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Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the
appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the
modes are obtained. The associated diffusion is estimated using a c=k2

? approach for the fastest growing
modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line
tying at the target. The magnetic geometry is obtained using current carrying wires, representing the
plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear
effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance
from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake
configurations are examined in order to assess the importance of the geometry on the stability of the
boundary plasma.
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1. Introduction

Future magnetic fusion experiments will operate under the
stringent constraint posed by the interaction between plasma
and solid surfaces [1,2]. Current experimental extrapolations for
the heat flux Scrape Off Layer (SOL) width in ITER predict a
0.1 cm thickness at the outer midplane in the inter-ELM phase at
low and medium collisionality [3]. Such sharp gradients might
induce or strengthen SOL instabilities, which could enhance
perpendicular turbulent transport and consequently flatten the
SOL profiles. However, the mechanisms governing the perpendicu-
lar particle and energy transport in the SOL are not yet completely
clarified. For example, there might be competition between local
(diffusive) and nonlocal (intermittent) transport, which might con-
tribute at different levels to the total fluxes [4,5]. The transport
might also radically change in different regions of the plasma,
e.g. being more intermittent upstream and more diffusive at the
target. This could be due to the large variation of the equilibrium
quantities in the SOL in collisional regimes [6] or to the disconnec-
tion between upstream and downstream physics due to the strong
magnetic shear at the X-point [7].
While an accepted and consistent theoretical framework to
describe the anomalous transport is not available, most SOL
modelling codes employ a somewhat oversimplified treatment of
the perpendicular dynamics of the plasma. It is common practice
to assume a simple diffusive model with a diffusion coefficient
independent from the magnetic geometry and spatially homoge-
neous, and use it as a fitting parameter to match the experimental
data. These approximations leave uncertainties on the reliability of
the predictions for ITER and DEMO.

In this paper, we estimate the perpendicular diffusion coeffi-
cients by identifying some of the sources of anomalous transport
(the intrinsic instabilities in the SOL) and by determining their
growth rate and wave number. Our work is largely based on the
flute approximation as proposed in several theoretical papers
[8–10] and well summarized in [10]. The stability of a single field
line is considered and the structure and complex frequency of the
unstable modes associated to it are obtained. The calculation is
carried out for an ITER class device and repeated for field lines at
different distances from the separatrix, for different SOL widths
and for different divertor concepts (Lower Single Null, exact
Snowflake [11], Super-X [12]) in order to assess the influence of
the magnetic geometry on the stability of the SOL. While ITER
baseline scenario requires partial detachment, we focus on low coll-
isionality regimes which lead to sheath limited conditions. This is
motivated by the fact that some of the results in [3] were obtained
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Table 1
Parameters of the current carrying wires.

yp xd1 yd1 a1 xd2 yd2 a2

LSN 0.5 0 �0.25 0.5 / / /
SF 0.57 0.139 �0.114 0.25 �0.139 �0.114 0.25
SX 0.535 0.125 �0.339 0.5 �0.129 �0.154 0.15
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in such a regime although the ITER divertor is expected to work in
partial detachment [13].
2. Model and equations

Our calculations were carried out using an ideal drift-fluid
model which includes curvature, finite Larmor radius effects, finite
magnetic shear and sheath boundary conditions. The starting
normalized equations are the vorticity equation, parallel Ohm’s
law, particle and energy conservation:

@U
@t
þ ðb�r?/þ sb�r?nÞ � r?U ¼ rkJk þ

2
d

b� j � r?ptot ; ð1Þ

@w
@t
þrk/ ¼ rkpþ arkT; ð2Þ

@n
@t
þ b�r?/ � r?n ¼ 0; ð3Þ

@T
@t
þ b�r?/ � r?T ¼ 0; ð4Þ

where U � r2
?/; Jk � �r2

?w, s is the ratio between ion and electron
temperature, ptot ¼ pi þ pe ¼ ðsþ 1ÞnT and p ¼ nT . The normaliza-
tions are as follows: x � bx 1

R for the lengths, t � bt vA
R for the time,

/ � b/ c
BvAR for the electrostatic potential, w � bw 1

BR for the magnetic

flux, Jk � bJk 4pR
cB for the parallel current density, p � bp db

n0T0
for the

pressure, n � bne
db
n0

for the density, T � bT e
1

T0
for the electron temper-

ature, j � bjR for the curvature vector, U � bU R
vA

for the vorticity.
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Fig. 1. Magnetic geometry of the divertor configurations studied. The thin line is the sepa
midplane. Lengths are normalized with respect to R.
Note that vA is the Alfven speed, R is the major radius, B and b
are the amplitude and unity vector of the confining magnetic
field, d ¼ c=ðRxpiÞ the normalized ion skin depth, a ¼ 0:71bd;

b ¼ 4pn0T0=B2 (note the different definition of b), n0 and T0 are
typical values of the density and electron temperature while the
ion temperature is constant. These equations contain most of the
physics used in previous investigation of SOL stability (see e.g. [10]
and references therein).

Using the flute approximation (i.e. kk � k?) for the perturba-
tions and assuming no parallel variations of the equilibrium we

can write: f ¼ f eqðx?Þ þ ~f ðsÞeiðk?�x?�xtÞ, where s is the parallel coor-
dinate along a field line, and then linearize the system. After some
algebra we obtain:

1

k2
?

rk;0 k2
?rk;0 ~/

� �
þ ½ð ~x�x�ipÞ ~xþ c2

MHD�~/ ¼ 0; ð5Þ

where xE � k? � b0 �r?/eq; x�en � �k? � b0 �r?neq; x�eT � �k?�
b0 �r?Teq; x�ip � þk? � b0 �r?pi;eq ¼ �sx�en; ~x � x�xE and
c2

MHD � 1
k2
?

2
d k? � b0 � j
� �

ðk? � b0 �r?ptot;eqÞ.
This equation needs two boundary conditions, which are given

by the continuity of the plasma current at the entrance of the
Debye sheath. The perturbed current from upstream is easily
obtained from ~w ¼ � i

~xrk;0 ~/; ~n ¼ x�en
~x

~/. The linear perturbed part

of the sheath current is given by [9]: eJk;sh ¼ r
ffiffi
b
p
q2 ð~/�KbdeT Þ, where

q ¼ d
ffiffiffi
b
p

is the hybrid Larmor radius, K � �0:5 log½2pðme=miÞ
ðTi=TeÞ� 	 �2:5 is the wall floating potential and r ¼ 
1 and
depends on the b0 � n where n is the unity vector perpendicular
to the target surface. If the magnetic field is entering the surface
r ¼ 1, while if it is leaving it, r ¼ �1. Equating these two currents
gives:

�ik2
?rk;0 ~/ ¼ r

ffiffiffi
b
p

q2
~x�Kbdx�eTð Þ~/ 	 r

ffiffiffi
b
p

q2 x~/ ð6Þ

where we used: xE 	 �Kbdx�eT [9].
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Fig. 2. Connection length for different configurations and different distances from the separatrix as a function of the poloidal angle.
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3. Geometry and equilibrium

3.1. Operators

The Cauchy problem formed by the second order differential
equation Eq. (5) and the boundary conditions Eq. (6) is well defined
once the equilibrium quantities are fixed. In order to do that, we

need to express k2
?; k? � b0 � j and the operator k? � b0 �r?. We

start by writing the equilibrium field: bb0 ¼ ef þ ef �rW ¼ qrW

�rhþrf�rW, where bb0 � B=Bf ¼ b0B=Bf 	 b0 as B=Bf 	 1, h
and f are the poloidal and toroidal angles, ef is directed along f

and has unity norm. The parameter q ¼ bb0 �rfbb0 �rh
is the local safety

factor. With this convention, we have that @W=@x ¼ by and

@W=@y ¼ �bx and we can define bp � jBpj=Bf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q
� 1,

where Bp is the poloidal magnetic field.
We evaluate k? as in ballooning theory by imposing the follow-

ing conditions [14]: (1) k? ¼ NrS; (2) b0 � k? ¼ Nrk;0S ¼ 0; (3)
ef � k? ¼ N. Here N is an integer number determining the ampli-
tude of the wave vector and condition (1) corresponds to
r� k? ¼ 0. This leads to: k?=N ¼ rf� mrhþ ðbk � bk;0ÞrW,

where rk;0bk ¼ � 1
q
@q
@W ¼ �bs, bs is the local magnetic shear and bk;0

is an integration constant that determines the direction of the
wave vector.

By writing rf eq ¼
@f eq

@W rWþ @f eq

@h rhþ @f eq

@f rf, we find: k? � b0�
r?f eq ¼ �N @f eq

@W � Nðbk � bk;0Þ
@f eq

@v , where v is the bi-normal coordi-

nate, such that @f eq

@v 	 1
q

@f eq

@h � qb2
p
@f eq

@f

� �
.

Finally, in low b plasmas j 	 r?B=B with B � R�1. This gives
j 	 �ex and b0 � j 	 �ey þ byef, from which the curvature opera-
tor can be calculated [14].
Fig. 3. Modulus of the perpendicular wave number as a function of the distance
form the separatrix for different h0 and divertor configuration. The blue, red and
black curves represent LSN, SF and SX respectively. The solid lines are for the outer
divertor and the dashed for the inner divertor. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
3.2. Magnetic field and equilibrium parameters

The equilibrium magnetic field is generated using straight
current carrying wires representing the plasma current and the
divertor coils. This has the advantage of giving simple analytic
expressions for the magnetic flux, W ¼ C logðrpra1

d1ra2
d2Þ, and the

poloidal angle, h ¼ atan y�yp

x�xp

� �
þ a1atan y�yd1

x�xd1

� �
þ a2atan y�yd2

x�xd2

� �
þ c1.

Here rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2 þ ðy� ypÞ

2
q

is the distance between a point

and the wire representing the plasma, which is at ½x ¼ xp; y ¼ yp�
(the distance to the divertor coils is defined similarly), a1;2 are
the ratio between the divertor coils and the plasma currents and
c1 is a constant used to fix the angle of the X-point at h ¼ 0. With
this convention, the angle h is p=2 at the outer midplane, p at
the top of the tokamak, 0 and 2p at the X-point (at the low and
high field side, respectively), �hdo at the outer target and 2pþ hdi
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at the inner target. The constant C ¼ l0Ip=ð2pRBÞ determines the
pitch angle of the field lines and for a circular tokamak would

become C 	 ða=RÞ2q�1
a where a is the minor radius and qa the safety

factor there. We fixed C ¼ 3�3 representing an equivalent circular
tokamak with an edge safety factor and aspect ratio of 3.

We studied three divertor configurations with Lower Single
Null (LSN), exact Snowflake (SF) [11] and Super-X (SX) [12]
geometry. The wires parameters for these configurations are
shown in Table 1 (xp ¼ 0 in all cases) and the geometry of the field
is represented in Fig. 1. In the simulations, we assumed a

deuterium plasma (Z ¼ 1; A ¼ 2) for ITER (T0 ¼ 200 eV; n0 ¼ 2:5�
1013 cm�3; B ¼ 5:3 � 104 G; R ¼ 600 cm) relevant parameters [6]
and assumed s ¼ 2. In the three configurations, we compared the
stability of field lines at four different distances from the
separatrix, d, calculated at the outer midplane (where Bx ¼ 0):
0.1 cm, 0.5 cm, 1 cm, 2 cm. The connection length (outer midplane
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to target distance), Lk, is longer for the SF and SX configurations
with respect to the LSN, as shown in Fig. 2. Note that in all the
simulations the divertors are in the sheath limited regimes
(i.e. small collisionality m�K 10), thus justifying an equilibrium
with no parallel variations. Hence, we take an equilibrium with
an exponential decay in W and no variation along v and s, such that
dneq=dW 	 dbb�1

p k�1
n and dTeq=dW 	 b�1

p k�1
T , where kn;T , which are

the decay length of the fields n and T (measured in cm and normal-
ized to R), and bp are evaluated at the outer midplane (where
@f eq=@y ¼ 0). In the calculations presented here we assumed
k ¼ kn ¼ kT and investigated decay lengths equal to 0.1 cm and
1 cm.

The effect of the magnetic shear is taken into account by the
parallel variation of k?. In Fig. 3, we plot k?=N as a function of d
for the three configurations and for h0 equal to 0 and p. Note that
h0 is the value of the poloidal angle at which bk ¼ bk;0 and hence
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Fig. 7. IðxÞ=N as a function of N for all the con
determines the direction of k?. The curves in Fig. 3 show that, with
respect to the LSN configuration, the SF and SX divertors produce
stronger shearing at the target because of the effect of the X-point
region on the former and the longer divertor leg length on the
latter. This has consequences on the stability of the mode as well
as on the estimated diffusivity.
4. Numerical results

We solved numerically Eq. (5) with the boundary condition
Eq. (6) and the equilibria discussed in the previous Section. In order
to do that, we used a shooting code benchmarked with analytic
solutions (obtained assuming constant k?) and with the non resis-
tive results in [10]. By systematically exploring the (N; h0) space,
we identified the most unstable modes for each N, divertor config-
uration and plasma equilibrium.

We started by addressing the effect of a narrow SOL width. Our
‘‘large’’ SOL case, k ¼ 1 cm, produced results largely consistent
with those presented in [10]: maximum growth rate around
h0 ¼ p, with a broad maximum in h0; mode stabilization due to
partial line tying at low N and due to diamagnetic effects at large
N, see Fig. 4(a); a weakly ballooned mode structure, mildly local-
ized on the outer region, see Fig. 4(b); mode driven by curvature
and sheath effects [9]. Not surprisingly, the steeper gradient
increases the growth rate of the modes, Fig. 4(c), but also leads
to an unexpected change in their nature. For all d, a gradual reduc-
tion of the decay lengths shows initially a shift of the maximum
value of the growth rate towards lower values of h0 and then the
appearance of a mode localized in the outer divertor leg,
Fig. 4(d), which becomes dominant when k 	 0:1 cm. In the
½N; h0� space, this perturbation is localized in a narrow band around
h0 	 0 and it reaches its maximum growth rate for values on N
larger than the still present weakly localized mode (see Fig. 4(c)).

The stability of the mode changes significantly depending on
the radial position in the SOL. In all our simulations, the farther
the field line is from the separatrix, the larger the maximum
growth rate, which is also achieved at higher N values, see Fig. 5.
This can be explained by the fact that close to the separatrix, k?
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at the target becomes large (see Fig. 3), thus reducing the incom-
plete line tying stabilization, that goes like 1=k2

? [10] and the
sheath drive term [9]. For the same reason, Snowflake and Super-
X divertors, which have higher perpendicular wave number at
the target, show a similar trend for IðxÞ, see Fig. 5.

We define the estimated diffusion coefficient as D � IðxÞ=k2
? ¼

DðsÞIðxÞ=N2, where DðsÞ determines its parallel variation and
depends exclusively on the magnetic geometry, see Fig. 6. The
quantity IðxÞ=N2 is plotted in Fig. 7 for the cases studied and
shows recognizable trends. Comparing the left and the right col-
umns of Fig. 7 shows that higher SOL gradients systematically
increase the diffusion coefficient. This happens roughly in a linear
way for d 6 1 cm and low N, while the increase is weaker for
higher N. For k ¼ 0:1 cm and sufficiently large N, the divertor
modes discussed above contribute to the transport together with
the weakly ballooned modes, so that we expect a local enhance-
ment of the turbulence and the transport in the outer divertor leg.

In advanced divertors, IðxÞ=N2 increases around a factor 2 with
respect to LSN, Fig. 7. Only close to the separatrix and for steep
gradients (i.e. d ¼ 0:1 cm; k ¼ 0:1 cm) we find no increase in the
estimated diffusion. Snowflake and Super-X configurations behave
similarly despite the fact that the longer connection length and
magnetic fanning are obtained in different ways (in the X-point
region for the former, in the long outer divertor leg for the latter).
However, to have a complete picture, also parallel variations
(i.e. D) must be taken into account, Fig. 6. While LSN, SF and SX
configurations have similar D above the X-point for the dominant
weakly ballooned mode, close to the target they change signifi-
cantly with LSN reaching much larger values of D ¼ ðN=k?Þ2 than
SF or SX, as shown in Figs. 3 and 6. This suggests that transport
in advanced configuration might increase in the midplane region,
but be reduced in the proximity of the target. In other words, the
longer connection length below the X-point does not significantly
increase the plasma spreading in the divertor region because the
in the extra length the diffusion coefficient reduces. However, the
small perpendicular size of the perturbations beyond the X-point
might induce secondary instabilities in the nonlinear phase, which
might change the transport estimates.

5. Conclusions

We calculated the stability of an ITER like Scrape Off Layer to
ideal curvature and sheath driven flute perturbations. We found
that steep gradients can destabilize a divertor localized mode
and increase the diffusion coefficient. For all magnetic geometries,
this could have the beneficial effect of spreading the SOL width
below the X-point, thus alleviating the divertor heat loads. We also
compared standard Lower Single Null to Snowflake and Super-X
configurations. We showed that the increased shearing of the
mode in the advanced configurations reduces the maximum
growth rate of the instabilities. With respect to standard configura-
tions, the upstream diffusion coefficient doubles, although in the
divertor region the much larger perpendicular wave number imply
that in advanced configurations the turbulent diffusion due to the
weakly ballooned mode below the X-point is increased only
marginally. Experimental evidence shows filaments ejected from
the separatrix in both L-mode and in the inter-ELM phase [5].
The transport due to these structures, which could account for
50–60% of the total [5] (the rest is due to the intrinsic instabilities
and neoclassical effects), is not discussed in this paper and might
compensate the reduced diffusive coefficient due to the intrinsic
instabilities in advanced configurations. However, the question of
how the intermittent transport is affected by steeper gradients or
advanced divertor configurations is still open [15].

Our work addresses the problem rigorously within the frame-
work of the model used. However, a number of approximations
were made and a few comments are appropriate. The extreme
shearing of the mode in the divertor region would call for a kinetic
treatment of the problem, at least in the close proximity of the sep-
aratrix. For the ITER simulations, however, qk? exceeds unity only
in advanced configurations when considering regions very close to
the divertor and very close to the separatrix (i.e. h0 	 �hdo and
d ¼ 0:1 cm). The linear approximation used here is likely to be able
to give only a qualitative understanding of the problem as fluctua-
tions are typically large in the SOL. Extensions of the model, such
as the introduction of more complete equations for the density
and temperature evolution, as well as the effect of parallel advec-
tion are envisaged and expected to play a role. The analysis of fully
toroidal configurations in higher collisionality regimes (i.e. high
recycling and detached conditions) is left for future work.
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