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Abstract 

Rotational stabilization of the resistive wall mode (RWM), with varying ExB flow 

shear and the radial location of peak shear, is systematically investigated using the 

MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], following a 

non-perturbative magnetohydrodynamic-kinetic hybrid approach. The equilibrium is 

based on a 9MA steady state target plasma from the ITER design, except for the plasma 

flow profile, which is significantly varied in this study. Generally two branches of 

unstable n=1 kinetic RWMs are computed (n is the toroidal mode number), depending on 

the flow amplitude. The first unstable branch, which is normally the more unstable one, is 

sensitively affected by both the local flow shear as well as the radial location of the peak 

amplitude of the shear. On the contrary, the second unstable branch, which is often 

weakly unstable, is less affected by the flow shear. Consequently, stability domains are 

computational mapped out in relevant two-dimensional parameter spaces.    

1. Introduction

It is now well understood that stabilization of the resistive wall mode (RWM) is the

key solution for increasing the fusion power production in advanced tokamak operations

[1]
. Provided that the RWM is stable, or is stabilized by certain means, the plasma can in

principle overcome the so called Troyon no-wall beta limit 
[2]

, and reach the ideal-wall
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beta limit, which can be significantly higher. For example, for an ITER plasma studied in 

Ref. [3], the permissible stable  (where 2

000 /2 Bp  is the ratio of the plasma pressure, 

0p , to the magnetic pressure, and 0B  is the vacuum toroidal magnetic field at the 

magnetic axis) can be increased by about 40% with stable RWM, resulting in doubling of 

the fusion power production.  

   So far, both active control techniques
 [4-17]

 using magnetic coils, and passive means, 

e.g. relying on plasma flow
[18-22] 

and/or kinetic resonance effects from thermal and 

energetic particles
[23-33]

, have been proposed and experimentally investigated as two 

effective ways for suppressing the RWM. Whilst active control may have to be the 

ultimate solution for guaranteeing robust stability of the RWM in ITER, it does require 

additional hardware components and additional power supplies. More critically, it is 

certainly not easy, may not even be practical, to install an active control coil system in the 

future fusion reactor environment. Therefore, it is very desirable if the RWM can be 

made robustly stable by employing passive control, for instance, by varying the plasma 

flow and flow shear in a controllable manner. This is the purpose of the present study.  

    Passive stabilization of the RWM depends on the release, or, damping, of the free 

energy associated with the mode, via various channels. The primary energy dissipation 

occurs in the resistive wall, converting a fast growing ideal kink mode into a slowly 

growing RWM. It is well known that this primary damping mechanism does not change 

the stability margin of the mode. Further energy damping, which may change the stability 

margin, has to come from inside the plasma. Several possible free energy-releasing 

channels inside the plasma have been identified, including the sound wave continuum 

damping 
[18,20]

, the Alfven continuum damping 
[21,22]

, the drift kinetic damping due to the 

mode resonance with particles 
[23-33]

, as well as the kinetic damping coupled to additional 

energy dissipation through resistive layers near rational surfaces 
[34]

.  

    In this work, we consider drift kinetic damping physics for the RWM. We vary the 

toroidal ExB flow shear of the plasma, which in turn affects the kinetic effects, and thus 

investigate how the flow shear changes the RWM stability. Within the single fluid theory, 

the plasma flow is represented by the bulk ion flow, which is the superposition of the 

ExB flow and the ion diamagnetic flow, with the latter varying roughly linearly with the 

plasma equilibrium pressure. We choose an ITER equilibrium from the 9MA steady state 



scenario, but the flow profile understandably does not follow that predicted for ITER, as 

that shown in Refs. [10, 26]. We motivate our choice of the flow profiles by two factors. 

One is the uncertainty associated with the prediction of the ITER plasma rotation (both 

amplitude and the radial profile). The other is the possibility of actively controlling the 

flow profile by changing, for example, the neutral beam injection angle or the radial 

deposition of the ion cyclotron wave heating (which may induce toroidal flow due to 

mode conversion). In this work, we consider only an ideal plasma model. Only 

precessional drift resonances of thermal ions and electrons are included, assuming that 

the achievable toroidal ExB flow is relatively slow in ITER.  

    We mention that the effect of flow shear on the RWM has been briefly studied in an 

early work
 [18]

, where a fixed shear is assumed. Also only a fluid model was assumed 

there. Another interesting fluid work reports Kelvin–Helmholtz type of flow shear 

destabilization of ideal external kink mode, which occurs at flow speed of a significant 

fraction of the Alfven speed
 [35]

. A semi-analytic result was recently reported showing the 

flow shear stabilization of the RWM, by choosing a flow regime such that the Landau 

damping resonance effect is excluded from the consideration
 [36]

. Here we perform a 

systematic study of the flow shear effect within a kinetic model for the RWM, where the 

precessional drift resonance plays the key role.   

    We compute the n=1 RWM stability using the MARS-K code and following a 

non-perturbative approach 
[24]

. Even though we do not include the finite drift orbit width 

effects, our results are accurate up to the first order correction in terms of the finite 

banana width, which holds for precessional drift resonance as established in Ref. [37]. 

Our key finding is that the toroidal flow shear, as well as the radial location of the peak 

shear, plays a significant role in the stability of the kinetic RWM.  

    The following Section briefly describes the toroidal equilibrium that we use. The 

shear flow is also specified here. Section 3 reports the numerical results, followed by a 

concluding Section. 

 

2. Equilibrium specifications 

2.1. Equilibrium for an ITER 9MA steady state plasma 

Consider an ITER equilibrium designed for the 9MA steady state scenario, with qmin~1.5. 



The major radius is R0=6.2m, with the on-axis vacuum toroidal field of B0=5.3Tesla. The 

plasma cross section, as well as the double wall shape, is shown in Fig. 1(a). A slightly 

simplified wall shape, compared to the actual design, is adopted in this study. A 2D 

complete wall, with thin-wall approximation, is assumed, with the wall penetration time 

of about 0.3s for the double wall structure representing the ITER vacuum vessel. This 

corresponds to the slowest eddy current decay time with the n=1 current pattern. 
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Fig.1. (a) The shape of the equilibrium cross section for the ITER 9MA steady state 

plasma chosen in this work, plotted together with the simplified shapes of the double-wall 

vacuum vessel. Note that the (R, Z)-coordinates are normalized by R0 in the plot. Also 

shown are the radial profiles of the equilibrium quantities for (b) the normalized pressure 

for the ITER target plasma, (c) the safety factor q, and (d) the normalized surface 



averaged toroidal current density. The plasma minor radius is labelled by the normalized 

equilibrium poloidal flux   and s= 1/2 . 

Fig.1. (b-d) plot the radial profiles of the target equilibrium pressure, safety factor q, 

and the surface averaged toroidal current density, respectively. The plasma pressure is 

normalized by the factor B0
2
/0. The current density is normalized by B0 / (R00). The 

equilibrium bootstrap current is taken into account in constructing the current profile, 

resulting in a slightly abnormal variation of the q-profile near the plasma edge. 

 

Shown in Fig.1 is the ITER target equilibrium 
[27,30,38,39]

, with the normalized beta 

N=(%)a(m)B0(T)/Ip(MA)=2.93, where  is the plasma volume averaged pressure 

normalized by the magnetic pressure, and Ip the total plasma current. For the purpose of 

parametric investigation, we also vary the plasma pressure while fixing the edge q value 

at 138.7aq , the same as for the target plasma equilibrium. [The target plasma is in 

divertor configuration. In MARS-K computations, the plasma boundary is slightly 

smoothed near the X-point, resulting effectively in a limiter configuration for the 

equilibrium.] This essentially keeps the total plasma current unchanged while varying N. 

This way, we compute the Troyon no-wall beta limit, for the n=1 ideal external kink 

instability, to be N
nw

=2.54 for this ITER plasma, and the ideal-wall (with the ITER inner 

wall) beta limit is N
iw

=3.54. As commonly adopted for the RWM study, we define a 

linear scaling factor C=(N - N
nw

 )/(N
iw

 -N
nw

 ). 

 

2.2. Specification of toroidal ExB flow and flow shear 

For the purpose of systematic scans, we choose an analytic specification of the radial 

profile for the toroidal ExB rotation frequency , with the following model.   
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Here  is the normalized equilibrium poloidal flux labeling the plasma minor radius, with 

 =0 denoting the magnetic axis, and  =1 corresponding to the plasma boundary surface.  

The above model allows, on top of a global rotation profile, a local variation of the 

rotation shear near =0 (0 corresponds to the radial location of the peak value of the 

rotation shear amplitude). The local flow shear is determined by the parameter S in the 

model, which does not follow the exact shear definition, but is closely related to the shear 

via the following expression 

0b

d d
d d

S
  

 



 



    
      

 . 

We shall call S the normalized flow shear parameter, which is a good indicator of the 

local flow shear. The parameter  defines the radial extent of the local shear variation. In 

further numerical study, we fix 1.0 . We point out that the above specification only 

defines the rotation profile. The rotation amplitude is varied by introducing the on-axis 

rotation frequency 0. While scanning 0, the entire plasma rotation profile is scaled. 

Finally, we also introduce quantities s  , 00 s . In further study, we shall exploit 

the RWM stability in the parameter space specified by s0, S, 0 , and C. 

For the drift kinetic resonance effects considered in this work, the crucial role is 



played by the matching between the ExB flow frequency and the precessional drift 

frequency of thermal ions and electrons. Figure 2 shows three ExB flow profiles, 

constructed according to the above flow model with 0=0.02A (A=R0 (µ0ρ0)
1/2

/B0 is 

the on-axis Alfven frequency, with ρ0 being the plasma core density), S=9, and 

s0=0.35,0.55,0.75, respectively, together with the thermal ion precessional drift frequency 

<
i
d>, averaged over the particle (Maxwellian) equilibrium distribution as well as over 

the magnetic surface, for the ITER target plasma. The electron toroidal precession has a 

reversed sign compared to the ion precession. For comparison, we also plot the ion 

diamagnetic rotation frequency *i for this ITER plasma.  
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Fig.2. Three examples of the ExB flow profiles with a large local shear (S=9, 

0=0.02A) located at s0=0.35,0.55,0.75, respectively, plotted together with the thermal 

ion precessional drift frequency, averaged over the particle phase space (energy and 

pitch angle) equilibrium distribution and along the magnetic flux surface, and with the 

thermal ion diamagnetic frequency for the target plasma. All frequencies are normalized 

by the on-axis Alfven frequency A. 

 

    Figure 2 shows that a proper resonance condition, between the ExB flow and the 

averaged toroidal precession, is satisfied only at slow plasma rotation. This is indeed 

confirmed by further MARS-K computations shown in Section 3. 



 

3. Numerical results and discussions 

    The computational results presented below are obtained by the MARS-K code 
[24]

, 

following a non-perturbative MHD-kinetic hybrid approach. In this approach, the single 

fluid MHD equations, linearized around a given equilibrium, are solved with a drift 

kinetic closure replacing the standard adiabatic ideal gas assumption. This involves two 

key changes to the standard MHD model. First, the perturbed plasma pressure is 

kinetically evaluated by solving the perturbed drift kinetic equation for plasma particles, 

resulting in an anisotropic perturbed pressure (pressure tensor), which replaces the scalar, 

isotropic perturbed pressure for the equation of state in the standard fluid formulation. 

Secondly, in the momentum equation, the force term associated with the perturbed 

pressure gradient is now replaced by the divergence of the perturbed pressure tensor.    

The resulting coupled MHD-kinetic equations are solved as a generalized eigenvalue 

problem, where the real and imaginary parts of the (generally) complex eigenvalue 

represent the growth rate and real frequency of the RWM, respectively. Because the 

eigenvalue also enters, in a strongly non-linear form, into drift kinetic integrals via the 

resonance operator, this opens the possibility of existence of multiple unstable branches 

for the same RWM
 [40, 41]

, which is often referred to as the kinetic RWM in this work. For 

comparison, we shall also compute the eigenvalue of the mode under fluid approximation, 

where the drift fluid closure is replaced by the standard equation of state for ideal gas. 

The resulting RWM is referred to as the fluid RWM. Finally, we mention that in this work, 

the fluid flow is also included into the MHD part of the equation via inertial forces as in 

Ref. [33], under the assumption of subsonic flow.        

Detailed description of the MARS-K formulation is reported in Ref. [24], with 

systematic code benchmarking efforts presented in Ref. [39].   

 

3.1. Generic characteristics of the non-perturbative kinetic solution 

For this ITER equilibrium, and with the chosen flow profile, the MARS-K 

non-perturbative computations typically find two unstable branches for the n=1 kinetic 

RWM. Figures 3 and 4 show two examples at C=90% and 70%, respectively. We choose 

the flow profile with s0=0.75 and S=9, and scan the rotation amplitude 0. The toroidal 



precessional drift resonance of thermal ions and electrons are taken into account in the 

kinetic module.  

Figure 3 (a) and (b) plot the normalized growth rate and the real frequency of the 

RWM, respectively. The normalization factor is the MARS-K computed slowest n=1 

eddy current decay time, w, of the double wall structure in vacuum. At C=90%, the two 

unstable branches co-exist at a given rotation speed. The first branch, which is more 

unstable at fast flow, has a large real frequency compared to the second branch. On the 

other hand, the frequency range of the first branch solution is still comparable to the 

mode growth rate, which is relatively high since the plasma pressure is close to the ideal 

wall beta limit. What is unusual for this high beta case is that the two branches have 

comparable growth rates at slower rotation frequency around 0.01A. With further 

decreasing of the flow speed, the second branch becomes predominantly unstable. 

Overall, due to the overlap of two unstable branches, no stability window exists for this 

high beta equilibrium, with varying plasma flow speed.  

We point out that, at very high beta (when beta is approaching the ideal-wall beta 

limit), the thin shell model adopted in MARS-K may not be sufficiently accurate. This is 

because the magnitude of the mode eigenvalue becomes large, resulting in a thin skin 

depth in the wall. When the skin depth is much smaller than the wall thickness, we expect 

a substantial modification of the RWM stability by a thick wall 
[42]

. For the results shown 

in Fig. 3, the first unstable branch has eigenvalue amplitude (normalized by the wall time) 

varying between 20 and 50. We estimate the skin depth due to this instability to be about 

0.07m to 0.12m for the ITER wall. This range is slightly above the thickness of the 

vacuum vessel, which is 0.06m. We expect a slight modification of the numerical results 

presented here for the first branch, if the finite wall thickness effect were taken into 

account. For the second branch, the amplitude of the eigenvalue is still small. The thin 

wall approximation should be accurate. 
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Fig.3. The (a) real, and (b) imaginary, parts of the computed eigenvalue of the kinetic 

RWM, versus the on-axis ExB rotation frequency 0. The eigenvalue is normalized by the 

slowest n=1 double wall eddy current decay time w in vacuum. An equilibrium with 

C=90%, and a shear flow with s0=0.75 and S=9 are considered.  

The co-existence of two unstable branches occurs only at sufficiently high plasma 

pressures. At lower plasma pressure, the two-solution structure is somewhat different, as 

shown by Fig. 4. In this case, the two unstable branches do not co-exist at a given rotation. 

Instead, at fast flow, 0>0.01A, the first branch appears, with relatively large mode 

frequency; at slow flow, 0<0.006A, the second unstable branch appears, with small 

mode frequency. A stable window emerges between 0>0.006A and 0<0.01A, where 

no unstable RWM is found. As will be shown later on, this stable window also depends 

on the amplitude and radial location of the flow shear.   
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Fig.4. The (a) real, and (b) imaginary, parts of the computed eigenvalue of the kinetic 

RWM, versus the on-axis ExB rotation frequency 0. The eigenvalue is normalized by the 

slowest n=1 double wall eddy current decay time w in vacuum. An equilibrium with 

C=70%, and a shear flow with s0=0.75 and S=9 are considered.  

 

The two-branch solution is primarily a consequence of the drift kinetic effects. 

Figure 5 compares the kinetic solution with the fluid solution where the kinetic physics 

are switched off. Here we scan the plasma pressure factor C while fixing the rotation 

amplitude at 0=0.001A, as well as the flow shear at s0=0.75 and S=9. Figure 5 (a) and 

(b) plot the growth rate and frequency of the mode, respectively. Note that the growth 

rate of the first kinetic RWM branch is multiplied by a factor of 10 in Fig. 5(a) for a more 

clear comparison. This branch appears only at sufficiently high beta. The second branch 

follows the trend of the fluid solution, for both the growth rate and the mode frequency. 

This branch can be viewed as the drift kinetic version of the fluid RWM, but is more 

stable than the fluid version 
[10, 18, 19]

. In fact the marginal stability point, in terms of C, 

also shifts upwards with the inclusion of the drift kinetic damping.  

On the other hand, the characteristics of first branch are rather different from that of 

the fluid solution. This can be viewed as a kinetic-driven branch for the RWM. The mode 

frequency is higher, though still remains in the RWM frequency range, as shown by Fig. 

5(b) (note that the sign-reversed frequency is plotted here for the first branch). More 

importantly, this branch is much more unstable at faster rotation, as shown in Figs. 3 and 

4. It is for this reason; we shall systematically investigate the stability of the first branch 

in later sub-sections. 



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35
 

C


R
e
[


w
]

 

 

Re(1st

k


w
)X10

Re(
f


w
)

Re(2nd

k


w
)

(a)

 

0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

35

40

45

50
 

C


Im
[


w
]

 

 

-Im(1st

k


w
)

Im(
f


w
)X10

Im(2nd

k


w
)X10

(b)

 

Fig.5. The (a) real, and (b) imaginary, parts of the computed eigenvalue of the RWM 

versus equilibrium pressure scaling factor C. Compared are the eigenvalue f following 

the single fluid model, and the two-branch solutions k following the non-perturbative 

fluid-kinetic hybrid model. An ExB flow, with 0= 0.001A, s0=0.75 and S=9, is 

considered.  

Figure 6 compares the computed RWM eigenmode structure, for selected data points 

from Figs. 3-5. We plot the dominant poloidal Fourier harmonics (m=0,...,3 in an 

equal-arc magnetic coordinate system) of the radial displacement. The amplitude of the 

eigenfunction is in arbitrary units. Compared with the fluid RWM eigenmode structure, 

the drift kinetic modification is not significant. A slightly larger modification is observed 

for the second branch at slow rotation.  This seems to indicate that the occurrence of the 

double branch kinetic solution is mainly associated with the non-linear dependence of the 

kinetic resonance operators on the RWM eigenvalue 
[43, 40, 41]

.  
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Fig.6. The computed eigenfunctions of the RWM, in terms of the poloidal Fourier 

harmonics (in an equal-arc magnetic coordinate system) of the plasma radial 

displacement, for an equilibrium with C=90%, s0=0.75 and S=9.  Compared are the 

eigenfunctions of (a) the fluid RWM at 0= 0.001A, (b) the first branch of the kinetic 

RWM at 0=0.02A, (c) the second branch of the kinetic RWM at 0= 0.001A, and (d) 

the second branch of the kinetic RWM at 0=0.02A. 

 

3.2. Varying radial location of peak flow shear 

   In this subsection, we investigate the stability of the kinetic RWM, while varying the 

radial location of the peak flow shear. We focus on the first branch of the kinetic solution, 

which generally has much larger growth rate than the second branch. Due to the large 

dimension of the possible parametric space, we restrict ourselves on one choice of the 



rotation shear, namely S=9. The effect of varying flow shear will be reported in the next 

subsection.  

Figure 7 (a) and (b) plot the mode growth rate as a function of s0, for the first kinetic 

branch and for the fluid RWM, respectively, for the high beta case with C=90%. Three 

relatively fast rotation frequencies are considered (for which the first branch generally 

has large growth rates). Several observations can be made from Fig. 7. (i) The flow shear 

location has rather different effect on the kinetic RWM, than the fluid counterpart. The 

dependence of the kinetic growth rate on s0 is in general more complicated than that of 

the fluid growth rate. (ii) For the kinetic RWM, a narrow stability window can open 

around s0=0.7, whilst for the fluid model, a more robust stabilization occurs at s0>0.7. (iii) 

The fact that the kinetic stabilization of the mode occurs near s0=0.7, is directly related to 

the peak location of the mode eigenfunction as shown in Fig. 6. This implies that, 

according to the drift kinetic theory, the strongest mode damping is achieved, if a large 

flow shear can be tuned near the radial location where the displacement associated with 

the RWM peaks.     
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Fig.7. The normalized growth rate of (a) the first branch of the kinetic RWM, and (b) the 

fluid RWM, versus the radial location s0 of the flow shear peaking, for three choices of 

the on-axis ExB rotation frequency 0=0.016A, 0.018A, and 0.02A, respectively. An 

equilibrium with C=90% is considered. The normalized flow shear parameter is fixed at 



S=9.  

 

Figure 7(a) also shows that the width of the stability window for the kinetic RWM 

depends on the rotation amplitude 0. A more comprehensive picture is shown in Fig. 8, 

where the mode growth rate is plotted in the 2D parameter space (0, s0). The stability 

window opens up at about 0=0.018A. The width of the window, in s0, increases with 

decreasing 0. It is interesting to note that the lower boundary of the stability window, 

shown in Fig. 8, hardly changes with 0, but the upper boundary quickly expands. 

 

 

 

Fig.8. The growth/damping rate for the first branch of the kinetic RWM, plotted in the 2D 

parameter space (0, s0). An equilibrium with C=90% is considered. The normalized 

flow shear parameter is fixed at S=9. The dash-dotted curve shows the stability margin. 

 

The small stability window presented in Figs.7 (a) and 8 corresponds to the 

worst-case scenario, which holds at very high beta (C=90%). The stable window can be 

significantly wider for equilibria at lower beta. Figure 9 shows one example for C=70%, 

compared with the C=90% case, at the flow speed of 0=0.02A. At C=70%, the lower 

boundary of the stable window effectively disappears, resulting in a large stable region in 

the s0 space. The upper boundary of the stability window remains, with s0=0.65 for this 

case.  
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Fig.9. Comparison of the growth rate for the first branch of the kinetic RWM, with 

varying radial location s0 of the flow shear peaking, for two choices of the plasma 

pressure scaling parameter %70C  and %90C , respectively. Fixed are the 

on-axis ExB rotation frequency 0=0.02A, and the normalized flow shear parameter 

S=9.  

 

3.3. Varying peak amplitude of flow shear 

In the results presented so far, we have fixed the peak amplitude of flow shear, 

characterized by the normalized shear parameter S=9. In what follows, we study the 

effect of varying S on the stability of the kinetic RWM. We fix the radial location of the 

shear peak at s0=0.75. Figure 10 shows three rotation profiles, with S=1,5,9, 

respectively. 
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Fig.10. Three examples of the ExB rotation profiles, with different flow shear at S=1, 5, 

9, respectively. The radial locations of the flow shear peaking is fixed at s0=0.75.  

 

Figure 11 compares the growth rate, as a function of the flow amplitude, of the first 

branch of the kinetic RWM (a), with that of the fluid RWM (b), for the C=70% case. 

We use three rotation profiles as shown in Fig. 10. We first note the qualitative 

difference of the flow shear effect on the RWM, between the kinetic and the fluid 

models. With the kinetic model, which offers a better description of the RWM physics 

by properly including the mode-particle resonances, the flow shear tends to stabilize the 

mode at fast flow, but slightly destabilize the mode at slower flow speed. The transition 

from stabilization to destabilization occurs at about 0=0.014A for our case. As a 

result of destabilization, the marginal stability point, in terms of the rotation amplitude, 

shifts down with increasing the local flow shear.  

The flow and flow shear effect is qualitatively different following the fluid model, as 

shown in Fig. 11(b). The growth rate of the mode monotonically decreases with 

increasing the flow speed. The local flow shear has a minor influence on the mode 

stability. For our case, the fluid theory predicts a full stabilization of the RWM at 

0>0.025A. 
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Fig.11. The normalized growth rate of (a) the first branch of the kinetic RWM, and (b) the 

fluid RWM, versus the on-axis ExB rotation frequency 0, with varying flow shear at 

S=1, 5, 9, respectively. The radial location s0 of the flow shear peaking is fixed at 0.75. 

An equilibrium with C=70% is considered.  

 

Figure 12 shows the stability diagram for the first unstable branch of the kinetic 

RWM, from a more systematic scan of the flow shear. The marginal stability curve, 

shown by the dash-dotted line, is mapped out in the 2D parameter space (0, S). The 

primary effect here is the full stabilization of the first branch at slow flow speed, 

resulted from the precessional drift resonance damping. The stable domain slightly 

shrinks with increasing the flow shear. The other interesting effect is the significant 

reduction of the RWM growth rate in the unstable domain when 0>0.013A, as the 

flow shear increases. 

 



 

Fig.12. The growth/damping rate for the first branch of the kinetic RWM, plotted in the 

2D parameter space (0, S). The radial location s0 of the flow shear peaking is fixed at 

0.75. An equilibrium with C=70% is considered. The dash-dotted curve shows the 

stability margin.  

 

The kinetic stabilization shown in Fig. 11(a) and Fig. 12 occurs for the first unstable 

branch, which is the more unstable one. However, at sufficiently high beta, the second 

branch is also weakly unstable as shown by Figs. 3 and 4. This second unstable branch 

is affected by the flow and flow shear as well. As a result, the overall stability of the 

kinetic RWM is determined by the stability of both unstable branches. This is illustrated 

in Fig. 13, where we plot the RWM stability diagrams in the 2D parameter space (0, 

C).  Two cases, with the normalized flow shear parameter (a) S=1, and (b) S=9, are 

compared.  

A stable domain still exists for the kinetic RWM when both branches are taken into 

account. The marginal stability curve (thick dash-dotted line) is defined by both 

branches. In particular, the first branch determines the stability boundary from the right 

side of the stable domain, whereas the second branch largely determines the stability 

boundary from the top. At sufficiently slow flow and sufficiently low beta, the RWM is 

fully stable according to the non-perturbative drift kinetic computations. A larger flow 

shear slightly expands the upper boundary of the stable domain by stabilizing the second 

unstable kinetic RWM branch. A larger expansion occurs for the right boundary of the 



stable domain, as a result of flow shear stabilization of the first unstable branch. As a 

final observation, we note that the instability of the second unstable branch is generally 

very weak. This weak instability may easily be overcome by including additional 

damping mechanisms that are not considered in this work, for instance, that from 

trapped energetic particles. This may results in a significant upwards expansion of the 

stable domain in Fig. 13. On the other hand, the right-wards expansion may be more 

problematic, due to the strong instability of the first unstable branch.  

 

 

 

Fig.13. The growth/damping rate for both branches of the kinetic RWM, plotted in the 2D 

parameter space (0, C), for (a) S=1, and (b) S=9. The radial location s0 of the flow 

shear peaking is fixed at 0.75. The thick dash-dotted curves show the overall stability 

margin. The thin dashed-dotted lines show the approximate separation between the two 

unstable branches.   

 

4. Conclusion 

A non-perturbative MHD-kinetic hybrid formulation is applied to computationally 

study the RWM stability for an ITER 9MA steady state plasma. In particular, we focus on 

a systematic investigation of the role of the plasma ExB flow shear on the passive 

stabilization of the mode. This is motivated by the uncertainty in the prediction of the 

flow profile in ITER, as well as by the desire of actively (locally) controlling the flow 

shear as a tool for the suppression of the RWM stability. 



 A general feature of the kinetic prediction is the existence of two unstable branches 

for this ITER plasma. The first branch has somewhat higher mode frequency, though still 

remains in the frequency range for the RWM. More importantly, this branch has much 

higher growth rate compared to the second branch, and hence poses the most severe 

limitation on the stability window for the mode.   

 We find that the first unstable branch is sensitively affected by both the local flow 

shear as well as the radial location of the peak amplitude of the shear. At high beta 

(C=90%), a narrow stable window appears as we vary the radial location of the shear 

peak. Not surprisingly, the optimal shear location correlates to the peak location of the 

RWM eigenfunction (in terms of the plasma radial displacement). The stable window 

significantly expands as we lower the plasma pressure. At a fixed radial location, a large 

local flow shear strongly reduces the growth rate of the first unstable branch of the 

kinetic RWM, but meanwhile slightly increases the critical flow amplitude required for 

complete suppression of the mode.  

    The second unstable branch is generally only weakly unstable. The flow shear has 

less dramatic effect on the stability of this branch. However, even taking into account this 

weak instability, there is still a reasonably wide stable domain for the RWM, in the (0, 

C) space. A larger flow shear further widens the stable domain, mainly by stabilizing the 

first unstable branch.   

 In this work, we have not yet included the drift kinetic effects from trapped energetic 

particles (EPs), produced either by auxiliary heating or by the fusion reaction itself (i.e. 

DT born alphas). The EPs normally have much higher precessional drift frequency than 

thermal particles, and hence can hardly be in resonance with the RWM at slow flow. 

Despite this, the EPs can still contribute to the kinetic damping of the RWM 
[29, 30, 34, 44, 45]

, 

especially at higher flow speed. One future work is to investigate the role of the flow 

shear on the RWM, with the inclusion of the kinetic effects from EPs. We also neglected 

the particle collisions in this study 
[46]

. Whist being a reasonable assumption for thermal 

ions in ITER, this is an approximation for thermal electrons.  
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