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Abstract 

The synergetic effects of drift kinetic resonances, the resistive layer dissipation, the 

magnetic feedback, and the toroidal plasma flow on the stability of the resistive wall 

mode are numerically investigated using a full toroidal resistive 

magnetohydrodynamic-kinetic hybrid stability code MARS-K (Liu Y Q et al 2008 

Phys. Plasmas 15 112503). It is found that the plasma resistivity, coupled with the 

favourable average curvature effect, can enlarge the stable domain predicted by the 

drift kinetic model. A synergy between the precessional drift resonance damping, the 

magnetic feedback and the plasma flow helps open two stability windows. The width 

of the inner stability window increases with the feedback gain, but decreases with the 

flow speed. In addition, optimization of the toroidal phase difference of the feedback 

gains between the upper and lower active coils can lead to a full suppression of the 

mode. 

(Some figures in this article are in colour only in the electronic version) 
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1. Introduction

The onset of the resistive wall mode (RWM) has been a major concern for advanced 

tokamaks [1] such as ITER [2]. The RWM can be viewed as a residual instability 

from the external ideal kink (XK) mode, which is a global magnetohydrodynamic 

(MHD) instability driven by plasma current gradient or pressure. The RWM can pose 

severe operational limits on the achievable beta values of tokamaks and on the 

discharge duration in RFP devices. In order to maximize the benefit of the concept of 

advanced tokamaks, which aim at high pressure, large bootstrap current fraction, long 

pulse or even steady state operation, stabilization of the RWM is a critical issue. 

Two approaches are well established to stabilize the mode in tokamaks, namely 

feedback control using magnetic coils [3-12] or passive stabilization based on toroidal 

plasma flow damping [13-18]. While significant progress has been made in 

understanding the feedback control of the RWM in both theory and experiments, 

including impressive results obtained on RFP devices [19, 20], understanding of the 

passive stabilization physics is still incomplete, in particular, in view of the recently 

discovered drift kinetic physics associated with the RWM damping. The experiments 

from DIII-D [21] and JT-60U [22] showed a very small threshold value of toroidal 

flow speed, about 0.3% of the Alfven speed, for the complete suppression of the 

RWM. This value is much lower than that observed from previous magnetic braking 

experiments with large momentum input. Theoretical models based on magnetic drift 

kinetic resonances [23-29] seem to provide a reasonable explanation of these new 

experimental results. 
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Most theoretical work, with very few exceptions [30-33], uses ideal MHD theory 

to study the RWM. The role of the plasma resistivity on the RWM stability, in 

conjunction with the drift kinetic effects from energetic particles, was first analyzed in 

a recent analytic work [34], where a strong damping of the mode due to the resistive 

layer dissipation associated with the Glasser-Greene-Johnson effect [35], was 

demonstrated. Toroidal computation of the resistivity induced RWM damping has 

been carried out in our recent work [36], but in the context of a fluid model for the 

RWM. Within the fluid approximation, Ref. 36 also investigated the synergetic effects 

between the active and passive stabilization of the mode. 

This work expands that of Ref. 36, by considering combined effects of several 

important physics, namely the drift kinetic damping, the magnetic feedback, the 

resistive layer effects, and the toroidal flow damping, on the stability of the RWM. We 

consider the same toroidal tokamak model as in Ref. 36, and carry out computational 

study using the MARS-K code [37]. For the drift kinetic effects, we focus on the 

precessional drift resonance between with the mode and the trapped thermal ions and 

electrons. 

    The multi-physics nature of the problem dictates that we have to explore the 

mode stability in multi-dimensional space. The parameters that we vary include: the 

plasma pressure, the on-axis plasma toroidal rotation frequency 0Ω  (with a fixed 

rotation profile), normalized by the Alfven frequency ( )0 0 0 0A B R μ ρΩ = , the 

normalized radial distance d a  of the resistive wall, the plasma resistivity η , 

normalized by 2 2
0 0 0 ARη μ ε= Ω  ( 0a Rε = ), the amplitude G  (normalized by 
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0 0 0G R μ= ) and phase arg( )G  of the feedback gain G. Here 0B  is the toroidal 

vacuum magnetic field at the magnetic axis of the plasma equilibrium, 0ρ  is the 

on-axis plasma mass density, a  the plasma minor radius and 0R  the major radius of 

the torus, 0μ  is the vacuum magnetic permeability. 

The next section describes computational models used in MARS-K. Section 3 

specifies a toroidal equilibrium used in this study. Section 4 reports numerical results. 

Section 5 draws conclusions. A simple analytic model is proposed in Appendix A, in 

order to qualitatively explain the computational results related to the drift kinetic 

damping. An analytic model, based on the extended energy principle, including 

contributions from the perturbed fluid potential energy, the vacuum and the resistive 

wall energy perturbation, as well as the energy associated with the feedback coils, is 

derived in Appendix B, in order to demonstrate the synergistic effects between the 

magnetic feedback and the drift kinetic damping. Finally, Appendix C offers an 

analytic model for investigating the coil phasing effect in the presence of multiple 

rows of active control coils. 

2. Computational models

Each of the physics models (the single fluid, the resistive plasma, the toroidal flow, 

the magnetic feedback, the drift kinetic formulation), that we shall employ in this 

work, has previously been reported in separate publications. For the completeness of 

discussions, we present below a brief overview of all these physics effects, as well as 

basic numerical aspects associated with the MARS-K code. 
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The core part of our formulation is the toroidal hybrid MHD-kinetic model, that 

combines the single-fluid MHD equations with a self-consistent drift kinetic closure 

for the perturbed pressure. The eventual fluid and kinetic equations, in the plasma 

region, are solved together with equations for the resistive wall(s), the active coils, as 

well as the vacuum itself in the vacuum region. 

2.1. The MHD-kinetic hybrid model in MARS-K with plasma flow 

The core equations in the plasma region, where the kinetic terms are involved, are 

written in the Eulerian frame [37, 38] 

2( ) ( )in Rγ φ+ Ω = + ⋅∇Ω ∇ξ v ξ  (1) 

2( ) + [2 ( ) ]in Rρ γ ρ φ
∧

+ Ω = −∇ ⋅ × + × − Ω × + ⋅∇Ω ∇ − ∇ ⋅v p j B J b Z v v Π (2) 

2( ) ( ) ( )in Rγ η φ+ Ω = ∇× × − + ⋅∇Ω ∇b v B j b      (3) 

( )in p Pγ + Ω = − ⋅∇v (4) 

0μ = ∇×j b (5) 

where γ  is the (complex) eigenvalue of the mode, corrected by a Doppler shift inΩ , 

with n  being the toroidal mode number, Ω  the angular frequency of the plasma 

flow along the toroidal direction φ . ( ), , PB J  are the equilibrium magnetic field, the 

plasma current density and pressure, respectively. These equilibrium quantities are 

obtained by the equilibrium code CHEASE [39], which solves the fixed boundary 

Grad-Shafranov equation. The lower-case quantities ( ), , , ,ξ v b j p  represent the 

plasma displacement, perturbed velocity, magnetic field, current and pressure tensor, 

respectively. ρ  is the unperturbed mass density, R  the plasma major radius, 
∧

Z  

the unit vector in the vertical direction. Π  is a viscous stress tensor, chosen in this 
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work to represent a viscous force damping the parallel sound wave [14], with a 

numerical coefficient κ&  specifying the strength of the damping. η  is the plasma 

resistivity. Note that the fluid compressibility term 5 3 P∇ ⋅ v  is dropped from Eq. (4) 

for the perturbed scalar pressure. This term is replaced by the anisotropic part of the 

full drift kinetic pressure tensors p  [40, 41] 

( )p p p
∧ ∧ ∧ ∧

⊥= + + −p I bb I bb&             (6) 

where I  is the unit tensor and B
∧

=b B , B = B . p  is the scalar (isotropic) part 

of the perturbed pressure, representing the so called adiabatic part of the drift kinetic 

pressure. Strictly speaking, equation (4) holds only for special equilibrium distribution 

functions such as Maxwellian, which is what we assume in this work for thermal 

particles. ( )p ⊥ξ&  and ( )p⊥ ξ&  are the parallel and perpendicular perturbations of the 

kinetic pressure (the non-adiabatic contribution), computed by 

2 1

,
vi t in

L
e i

p e d M fω φ− + = Γ∑∫& & (7) 

2 1

,

1 v
2

i t in
L

e i

p e d M fω φ− +
⊥ ⊥= Γ∑∫ (8) 

where an exp( )i t inω φ− +  dependence is explicitly assumed for the perturbation, 

with the mode (complex) frequency ω . M  is the particle mass, v&  and v⊥  are 

the parallel and perpendicular (to the equilibrium magnetic field) velocities of particle 

drift motion. The integral is carried out over the particle velocity space Γ . 1
Lf  is the 

non-adiabatic part of the perturbed particle distribution function, which is derived by 

solving the perturbed drift kinetic equations for each particle species, the expression 

for 1
Lf  is as follows [37] 
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( )1 0

, ,

bin t im t il ti t in u u
L k m ml ml

m l u

f f e X H e φ χ ωω φ
ε ε λ

⋅
− + +− += − ∑

∼

 (9) 

where 0fε  is the energy derivative of the particle equilibrium distribution function 

(which we assumed to be Maxwellian for thermal electrons and ions). ε  is the 

particle total energy, k Zeε ε= − Φ  is the kinetic energy of the particle, Φ  being the 

equilibrium electrostatic potential with the charge number Z . m  is the poloidal 

Fourier harmonic number. l  is the so called bounce harmonic number. 

( ) ( )t t tφ φ φ
⋅

= −
∼

 denotes the periodic part of the particle motion projected along the 

toroidal direction, with ⋅ denoting an average over the particle bounce period, bω  

is the particle bounce frequency. Both u
mX  and u

mlH  are related to the perturbed 

particle Largrangian. u
mX  denotes the poloidal Fourier harmonics with respect to the 

perpendicular fluid displacement and the magnetic field perturbation (the superscript 

“u ” labels these components); u
mlH  represents the geometrical factor associated with 

the particle trajectory in the equilibrium magnetic field. mlλ  is the mode-particle 

resonance operator representing the key drift kinetic physics 

[ ( 3 2) ]
[ ( ) ]

kN T E
ml

d b

n
n m nq l
ω ε ω ω ωλ
ω α ω ω

∧

∗ ∗+ − + −
=

+ + + −
    (10) 

where Nω∗  and Tω∗  are the diamagnetic drift frequencies due to the density and 

temperature gradients, respectively. Eω  is the ×E B  drift frequency due to the 

equilibrium electrostatic potential. k k Tε ε
∧

=  is the particle kinetic energy 

normalized by temperature T . dω φ
⋅

=  is the bounce-orbit-averaged toroidal 

precession drift frequency of particles, including the Eω  drift. ω  is the mode 

complex frequency, with iγ ω= − . q  is the safety factor. We have neglected the 
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effect of finite radial excursion width of particles across the magnetic surfaces. 0α =  

for trapped particles, and 1α =  for passing particles. In the latter case bω  denotes 

the transit frequency. Although the full MARS-K model includes both bounce/transit 

and precessional drift resonances, we only consider the magnetic precession drift 

resonance in this work, assuming that the ×E B  flow velocity is much below the 

particle bounce/transit velocity.  

As a final remark on the kinetic formulation, we point out that our model is 

similar to the standard fδ -method that has been used in several MHD-kinetic codes 

and in PIC simulations [42-45]. The major difference is that our drift kinetic 

assumption, as well as neglecting or approximating the finite orbit width effect (the 

finite banana width for trapped particles), allows a semi-analytic formulation for the 

perturbed kinetic pressure tensor, which is then effectively used as the closure for the 

MHD equations. 

2.2. The vacuum and wall models 

In the vacuum region, v  and p  vanish. The perturbed magnetic field satisfies 

0
0

∇× =
∇ ⋅ =

b
b

(11) 

The equation for the resistive wall follows a thin shell approximation 

    
0

r
r w

w

rbb r b
h r

χηγ
μ χ

⎛ ∇ ⎞∂
= ∇ Δ − Δ⎜ ⎟∂ ∂⎝ ⎠

(12) 

where wη  and wh  are the resistivity and thickness of the wall, respectively. rb  and 

bχ  are the contravariant components of the field perturbation, represented in a 

curvilinear coordinate system ( ), ,r χ φ  for a torus 



9

rb b r b rχ φχ φ φ χ= ∇ ×∇ + ∇ ×∇ + ∇ ×∇b  

where r  is the radial coordinate, defined as square root of the normalized poloidal 

magnetic flux (here we use “ r ” to denote the radial coordinate, in order to avoid 

confusion of notions to be introduced in the following subsection). χ  is the 

generalized poloidal angle depending on the choice of Jacobian.  

2.3. The feedback model 

The coil current in the active coils is assumed to be a surface current (similar to the 

wall eddy current), with the toroidal component of the coil current density represented 

as δ -functions along the poloidal angle. The poloidal component of the coil current 

density follows from the divergence-free condition. For a given toroidal mode number 

n , the toroidal component of the surface current density, for each set of the active 

coils, can be generally represented as 

( ) ( ) ( ) ( ), ,coil in
f f U LJ r I r r e φ

φ χ φ δ δ χ χ δ χ χ= − − − −⎡ ⎤⎣ ⎦  

where fr  is the radial location of the active coils; Uχ  and Lχ  are the upper and 

lower legs of the window frame coils, respectively; fI  is the total coil current, 

generally being a complex number. Note that the above expression for the coil current 

density is valid for a single array of window frame coils along the poloidal angle. 

With multiple arrays of active coils, extra δ -functions, along the poloidal angle, are 

added to the expression.  

In the numerical implementation, since all the perturbed quantities (including the 

coil current density) are decomposed in Fourier harmonics along the poloidal angle, 

the above δ -functions along χ are replaced by narrow Gaussian functions. By 
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including a sufficiently large number of poloidal Fourier harmonics (from -29 to 29 in 

this study after a numerical convergence test), the full poloidal spectrum of the 

window frame coils, that affects the RWM control, is resolved. The above coil current 

representation has been extensively benchmarked for accuracy in producing the 

vacuum field, compared with the Biot-Savart law based field computation technique, 

while MARS-F is applied for modelling the plasma response to resonant magnetic 

perturbations (RMP) [46, 47]. 

    The equation for the feedback coils depends on the choice of the feedback law. 

For a negative, proportional feedback, that controls the current fI  in the coils using 

the magnetic signal ( )s tψ  measured by a set of sensor loops as input, the feedback 

equation reads [3] 

    ( )sf f sM I G tψ= −                (13) 

where G  is the dimensionless proportional gain. ( )s tψ  is assumed to be a 

point-wise poloidal field signal in this work. sfM  is the free-space mutual 

inductance between the feedback coil and the sensor loop, which is a constant for 

fixed geometrical locations of the feedback and sensor coils. Since this quantity only 

plays a role of scaling the gain value, we set sfM  to be unity in this work. 

We also define an open-loop transfer function ( )P s  [48] 

( ) s

sf f

P s
M I

ψ
=                 (14) 

where s  is the Laplace variable representing the mode eigenvalue. It is important to 

note that the above open-loop transfer function can be computed without directly 

solving the feedback equation (13). Instead, we can compute ( )P s  by computing the 
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plasma response to a given current source flowing in the active coils. In this work, we 

follow both approaches – the plasma response approach and the direct feedback 

approach – to study the synergy effect between the kinetic damping and the magnetic 

feedback on the RWM. 

    Equations (13) and (14) are combined to yield the closed loop characteristic 

equation 

( )1 0GP s+ =                 (15) 

The solution of the characteristic equation gives the closed-loop eigenvalue s , for a 

chosen feedback gain G . 

2.4. Boundary conditions and numerical aspects 

At the plasma-vacuum interface, the boundary condition is equivalent to the 

conventional perturbed force balance condition for ideal plasma-vacuum interface. 

This boundary condition is applied to the unperturbed plasma boundary. At the 

computational boundary (which is assumed to be sufficiently far away), the radial 

component of the perturbed field is assumed to be zero.  

The whole MARS-K formulation can be regarded as a generalized eigenvalue 

problem, written in a compact form 

    X Xγ =D A ,                (16) 

where the matrices D  and A  symbolically represent the linearized 

MHD-kinetic-vacuum operators, with D  essentially associated with inertia. In the 

pure fluid formulation, the operator A  only depends on equilibrium quantities and 

does not depend on the mode eigenvalue γ . With the fluid-kinetic hybrid formulation, 
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however, A  is a strongly non-linear function of γ , via the resonance operator (10). 

The vector X  symbolically represents all the perturbation variables. The solution 

X  is decomposed in Fourier harmonics along the poloidal angle χ  and the toroidal 

angle φ  

( ) ( ) ( ), , i m n
mn

m n
X r X r e χ φχ φ −= ∑∑ (17) 

For linear perturbations in an axisymmetric torus, the toroidal components decouple 

from each other. Therefore, we solve for each n -component separately. After the 

Fourier decomposition along periodic directions, the resulting system of ordinary 

differential equations along the radial coordinate r  is solved using a finite element 

method [49].  

For the pure fluid formulation, the generalized eigenvalue problem (16) is solved 

using a standard inverse vector iteration scheme [49, 50]. For the hybrid formulation, 

an extra outer-loop, based on Newton-Raphson iteration scheme, is employed in order 

to resolve the non-linear dependence of A  on γ . 

3. Specification of equilibrium

We consider a toroidal equilibrium, with an up-down symmetric plasma boundary 

shape as shown in figure 1. This corresponds to a plasma in limiter configuration. The 

shape of the resistive wall conforms to the plasma boundary surface. We also assume 

two sets of active coils located just inside the resistive wall, near the top (referred to 

as “Upper”) and bottom (referred to as “Lower”) of the torus. One set of sensor coils 

is assumed to be located at the outboard mid-plane, measuring the poloidal magnetic 
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field at the 0χ =  poloidal angle. We mention that this choice of the geometrical 

configurations for feedback coils reflects that of several of the present-day tokamak 

devices such as DIII-D, MAST, ASDEX-Upgrade, KSTAR, EAST. 

    Figure 2 shows the radial profiles for some key equilibrium quantities. These 

profiles are either analytically or numerically specified. One of the key features is the 

slightly reversed magnetic shear in the plasma core, which is often compatible with 

the advanced tokamak scenario in the presence of an internal transport barrier [51]. 

The safety factor has the on-axis value of 0 1.76q = , the minimal value of 

min 1.60q = , and the edge value of 3.28eq = . The normalized beta value is 

( ) ( ) ( ) ( )0% 3.37N pa m B T I MAβ β= = , where β  is the ratio of the volume 

averaged plasma pressure to the magnetic pressure, and pI  is the total plasma 

current. The no-wall beta limit (the stability margin for the 1n =  ideal external kink 

mode without wall) is computed as 2.54no wall
Nβ − = , and the beta limit with an ideal 

wall is 3.72ideal wall
Nβ − = . A linear scaling factor for the equilibrium pressure, Cβ , is 

consequently defined as ( ) ( )no wall ideal wall no wall
N N N NCβ β β β β− − −= − − . The radial profile 

of the safety factor slightly varies as we scan the plasma pressure while keeping minq

fixed. Examples are shown in figure 3. The wall time is assumed to be 

4
0 1.0 10w w w w Ah rτ μ η τ= = ×  ( wr  is the wall radius, 1A Aτ = Ω  is the Alfven time).  

4. Numerical results

In this work, we consider the stabilization of the 1n =  RWM. Since we are mostly 

interested in the mode stability at relatively slow plasma rotation, we only consider 
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the magnetic precession drift resonance in all the computations. Only kinetic effects 

from bulk plasma particles are included. A systematic investigation has been carried 

out in four aspects reported below.  

4.1. Precessional drift kinetic effects on the RWM stability 

Earlier studies of the RWM stability, relying on the ideal fluid theory [13, 14], 

predicted that the critical rotation velocity required to fully suppress the mode was a 

few percent of the Alfven speed. Similar magnitude of critical rotation velocities were 

also measured in early experiments [52], where an initially fast plasma flow, 

generated by unbalanced neutral beam momentum injection, was slowed down by 

subsequent non-linear interaction with either the RWM itself or with external 3D 

magnetic fields. Recent experiments, with balanced beam injection and hence much 

slower plasma flow, found much slower critical flow velocity (if at all exists) [21, 22]. 

These experiments cannot be easily explained by the standard fluid theory, which 

involves only the sound wave continuum or the shear Alfven wave continuum 

damping on the mode. This motivates our search for additional mode-particle 

resonance damping based on the drift kinetic theory.  

We mention that different neutral beam injection configurations (unbalanced 

versus balanced injections) create different hot ion equilibrium distributions, which 

may also affect the kinetic stabilization of the RWM [53]. This aspect is however 

beyond the scope of this work. In this study, we shall only consider the drift kinetic 

effects from thermal particles. 
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In particular, we are interested in the transition from the fluid prediction to the 

kinetic prediction. For this purpose, we introduce a numerical parameter Dα  in 

MARS-K, as the fraction factor of the additional kinetic contribution to the RWM 

damping. Thus 0Dα =  recovers the fluid limit, whilst 1Dα =  corresponds to the 

physical fluid-kinetic hybrid result. Figure 4 shows growth rate and mode frequency 

of the RWM while scanning Dα  gradually from 0 to 1, for two choices of on-axis 

rotation frequency (normalized by the on-axis Alfven frequency) 0 0.003Ω =  (solid 

circles) and 0 0.005Ω =  (solid squares), respectively. Since the plasma rotation is 

slow, there is little difference in the eigenvalues at the fluid limit. However, at the full 

fraction of the kinetic contribution ( 1Dα = ), the growth rate of the mode substantially 

decreases compared to the fluid prediction, as a result of the resonance damping from 

the precessional drift motion of trapped thermal electrons and ions.   

Figures 5(a) and (b) plot the growth rate and the mode frequency, respectively, of 

the kinetic RWM (i.e. at 1Dα = ), in the 2D parameter space of on-axis rotation 

frequency and the equilibrium pressure scaling factor Cβ . The plasma central 

rotation frequency 0Ω  varies between 33.0 10 A
−× Ω  and 21.0 10 A

−× Ω . A full 

stabilization of the mode, denoted by black dots in figure 5(a), is achieved. This 

finding, which is similar to other kinetic studies [54], better explains the recent 

experimental results. Moreover, if we vary the wall radius as traditionally performed 

in the fluid study for the RWM [13], we find that decreasing the plasma flow speed 

enlarges the stable domain, as shown by Fig. 6. A stable window opens by the kinetic 

damping as the resistive wall moves away from the plasma boundary. Such behavior, 
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as well as some of other computational results shown below, can be qualitatively 

explained by a simple analytic model presented in Appendix A. Figure 7 summarizes 

some of the findings from this analytic model. 

The results shown in Fig. 6 are qualitatively similar to the conventional ideal 

fluid prediction. However, qualitatively new features emerge if we assume a resistive 

plasma model, as reported below. 

4.2. Effects of plasma resistivity on the RWM stability 

It has been shown in early analytic work [30-32] that, in the presence of toroidal flow, 

the plasma resistivity can enhance the passive stabilization of the RWM by the fluid 

model, compared to the ideal MHD prediction, although the stable window is shown 

to be narrow (and hence not robust) for a toroidal plasma [33]. The recent analytic 

work [34], combining the resistive layer damping with the kinetic effects in the 

presence of toroidal flow, demonstrates a strong damping of the mode due to the 

coupling to the favourable average curvature stabilization inside the resistive layer. 

Reference 34 assumes a simple cylindrical geometry and one resistive layer near the 

plasma boundary, in order to facilitate analytic treatment. Here we numerically 

investigate the effect of the plasma resistivity on the mode stability, based on full 

toroidal computations.  

We start with the fluid model. The parallel sound wave damping model as 

described in Sec. 2, with a numerical damping coefficient 1.5κ =& , is assumed. 

Figure 8 compares the growth rates of the fluid RWM with varying plasma pressure 
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and resistivity. Two cases are compared in figure 8(a) and (b), with vanishing plasma 

flow, and with a relatively fast flow at 0 0.03Ω = , respectively. A finite plasma 

resistivity destabilizes the RWM in the absence of equilibrium flow. This is largely 

due to the fact that the resistive model poses less constraints on the plasma (the 

plasma is allowed to reconnect near rational surfaces), therefore the mode is more 

unstable, although the increase of the mode growth by the plasma resistivity is not 

substantial – the mode is still primarily driven by the high equilibrium pressure.  

The effect of the plasma resistivity is however qualitatively different in the 

presence of the plasma flow, as shown by figure 8(b). In this case, the growth rate of 

the mode decreases with increasing the plasma resistivity (i.e. decreasing the 

Lundquist number S ). Again a small quantitative change of the mode growth rate is 

observed at large S  value ( 71.0 10S > × ). A larger change occurs as the S  value is 

further decreased as shown in figure 9. Here we compute the mode growth rate and 

frequency in the 2D parameter space 0Ω  and S , while fixing the pressure at 

0.70Cβ = . Again the fluid model is used. Again we note the very interesting effect of 

the plasma resistivity on the mode stability, depending on the flow speed. At slow 

flow, the plasma resistivity destabilizes the RWM; at fast flow, it stabilizes the mode. 

The transition from the destabilization to the stabilization occurs at 0 0.015 AΩ Ω∼  in 

our case. The computed mode frequency also becomes large in this transition region. 

At sufficiently fast flow, the plasma resistivity changes the stability margin of the 

RWM. This effect is associated with the Glasser stabilization inside the resistive layer 

[34]. Similar effect leads to the modification of the stability boundary for the tearing 
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, whilst in figure 11(b), we keep the gain amplitude at

mode in a toroidal plasma [35]. 

The general picture remains similar when we add the drift kinetic 

contributions, as shown in figure 10. The kinetic effects bring in two major changes 

to the results. (i) The transition region from destabilization to stabilization shifts 

towards higher rotation frequency. (ii) A (nearly) stable region exists at slow flow 

and high Lundquist number. This is the consequence of the kinetic drift resonance 

damping for a plasma that is close to ideal.  

4.3. Synergy between magnetic feedback and drift kinetic effects 

In an earlier work [36], we investigated the synergetic effect between magnetic 

feedback and plasma flow on the RWM stabilization, based on a fluid model. We 

found that the feedback system, combined with plasma rotation, helps open a new 

stability window. In this work, we study the synergy between feedback and drift 

kinetic effects, based on the self-consistent MHD-kinetic hybrid model. 

Inclusion of kinetic damping again opens two stability windows, as a synergetic 

effect together with magnetic feedback, as shown by figures 11(a) and (b). In figure 

11(a), we fix the plasma rotation at Ω0 = 0.003 while varying the amplitude of the 

feedback gain G           G = 1.0 

while varying the plasma rotation frequency 0Ω . An ideal plasma model is 

considered here for the slow flow cases. As shown in Fig. 9, the plasma resistivity 

does not result in qualitative change of the RWM stability at slow flow. Nevertheless, 

quantitative investigation of the combined effects of the drift kinetic damping, the 
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magnetic feedback, as well as the destabilizing effect from the plasma resistivity at 

slow plasma flow, remains a future work. In both (a) and (b), we choose internal 

poloidal sensors with vanishing phase for the feedback gain. The plots show that the 

growth rate of the RWM is reduced, and the width of the new stable window (the 

inner one) in d a  is increased, either with increase of the feedback gain or decrease 

of the rotation frequency. The latter occurs at relatively slow flow, where smaller 

rotation frequency leads to a better resonance with precessional drift of thermal 

particles. The appearance of this new stability window is mainly due to the feedback 

stabilization of the RWM, when the wall is closer to the plasma that reduces the mode 

growth rate. The results shown in Fig. 11 are qualitatively reproduced by the analytic 

model from Appendix A, with results shown in Fig. 7. 

The conventional stability window (the outer one) is narrow for our case, and is 

not significantly affected by the choice of the feedback gain, as shown by figure 11(a). 

The variation of the flow speed, on the other hand, substantially modifies the 

conventional stability window, as shown by figure 11(b). Neither feedback nor 

rotation has appreciable effect on the stability of the external kink branch (XK). 

Figure 11(a) shows that variation of the feedback gain, near the normalized value 

of 1, mainly affects the width of the new (inner) stability window. This is 

systematically demonstrated by figure 12, where we plot the marginal stability curve 

in the G d a−  space, at a fixed plasma flow 0 0.003Ω = . The dashed horizontal 

line indicates the stability boundary for the XK. As mentioned above, this margin is 

insensitive to the feedback gain nor the plasma rotation speed. The solid curve 
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represents the stability margin for the RWM. Note a flat upper boundary (associated 

with the conventional stability window) at relatively small feedback gain. However, at 

sufficiently large gain amplitude, the two stable windows merge, resulting in a fully 

stabilized RWM by both feedback and kinetic damping. The critical value of the 

feedback gain, for the full stabilization, is about 1.5 in this case.  

As already demonstrated in reference 36, there are two approaches for computing 

the critical amplitude of the feedback gain for the mode stabilization. One is a 

straightforward approach, by directly tracking the growth rate of the closed loop 

system, in the presence of drift kinetic effects. The alternative approach (referred to as 

the Nyquist approach) is to compute the open loop plasma response transfer function 

( )P s , defined by equation (14). Both methods should produce the same results, which 

is numerically verified by the results shown in figure 13. Here we compare four 

critical curves in the domain of arg( )G G− , for two choices of the wall radius. The 

plasma flow speed is fixed. Again an ideal plasma assumption is adopted. First of all, 

the two approaches recover the same critical curves as expected. Secondly, we find 

that negative phase of the feedback gain requires less critical gain amplitude. This is 

because the feedback with negative gain phase (within the reference system as defined 

in MARS-K) enhances the mode rotation, which follows the direction of the plasma 

flow, and thus yielding a stronger damping for the RWM. 

4.4. Effects of phase difference between upper and lower active coil currents 

In our feedback system, we assume that the toroidal phase of the feedback gain can be 
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independently varied for the upper and lower sets of active coils. Since these two sets 

share the same sensor signal, the phase difference in the feedback gain is equivalent to 

that of the coil currents, between the upper and lower sets. Obviously this phase 

difference can be optimized, in order to obtain the best synergetic performance 

between feedback and kinetic damping. 

We first examine the symmetry issue with the upper and lower coils. Figure 14 

shows the closed loop growth rate in the presence of a finite (slow) flow and the drift 

kinetic effects, where we only turn on one set of the active coils at a time. We find that 

the two sets of coils do not perform symmetrically for the mode stabilization, 

assuming the same (zero) phase for the feedback gain. The symmetry is broken by the 

finite toroidal flow, which induces a finite mode rotation frequency. In our case, the 

upper coil feedback further enhances the mode rotation, yielding a stronger 

stabilization of the mode. Similar to earlier results reported in this work, the 

asymmetry of the coil configuration does not affect the stability of the XK. 

Figure 15 shows results where we keep the feedback gain amplitude the same for 

both sets of coils, but vary the toroidal phase of the feedback gain for these two sets. 

We note that variation of the feedback gain does modify the stability windows. In this 

case, the stabilization from the synergetic effects is stronger with a larger phase 

difference. A more systematic phase scan will be reported in figure 17. Next we 

examine the effects of the (relative) gain amplitude (between upper and lower coils) 

on the mode stability, while fixing the phase difference between two coils. The results 

are reported in figure 16. Two observations can be made here. (i) At fixed gain phase 
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for both the upper and lower sets of coils, 40D  and 20D , respectively, in this case, 

different gain amplitude changes outer stability window. In particular, a larger gain for 

the lower set of coils is counter-productive for the mode stabilization in this case. (ii) 

Keeping the gain phase difference the same ( 20D ) but varying the individual phase 

values also leads to different stability window. This leads to the conclusion that the 

optimal gain phase can only be obtained by simultaneous optimization of both gains 

for the upper and lower coils.  

Figure 17 reports results from such a 2D space scan. Here we keep the gain 

amplitude of the upper and lower coils the same, 0.6,0.6G = . The normalized 

plasma on-axis rotation frequency is also fixed at 0 0.003Ω = . Both the real and 

imaginary parts, in figures 17(a) and (b), respectively, are plotted as we vary the 

toroidal phase for the upper and lower coil gains. The solid curve shows the stability 

boundary in the U Lφ φ−  plane. The area circled by this curve corresponds to the full 

stabilization of the RWM, and hence represents the optimal choice for the feedback 

phasing.  

The pattern (stabilization versus destabilization depending on the choice of the 

feedback phasing) shown in figure 17 is inherently related to the toroidal phasing 

introduced by the active control system, with that by the passive system as a result of 

the drift kinetic damping. This can be qualitatively understood from a single-pole 

analytic model, which is presented in Appendix C. The results from this single model 

are plotted in figure 18, where we choose an open loop unstable RWM, with the 

growth rate 4
0 1.77 10γ = ×  and the mode frequency 4

0 2.59 10ω = × . The gain 
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amplitude is again fixed at 0.6U LG G= = . The (complex) residuals of the 

single-pole approximation, representing the mode response to the upper and lower 

coils, are specified as 41.75 10UR = × , 20Uφ
∧

= − D ; 41.85 10LR −= × , 100Lφ
∧

= D , 

respectively. These choices of fitting parameters produce qualitatively very similar 

results, as that from directly MARS-K computations (cf. figure 17). Examination of 

the single-pole model shows that the optimal coil phasing corresponds to the case, 

when the toroidal phase of the feedback gain cancels that of mode response (i.e. the 

residual) to the upper and lower coils, respectively. To the lowest order (single-pole) 

approximation, and assuming the same gain amplitude for upper and lower coils, the 

optimal coil phasing does not depend on the open-loop mode eigenvalue. In other 

words, it does not depend on specific passive damping physics of the RWM.  

5. Conclusions

We have carried out detailed numerical investigation of the synergetic effect among 

the drift kinetic effects, the plasma flow, the plasma resistivity, as well as the magnetic 

feedback on the RWM stabilization, based on a fully toroidal resistive MHD-kinetic, 

non-perturbative hybrid model.  

By gradually increasing the drift kinetic contribution to the passive damping of 

the RWM, we identify a strong stabilizing role played by the precessional drift 

resonance effects, in particular at slow or even vanishing plasma flow. The plasma 

resistivity can also contribute to the passive stabilization, but only at a finite flow. In 

fact a critical flow speed exists, across which the role of the plasma resistivity 
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switches from destabilization to stabilization. 

The drift kinetic effects from trapped thermal particles, combined with the 

magnetic feedback and plasma flow, help to open two stability windows as the wall 

radius changes. The resulting double stability window is shown in various 

combinations of parameter spaces. Finally, we find that the optimal choice of the 

toroidal phase of the feedback gain enhances the synergy effect, producing fully stable 

domain for the RWM. 
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Appendix A.  A simplified analytic model for the kinetic RWM 

Below we show a simplified, zero-dimensional model of the kinetic RWM, which can 

be used to qualitatively explain the numerical findings report in this work. In the 

presence of the drift kinetic damping, the dispersion relation for the RWM can be 

devised based on an extended energy principle, 
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( ) 0
1

w b
k E

w

W W W i Dδ γτ δ δ γ ω
γτ

∞ +
+ + + =

+
(A.1) 

where Wδ ∞  and bWδ  are the perturbed fluid potential energies without wall and 

with an ideal wall at location b , respectively. The second term kWδ  denotes the 

perturbed drift kinetic energy. The last term in Eq. (A.1) represents additional 

damping physics (parallel sound wave damping, Alfven or sound wave continuum 

damping etc.). The key physics effect in the drift kinetic term (the second term) is the 

mode-particle resonances [55]. Therefore, as a gross simplification, we keep only the 

resonance operator in kWδ , neglecting the particle energy and pitch angle 

dependence, as well as all geometrical effects associated with the equilibrium 

magnetic geometry. This leads to a simple expression for the drift kinetic energy 

perturbation [23], 

* *i E e E
k

di E de E

i iW c
i i

ω ω γ ω ω γδ
ω ω γ ω ω γ

⎡ ⎤+ − + −
+⎢ ⎥+ − + −⎣ ⎦

∼ (A.2) 

where *iω  and *eω  are the diamagnetic drift frequencies for thermal ions and 

electrons, respectively. diω  and deω  are the toroidal magnetic precession drift 

frequencies for these two particle species. Eω  is the ×E B  drift frequency. The 

coefficient c  can be viewed as a “lumped” factor over all other effects that we have 

neglected. 

For simplicity, we shall consider a case with * * *i eω ω ω= − =  and 

di de dω ω ω= − = . Inserting Eq. (A.2) into (A.1), we obtain a nonlinear dispersion 

relation for the eigenvalue of the kinetic RWM, 
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2
*
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2

( )1 ( ) , ( ) ( )
( ) ( )

d E
E

df E

iC C a i D
C i

ω ω γ ωγγ γ γ ω
γ γ ω γ ω

∧ ∧ ∧ ∧∧
∧ ∧ ∧ ∧ ∧

−∧ ∧ ∧ ∧ ∧

+ +−
= = + +

+ + +
   (A.3) 

where the mode’s eigenvalue, as well as all the other frequencies, is normalized by the 

wall time wτ , and f f w bW Wγ γ τ δ δ
∧

∞= = − , 2a c Wδ ∞= − , wD D Wτ δ
∧

∞= − . The 

dispersion relation (A.3) is a fourth order algebraic equation with respect to the 

mode’s eigenvalue γ
∧

. Among the four roots, two are degenerated, at the limit of 

0a → , to satisfy the condition of vanishing denominator for the second equation of 

(A.3). These two roots are therefore introduced mainly by the gross simplification of 

the drift kinetic integrations in the particle velocity space. Among the remaining two 

physical roots, one is always stable, representing the so-called plasma mode [13]. The 

other is the kinetically modified RWM. This branch qualitatively re-produces all the 

parametric dependences that we find from the full toroidal MARS-K computations. A 

set of results, obtained using this analytic model, are reported in Fig. 7. 

Appendix B. An energy principle for the RWM with drift kinetic 

damping and magnetic feedback stabilization 

In order to demonstrate the synergistic effect between the drift kinetic damping and 

the active control, below we construct an analytic model based on the perturbed 

energy principle for the RWM. Unlike the straightforward energy analysis approach 

employed in [56], here we use a short-cut technique which allows to quickly establish 

energy principle in the presence of feedback. We first introduce this technique by a 

simple example without kinetic terms. 
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Assuming a case of fluid RWM in the presence of feedback, the energy principle, 

without any additional damping and without the plasma inertia, can generally be 

written as 

0
1

v v
w b

p fb
w

W WW Wδ γτ δδ δ
γτ

∞ +
+ + =

+
     (B.1) 

where pWδ  is the perturbed fluid potential energy within the plasma, vWδ ∞  and 

v
bWδ  are the perturbed vacuum energy without and with an ideal conducting wall, 

respectively. fbWδ  is the perturbed energy associated with the feedback system (the 

control coils). On the other hand, the open loop response of this simple fluid RWM 

system can be exactly represented by a single pole transfer function 

0

( ) RP s
s s

=
−

(B.2) 

where 0 bs W Wδ δ∞= −  is the open loop eigenvalue of the RWM. The residual factor 

R  measures the response of the mode to the feedback system. This factor is 

essentially determined by the feedback coil geometry. The eigenvalue of the closed 

loop system, with a control gain G , satisfies the following equation 

1 ( ) 0GP s+ = (B.3) 

Combining Eqs. (B.2) and (B.3), and comparing the result with Eq. (B.1), we easily 

find the perturbed energy associated with the feedback system 

1
b

fb
GR WW

s
δδ =
+

(B.4) 

where ws γτ=  is the closed loop eigenvalue of the RWM. Thus Eq. (B.1), together 

with (B.4), represents the energy principle for the feedback controlled RWM. We note 

that our approach here is rather different from that of Ref. [56]. The latter was 
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proposed essentially for the purpose of computational implementation for the toroidal 

code, without introducing analytically tractable quantities. 

 The inclusion of the drift kinetic term complicates the derivations. However, if 

we assume a simple structure for the perturbed drift energy contribution such as 

2 ( )k b dW c W isδ δ ω= − , which represents the key physics of the drift kinetic

resonance (here between the mode and the precessional drifts of a single particle 

species), the generic energy balance equation 

0
1

v v
w b

p k fb
w

W WW W Wδ γτ δδ δ δ
γτ

∞ +
+ + + =

+
    (B.5) 

can be simplified into 

0 2 0
1

fb

d b

Ws s c
s is W

δ
ω δ

− +
+ + =

+ −
(B.6) 

Again note that the open-loop RWM response for this case can be exactly represented 

by a two-pole transfer function (one pole comes from the fluid part, whilst the other 

comes from the drift kinetic contribution) 

1 2

1 2

( ) R RP s
s s s s

= +
− −

(B.7) 

where the two poles satisfy the open loop dispersion relation, i.e. Eq. (B.6) without 

the feedback contribution 

0 1,2 2

1,2 1,2

0
1 d

s s c
s isω

− +
+ =

+ −
 (B.8) 

Combining Eqs. (B.3, B.7, B.8), and comparing with Eq. (B.6), we find 

1 2 2 1 1 2( )
(1 )( )fb b

d

R s R s R R sW iG W
s is

δ δ
ω

+ − +
=

+ −
(B.9) 

Equation (B.5), together with (B.9), thus gives the RWM dispersion relation in the 
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presence of both the drift kinetic and the feedback contributions. As one particular 

aspect, it shows the (self-consistent) modification of the drift kinetic resonance by the 

feedback action. 

Appendix C. A single-pole model of the coil phasing for the RWM 

control 

Here with a simple analytic model, we shall try to elucidate important physics 

associated with the feedback-kinetic synergy study, that is numerically carried out in 

this work. We assume a single pole model for the mode’s response to two sets of 

active coils. The response is specified by two frequency-dependent transfer functions, 

for the upper and lower control coils, respectively,  

( )
0

U
U

RP s
s s

=
−

,   ( )
0

L
L

RP s
s s

=
−

          (C.1) 

where 0 0 0s iγ ω= +  is the RWM eigenvalue with flow and kinetic effects, but 

without feedback (open-loop). s iγ ω= +  is the closed loop eigenvalue. The 

(complex) residuals factors Ui
U UR R e φ

∧

=  and Li
L LR R e φ

∧

= characterize the mode’s 

response to the coil currents. Note that generally speaking, 0s  is also a complex 

number as a result of passive stabilization of the mode by plasma flow, kinetic effects, 

resistive layer damping, etc. 

Assuming that both active coil currents are driven by the same sensor signal, the 

closed-loop eigenvalue is determined by the solution of the following equation 

1 ( ) ( ) 0U U L LG P s G P s+ + =            (C.2) 

where Ui
U UG G e φ=  and Li

L LG G e φ=  are the complex feedback gain. If we further 
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assume U LG G G= = , the eigenvalue of the closed-loop system is easily found to 

be 

( ) ( )
0 [ ]U LU Li i

U Ls s G R e R eφ φ φ φ
∧ ∧

+ += − +  (C.3) 

which can be re-written for the mode growth/damping rate and the mode frequency 

separately,  

0

0

[ cos( ) cos( )]

[ sin( ) sin( )]

U LU U L L

U LU U L L

G R R

G R R

γ γ φ φ φ φ

ω ω φ φ φ φ

∧ ∧

∧ ∧

⎧ = − + + +⎪
⎨
⎪ = − + + +⎩

(C.4) 

This shows that the optimal coil phasing, resulting in the strongest damping of the 

mode, corresponds to the choices of UUφ φ
∧

= − , LLφ φ
∧

= − , i.e. when the toroidal 

phase of the feedback gain cancels that of mode response (the residual) to the upper 

and lower coils, respectively.  

Within the single-pole approximation, and assuming the same gain amplitude for 

upper and lower coils, the optimal coil phasing does not depend on the open-loop 

mode eigenvalue. In more realistic cases, a single-pole model is often insufficient [48]. 

And the coil phasing effects can be more complicated. In general, the stability of the 

closed-loop will depend on not only on the passive eigenvalue 0γ  and the mode 

response to the active coil currents, but also on both amplitude and phase of the 

feedback gain. 
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Figure caption: 
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Figure 1. Geometry of a toroidal equilibrium with up-down symmetric plasma 

boundary shape, a resistive wall conformal to the plasma boundary, two sets of active 

coils and one set of poloidal sensor coils located just inside the wall.  
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Figure 2. (a) Equilibrium profiles for the safety factor q , the plasma pressure P

normalized by 2
0 0B μ , the toroidal current density Jφ  normalized by ( )0 0 0B Rμ  

and the plasma mass density ρ  normalized to unity at the magnetic axis. (b) The 
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radial profile of the angular frequency for the plasma toroidal rotation, normalized to 

unity at the magnetic axis. Here pψ  is the normalized equilibrium poloidal flux. 
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Figure 3. Radial profiles of the safety factor q  with varying plasma pressure scaling 

factor Cβ . The minimal q  value is fixed 1.6.  
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Figure 4. Growth rate (solid lines) and mode frequency (dashed lines) of the RWM 

versus the kinetic scaling factor Dα , for different plasma rotation frequencies, 

0 0.003Ω = (solid circles) and 0 0.005Ω =  (solid squares), respectively. Factor Dα

denotes the fraction of the kinetic contribution to the total potential energy, such that 

0Dα =  corresponds to the case of fluid RWM, whilst 1Dα =  corresponds to the full 

kinetic RWM. The other parameters are 0.70Cβ = , 0.0η = , 0.0κ =&  and 

1.25d a = . The on-axis rotation frequency 0Ω  is normalized by the Alfven 

frequency AΩ . No feedback is included in these computations. 
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Figure 5. 2D plots of (a) growth rate and (b) mode frequency of the kinetic RWM, 
predicted by self-consistent kinetic computations with MARS-K. The parameters are 

0.0η = , 0.0κ =&  and 1.25d a = . Only precessional drift resonance damping of 

bulk plasma particles is included. The black dots indicate stable RWMs with 
practically vanishing growth rates. 
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Figure 6. Growth rates of the RWM ( Rγ ) and the XK ( Kγ ) versus the normalized wall 

position d a  for different plasma rotation frequencies 0 0.003Ω =  (solid circles), 

0 0.004Ω =  (solid squares) and 0 0.005Ω =  (solid stars), respectively. The other 

parameters are 0.0η = , 0.0κ =&  and 0.70Cβ = . Only precessional resonance 

damping is included. 0Ω  is normalized by the Alfven frequency AΩ . 
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Figure 7. Summary of results obtained from a simple analytic model presented in 

Appendix A. (a) Growth rate of the kinetic RWM versus the ×E B  drift frequency. 

(b) Growth rate of the kinetic RWM versus the growth rate of the initial fluid RWM

without the kinetic effects. The growth rate of the fluid RWM effectively represents 

the wall radial position. Compared are two cases: one with feedback, | | 0.2G =  (solid 

line) and one without feedback | | 0.0G =  (dashed line). (c) Growth rate of the kinetic 

RWM versus the parameter a  (representing the kinetic contribution). (d) The 

stability boundary in the f wG γ τ−  plane.
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Figure 8. Growth rates of the fluid RWM versus Cβ  for different values of magnetic 

Lundquist number S : 81.0 10S = ×  (solid circles), 72.0 10S = ×  (solid squares) and 

71.0 10S = ×  (solid stars), respectively, predicted by MARS-F at (a) vanishing plasma 

flow 0 0.00Ω =  and (b) 0 0.03Ω = . The other parameters are 1.5κ =&  and 
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1.25d a = . 

Figure 9. (a) Growth rate and (b) mode frequency of the fluid RWM with varying 

plasma rotation frequency 0Ω  and the magnetic Lundquist number S . The other 
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parameters are 1.5κ =& , 0.70Cβ =  and 1.25d a = . The solid curve shows the 

stability boundary in the 0 SΩ −  plane. 
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Figure 10. (a) Growth rate and (b) mode frequency of the kinetic RWM with varying 

plasma rotation frequency 0Ω  and the magnetic Lundquist number S , predicted by 

self-consistent kinetic computations with MARS-K. Only the precessional drift 

resonance damping of bulk plasma particles is included. The other parameters are 

0.0κ =& , 0.70Cβ =  and 1.25d a = . The solid curve shows the stability boundary 

in the 0 SΩ −  plane. 
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Figure 11. Growth rates of the kinetic RWM (
Rγ ) and the XK ( Kγ ) versus the 

normalized wall position d a  for (a) different values of the feedback gain, 0.8G =  

(solid circles), 1.0G =  (solid squares) and 1.2G =  (solid stars), at fixed rotation 

frequency  0 0.003Ω = , and (b) different rotation frequencies, 0 0.0025Ω =  (solid 
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circles), 0 0.003Ω =  (solid squares) and 0 0.004Ω =  (solid stars), at fixed feedback 

gain 1.0G = . The other parameters are 0.0κ =& , 0.70Cβ = , ( )arg 0G = D , and 

0.0η = . The feedback gains are the same for the upper and the lower coils. 0Ω  is 

normalized by the Alfven frequency AΩ  and G  is normalized by 0 0 0G R μ= . 

The poloidal sensor is used in the feedback logic. 
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Figure 12. Stability boundary in the G d a−  plane with the b sensorθ − , predicted

by self-consistent kinetic computations with MARS-K. Only precessional drift 

resonance damping of bulk plasma particles is included. The other parameters are 

0.0κ =& , 0.70Cβ = , ( )arg 0G = D , 0 0.003Ω =  and 0.0η = . The feedback gains 

for the upper and the lower coils are the same. 
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Figure 13. The critical gain amplitude versus the phase of the feedback gain, arg( )G , 

for two choices of the wall position, 1.20d a =  (solid circles and solid squares) and 

1.25d a =  (solid triangles and solid stars), respectively, as predicted by 

self-consistent kinetic runs. Compared are results from two different approaches – the 

direct feedback run and the Nyquist approach based on the open-loop response 

transfer function. The other parameters are 0.0κ =& , 0.70Cβ = , 0 0.003Ω =  and 

0.0η = . The feedback gains are the same for the upper and lower coils, with the same 

poloidal sensor signal. 0Ω  is normalized by the Alfven frequency AΩ  and criG  is 

normalized by 0 0 0G R μ= . 
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Figure 14. Growth rates of the kinetic RWM and the XK versus the wall position 

d a , with only one feedback coil in action, 1.0,0.0G =  (solid circles) and 

0.0,1.0G =  (solid squares), respectively, and with the b sensorθ − . The other 

parameters are 0.0κ =& , 0.70Cβ = , arg( ) 0 ,0G = D D , 0 0.003Ω =  and 0.0η = . 
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Figure 15. Growth rates of the kinetic RWM and the XK versus the wall position 

d a , with different toroidal phases of feedback gain for the upper and lower coils, 

arg( ) 10 , 10G = −D D  (solid circles), arg( ) 10 ,0G = D D  (solid squares) and 

arg( ) 10 ,10G = D D  (solid stars). The other parameters are 0.0κ =& , 0.70Cβ = , 

0.8,0.8G = , 0 0.003Ω =  and 0.0η = . 
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Figure 16. Growth rates of the kinetic RWM and the XK versus the wall position 

d a , with varying both amplitude and phase of feedback gains between upper and 

lower coils, arg( ) 10 , 10G = −D D , 0.8,0.4G =  (solid circles), arg( ) 40 ,20G = D D , 

0.8,0.4G =  (solid squares) and arg( ) 40 ,20G = D D , 0.8,1.2G =  (solid stars). The 

other parameters are 0.0κ =& , 0.70Cβ = , 0 0.003Ω =  and 0.0η = . 
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Figure 17. (a) Growth/damping rate and (b) mode frequency of the MARS-K 

computed kinetic RWM with varying phase of feedback gains for both the upper coil 

Uφ  and lower coil Lφ . The other parameters are 0.0κ =& , 0.70Cβ = , 0.6,0.6G = , 

0 0.003Ω = , 0.0η =  and 1.25d a = . The solid curve shows the stability boundary 
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in the U Lφ φ−  plane. 
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Figure 18. (a) Growth/damping rate and (b) mode frequency of the RWM from a 

single-pole analytic model, with varying feedback gain phase of the upper coil Uφ

and the lower coil Lφ . The choices of parameters in the model, described in Appendix 

C, are 4
0 1.77 10γ −= × , 4

0 2.59 10ω −= × , 0.6G = , 20Uφ
∧

= − D , 100Lφ
∧

= D , 

41.75 10UR −= × , 41.85 10LR −= × . 
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