the SOL it
requires boundary conditions at the sheath edge. These must go
beyond just the fluid velocity (Bohm condition) and heat transmis-
sion to specify completely the boundary conditions for the kinetic
equation being solved. We describe below (Section 4) a method for
and implementation of such kinetic boundary conditions in the
simplest case, neglecting secondary electron emission.

The kinetic boundary condition depends only on the parallel
velocity, so the boundary equations are separable. It also intro-
duces a sharp feature in the distribution function (due the tail
absorbed by the wall being removed), and therefore requires a
large number of moments, but only in the parallel velocity part
of the distribution function. In the previous implementations of
this model the moment expansion used basis functions depending
on pitch angle (Legendre polynomials) and speed (associated
Laguerre polynomials). In order to achieve a certain resolution in
the parallel velocity, both of these expansions must be taken to
the same order so that we have Oðn2Þmoments for some n. In order
to take advantage of the separation into parallel and perpendicular
velocity parts we here reformulate the closures on a new basis bet-
ter adapted to the problem at hand, namely an expansion in paral-
lel velocity (Hermite polynomials) and perpendicular speed
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Fig. 1. Response function for Hammett–Perkins closure (black), old basis with
30� 30 moments (red, dashed) and new basis with 30� 2 moments (blue). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

770 J.T. Omotani et al. / Journal of Nuclear Materials 463 (2015) 769–772
(Laguerre polynomials). In order to resolve the same features in the
parallel velocity we still need OðnÞ components in the Hermite
expansion, but we can now set the order of the Laguerre part inde-
pendently, allowing the total number of moments to be Oðn�mÞ
with m� n. The transformation to the new basis is presented in
Section 2.

However, the new basis is not only useful for the boundary con-
ditions. Since we are solving a 1d kinetic problem, the separation
between parallel and perpendicular velocities is generally a useful
one to make; although the collision operator does couple the par-
allel and perpendicular velocity parts, if collisions are the domi-
nant process we return to the local limit exactly (regardless of
the order of the truncation) and so we need to optimize only for
the case when they are not too strongly coupled. Thus, as we show
for the examples in Section 3, we can make substantial perfor-
mance gains for little loss in accuracy by using the new basis and
choosing the orders of the Hermite and Laguerre expansions
appropriately.

2. Choice of moment basis

Previous work on this non-local model [2,3] used a moment
basis of Legendre polynomials in pitch angle, Plðcos hÞ, and associ-

ated Laguerre polynomials in speed, Lðlþ1=2Þ
k ðs2Þ (the ‘old basis’).

Throughout we use ~s ¼ ~v=vT (correspondingly s ¼ v=vT ; sk
¼ vk=vT; s? ¼ v?=vT ; ssheath ¼ vsheath=vT ) for velocities normalized

by the thermal speed, vT ¼
ffiffiffiffi
2T
m

q
. The old basis is well-adapted for

the calculation of the collision matrix [5] which, being isotropic,
is block-diagonal in l. However, the calculation of parallel closures
is highly anisotropic; in this case a basis in which parallel velocity,
vk, and perpendicular velocity, v?, are separable is more natural
and convenient (the ‘new basis’). This is especially true for the cal-
culation of sheath boundary conditions (Section 4), which origi-
nally motivated the change.

To choose the basis functions explicitly, we identify the appro-
priate sets of orthogonal polynomials. For the parallel velocity we
take the Hermite polynomials HpðskÞ which are the complete set of
orthogonal polynomials on the interval ð�1;1Þ with weight func-
tion e�s2

k . For the perpendicular velocity we take the Laguerre poly-
nomials LjðxÞwhich are the complete set of orthogonal polynomials
on the interval ½0;1Þ with weight function e�x.

Since cos h ¼ sk
s ; s

2 ¼ s2
k þ s2

? and the Pl are odd or even functions

according as l is odd or even, slPlðcos hÞ and Lðlþ1=2Þ
k ðs2Þ are polyno-

mials in sk and s2
?. They are therefore given by a finite sum of the

new basis functions,

slPlðcos hÞLðlþ1=2Þ
k ðs2Þ ¼

Xpmax

p¼0

Xjmax

j¼0

Tpj
lkHpðskÞLj s2

?
� �

¼
Xpmax

p¼0

Tp̂j
lkHpðskÞLĵ s2

?
� �

ð1Þ

with pmax ¼ lþ 2k; ĵ ¼ l�p
2 þ k. Similarly

HpðskÞLj s2
?

� �
¼
Xlmax

l¼0

Xkmax

k¼0

T�1
� �lk

pj
slPlðcos hÞLðlþ1=2Þ

k ðs2Þ

¼
Xlmax

l¼0

T�1
� �lk̂

pj
slPlðcos hÞLðlþ1=2Þ

k̂
ðs2Þ ð2Þ

with lmax ¼ pþ 2j; k̂ ¼ p�l
2 þ j. To compute the collision matrix in the

new basis exactly up to some order, we may transform the result in

the old basis Cpj
p0 j0
¼
Plmax

l;l0¼0

Pkmax
k;k0¼0Tpj

lkClk
l0k0 ðT

�1Þl
0k0

p0 j0

� �
, with the collision

matrix in the old basis only being required at finite order.
We can now write the kinetic equation in the new moment
basis, where the moments are defined as

npj ¼ 1
2pp!

R
d3v HpðskÞLj s2

?
� �

f ð~vÞ and using the dimensionless length

z defined by @‘
@z ¼ kC ,

vk
@df e

@‘
¼ C f ð0Þe þ df e

� �
� vk

@hf ð0Þe i
@‘

! Wp;j
p0 ;j0

@np0 ;j0

@z

¼ Cp;j
p0 ;j0

np0 ;j0 þ gp;j ð3Þ

The moments of the free-streaming operator are straightfor-
ward to compute in the new basis

Wp;j
p0 ;j0
�
Z

d3v HpðskÞLj s2
?

� �X
p0 ;j0

1
p3=2v3

T

e�s2
skHp0 ðskÞLj0 s2

?
� �

¼ 2pp!
1
2

dp;p0þ1 þ p0dp;p0�1

� �
dj;j0 ð4Þ

Having found the coefficients of the moment equations we can,
as before [2], diagonalize the system by going to an eigenvector
basis (in which each moment is the solution of a first order ODE,
which can be expressed as a simple integral) and calculate the clo-
sures (such as the heat-flux) as sums of the eigenvector-basis
moments, weighted by the relevant component of the correspond-
ing eigenvector.

There is one slight complication. To compute the closures, we
must remove from the system the equations for density, fluid
velocity and temperature (which are solved dynamically). How-
ever, the moment corresponding to the temperature in the new
basis is a linear combination of the ðp ¼ 2; j ¼ 0Þ and
ðp ¼ 0; j ¼ 1Þ moments, so we must apply a further transformation
to this pair of moments to remove the temperature part from the
closures. We call this transformation R, and solve for the set of
moments np;j

� ¼ Rp;j
p0 ;j0

np0 ;j0 . R differs from the identity only in four
components, which are

R0;1
0;1 R0;1

2;0

R2;0
0;1 R2;0

2;0

 !
¼

1
2 �1
1
3

4
3

 !
ð5Þ
3. Comparison of bases

Landau damping is an interesting test case for these closures
because we have a known collisionless limit from the results of
Hammett and Perkins [6]. It is possible to reproduce this collision-
less limit by replacing the Hammett–Perkins expression for the
heat-flux with the result from the non-local closures being
discussed here and taking a sufficiently small (but non-zero) coll-
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Fig. 3. Run times for drift-wave simulation: new basis 2 (black), n� 4 (red) and old
basis (blue). Squares mark the smallest well converged simulations (see Fig. 2). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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isionality. To match the collisionless limit using the old basis
requires 30� 30 moments for convergence. In the new basis, how-
ever, we have the advantage of being able to much reduce the
number of moments; using only 30� 2 moments gives only a
small loss in accuracy, as shown in Fig. 1. Here and below we
describe the number of moments in particular cases as pairs of
numbers: (order of Legendre expansion) � (order of associated
Laguerre expansion) for the old basis and (order of Hermite expan-
sion) � (order of Laguerre expansion) for the new basis.

The decrease in the number of moments needed for conver-
gence represents a significant gain for the performance of the code.
To illustrate this we consider the drift-wave instability test-case,
previously discussed in [7] but here with the electron parallel vis-
cosity included. Convergence in the old basis requires 20� 20
moments, while in the new basis it requires only 20� 2; the total
run time (for otherwise identical simulations) reduces from 106
cpu-hours to 11 cpu-hours. The simulations were run on a 4-core
desktop machine, using a 32� 32 grid. The perturbation is seeded
with a wavenumber kk ¼ 8:15� 2p

kC
so that we consider a low coll-

isionality case. Fig. 2 shows that convergence can be achieved for a
much smaller number of moments using the new basis. The perfor-
mance gain is demonstrated by Fig. 3 where we see that the total
run time for the simulations is directly proportional to the number
of moments used, as the calculation of the closures dominates the
computation time here (although in a typical three-dimensional
simulation there would be other computationally intensive opera-
tions, such as Laplacian inversion, that might be comparable in
computational time).
4. Sheath boundary conditions

Calculation of correct sheath boundary conditions is much more
complicated for the non-local model than for simple fluid models,
not least because boundary conditions are required for several
hundred moments rather than just a few. To derive boundary con-
ditions for the non-local model we start from the simplest possible
kinetic sheath boundary condition (with no secondary electron
emission). Considering the sheath where outgoing vk is positive

f sheathðvk; v?Þ ¼
fþðvk; v?Þ vk > 0
fþð�vk;v?Þ �vsheath < vk < 0
0 vk < �vsheath

8><>: ð6Þ

where vsheath ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2e/sheath

me

q
is the speed needed to cross the sheath

potential. As this boundary condition is independent of v?, the cal-
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Fig. 2. Convergence of drift instability simulation, growth rates for various numbers
of moments: new basis n� 2 (black), n� 4 (red) and old basis (blue). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
culation is much cleaner in the new basis, since the expansion in
Ljðs2

?Þ is trivial everywhere.
First we translate this boundary condition into the moment

representation.
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ð7Þ

as Hpð�vkÞ ¼ ð�1ÞpHpðvkÞ. Since fþðvk;v?Þ � f ðvk;v?Þ for vk > 0 we
can expand fþ in moments

np;jjsheath ¼
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ð2p0þ1Þ;j � bp0

p nð2p0þ1Þ;j � cp
p0n

2p0 ;j
� �

p even

P
p0

ap
p0n
ð2p0þ1Þ;j þ bp

p0n
2p0 ;j

� �
p odd

8>><>>:
ð8Þ
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We could use either relation in (8) to determine the odd-p
moments in terms of the even-p moments or vice versa. They must
be equivalent (before truncation) but the odd-p version is simpler,
so we use that.

Finally, the boundary condition that we want is on the eigen-
vector-basis moments. We need to determine the positive-eigen-
value (outgoing) moments (and the fluid velocity) in terms of the
negative-eigenvalue (incoming) moments.
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This boundary condition depends on the value of the sheath
potential, which must be determined self-consistently by imposing
a boundary condition on the current. In the BOUT++ code two
options have been implemented: zero current at either sheath
(floating walls) and zero net current (equal potential at both walls).
We compute the sheath potentials that satisfy the condition on the
current by Newton iteration. To find E

eB
C and E

eB
ð0Þ at each step of the

iteration we interpolate from a set of stored values, pre-computed
for a suitable range of ssheath (here from 0 to 3 in steps of 0.01).

In the limit of short collision length, the non-local model
asymptotes to local, collisional (Braginskii) fluid closures. In this
case the influence of the boundary conditions does not propagate
into the domain and it suffices to have the correct fluid velocity
and heat-flux at the sheath. Thus when the electron temperature
is low enough the sheath boundary conditions described here give
the same results as the old ones (used in [2], which impose the cor-
rect heat-flux but do not otherwise enforce sheath boundary con-
ditions on the non-local model). However, as the temperature (and
hence the collision length) increases it becomes important to use
fully correct boundary conditions, as we see in Fig. 4 where the
temperature profiles in steady-state in a one-dimensional SOL
model (see [2] for details) are shown. The only parameter changed
is the amplitude of the heat source for the electrons which is used
to vary the electron temperature. For low temperatures (up to
�50 eV here, corresponding to a collision length of �4 m) both
methods give the same results, but at higher temperatures
(�100 eV corresponding to a collision length of �14 m) we can
see that the details of the boundary conditions have a significant
effect on the results.
5. Conclusions

A scheme to give kinetic sheath boundary conditions for non-
local parallel closures has been derived and implemented in
BOUT++, allowing kinetic effects to be consistently included in
fluid models of the SOL. This opens up a much wider parameter
space to investigate the behavior of the SOL plasma through
three-dimensional fluid simulations, as these can now be extended
to low collisionality.

The change in moment basis also gives an Oð10Þ speed-up in the
evaluation of the closures for typical parameters, making three-
dimensional simulations using the non-local code much more
readily practicable.

Future work will investigate the extension of the boundary con-
ditions to include the effects of secondary electron emission and
begin to apply these non-local closures to three-dimensional SOL
simulations, initially focusing on filament dynamics.
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