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Abstract

Oscillations of reflection high energy electron diffraction (RHEED) intensities are com-

puted using dynamical diffraction theory. The phase of oscillations is then determined

using two alternative approaches. In the first approach, the phase is found by directly

examining the intensity oscillation data. In the second approach, the phase is deter-

mined using harmonic analysis. We compare the two methods and apply them to the

determination of the phase of RHEED oscillations observed experimentally. For the

incident beam azimuths corresponding to low symmetry directions both approaches

produce similar results, showing that either algorithm can be used in applications.

1. Introduction

Reflection high energy electron diffraction (RHEED) is a robust and convenient tech-

nique for monitoring growth of nanostructures. Recent examples of structures pro-

duced using RHEED as a monitoring tool include: Au nanoparticles (Chen et al.,
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2013), GaAs:Mn nanowires (Sadowski et al., 2007), biaxial W nanorods (Krishnan

et al., 2010) and Ge layers on a GaAs substrate (Ohtake et al., 2009). In most cases

the interpretation of experimental RHEED data involves highly simplified assump-

tions. This is largely because quantitatively accurate models for predicting RHEED

intensities, based on dynamical diffraction theory, were developed only for flat sur-

faces, see Ichimiya & Cohen (2004), and Peng et al. (2004), with theoretical effort

also addressing the problem of electron absorption and diffuse scattering by random

arrangements of atoms on a growing surface or randomly distributed surface steps

(Dudarev et al., 1992; Dudarev et al., 1994; Dudarev, 1997). RHEED became broadly

accepted as a useful tool for monitoring surface structure of growing crystals after

the discovery of oscillating changes of intensity of electron beams reflected from the

surface during crystal growth, first reported by Wood (Wood, 1981) and Harris et al.

(Harris et al., 1981), see Herman & Sitter (1996) for more detail. The period of such

intensity variations, called RHEED oscillations, corresponds to the deposition of one

new monolayer onto a surface during growth. In the 1980’s, RHEED oscillations were

observed during molecular beam epitaxial growth where experiments were performed

in ultra-high vacuum. More recently, RHEED intensity oscillations were observed at

gas pressures considerably higher than the pressure characterizing molecular beam

epitaxy conditions. For example, oscillations were recorded during pulsed laser depo-

sition (Rijnders et al., 1997; Li et al., 2012). Several theoretical models for RHEED

oscillations have been developed (Pukite et al., 1988; Holmes et al., 1997; Peng &

Whelan, 1990) since the discovery of the effect, however the range of validity of

these models is limited. The subject has again attracted attention recently (Vasudevan

et al., 2014; Sullivan et al., 2015).

In this paper we focus on algorithms for processing RHEED oscillation data, and

specifically on the determination of generic parameters characterizing the oscillations.
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For example, if we assume the availability of data describing some statistically rep-

resentative oscillation data sets, we can characterize them by introducing parameters

like the amplitude of oscillations, their phase, the decay time constant etc. The val-

ues of such parameters can be determined through a direct examination of oscillating

intensity curves and matching the data to a chosen functional form.

An alternative approach would be to use the Fourier analysis, as this would enable

filtering out fluctuations of intensity oscillations. In general, the interpretation of inten-

sity oscillations and analysis of data can be quite complex. In this paper we focus on

a particular problem of comparing the phase of experimentally observed oscillations

with the phase of oscillations predicted theoretically assuming perfect layer-by-layer

growth. RHEED oscillations observed experimentally are usually relatively smooth,

as shown in Fig. 1, and their phase can be readily determined by identifying the time

point corresponding of the intensity minimum in the second period of oscillations.

However, the curves computed using models based on dynamical diffraction theory

may potentially have fairly complex shape, as illustrated in Fig.2, and this is why it

would be illuminating to compare the outcomes of analysis performed using a direct

approach and the Fourier decomposition method.

This work extends studies described in Mitura et al. (1998) and Mitura et al. (2002).

In our earlier work the phase of oscillations derived directly from experimental data

was compared with the phase computed using dynamical diffraction theory and then

analyzed using using the Fourier transform method. Here, we extract phase informa-

tion from curves, computed using dynamical diffraction theory, using two complemen-

tary approaches: first directly from the curves and then by harmonic analysis. Before

proceeding to the interpretation of experimental data we assess the advantages and

disadvantages of both methods. We also use a different model for describing crystal

growth. Previously, we assumed that the surface was reconstructed, now we ignore
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surface reconstruction but take into account that the amplitudes of thermal displace-

ments of Ga and As atoms may differ. Also, here we use a somewhat different definition

of the oscillation phase. In the earlier papers we assumed that the values of the phase

were in the range [−π; π], presently the values are in the range from 1 to 2, as in

(Zhang et al., 1987) and (Joyce et al., 1988).

The paper is organized as follows. In Sec. 2 we describe the two approaches to

the determination of the phase and apply them to the analysis of intensity oscilla-

tions predicted using dynamical diffraction theory. In Sec. 3 we analyze experimental

observations and in Sec. 4 we present our conclusions.

2. Two approaches to the determination of RHEED oscillation phase

We assume that for each glancing angle of incidence we can find the intensity of

specular reflection from a dynamical diffraction calculation, as it is shown for exam-

ple in Mitura et al. (1998) and Mitura et al. (2002). We are interested in analyzing

RHEED intensities for the azimuthal orientations of the incident beam that are off the

high symmetry directions. For such orientations the intensity of the specular beam is

almost insensitive to the lateral periodicity of the surface. Hence the effective poten-

tial describing interaction of high energy electrons with atoms can be assumed to

depend only on the coordinate in the direction normal to the surface, see (Dudarev

et al., 1992). This diffraction geometry is often referred to as the one-beam RHEED

condition.

We assume that the potential in the growing layer of atoms is given by the potential

of a complete atomic layer multiplied by surface coverage Θ, where 0 < Θ < 1. For each

glancing angle, surface coverage varies on a mesh of values defined by the number of

points Ncov for which, over one oscillation period, RHEED intensities are computed.

Over an oscillation period, the values of coverage Θ for which RHEED intensities
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are computed are 0, 1/Ncov, 2/Ncov, ..., (Ncov − 1)/Ncov. Assuming perfect layer-by-

layer growth, for each glancing angle we vary Θ and compute the individual RHEED

intensity-versus-time (i.e. intensity versus surface coverage) oscillation curves.

We investigate growth of atomically thin GaAs layers on the (001) GaAs surface.

No reconstruction of the surface is assumed. The energy of electrons is 10 keV. Results

shown in Sec.2 refer to dynamical diffraction calculations where the potential of inter-

action between electrons and the atoms is evaluated ignoring thermal atomic vibra-

tions.

2.1. Direct determination of the phase

According to Zhang et al. (1987) and Joyce et al. (1988) the phase of oscillations can

be defined “as the time taken to reach the second oscillation minimum normalized by

the time of a complete period”. The authors of the above papers introduced a symbol

t3/2/T to denote this quantity. For cases shown in Fig.1 and Fig.2a their definition

can be readily applied, and one expects that the phase defined in this way would span

the range from 1 and 2. However, if multiple intensity minima are observed over a

period, as shown in Fig.2b, then the definition proposed in Zhang et al. (1987) causes

confusion. To make sure that condition 1 ≤ t3/2/T < 2 is satisfied even for cases

where oscillations exhibit multiple minima over each oscillation period, we modify the

definition given in Zhang et al. (1987). We define t3/2 as the time point corresponding

to the lowest value of intensity over the second period of oscillations, and then define

the oscillation phase by dividing the resulting value by T . The phase computed in this

way is denoted by (t3/2/T )dir.

The use of the above definition for (t3/2/T )dir when interpreting experimentally

observed oscillations does not cause any difficulty as oscillating intensity can be

recorded as a continuous function of time. The curves computed theoretically are

IUCr macros version 2.1.6: 2014/01/16



6

somewhat more difficult to interpret as they are computed on a discrete set of points

where each point corresponds to a certain value of Ncov.

The phase computed using the formula (t3/2/T )dir are shown in Fig.3. The plots

were produced using several different values of Ncov. The fact that the intensities are

computed for a discrete set of surface coverages Θ = (0, 1/Ncov, ..., (Ncov − 1)/Ncov)

results in that the curves do not look like smooth functions. Although in principle

we are interested in the limit Ncov → ∞, the curve computed for Ncov = 20 already

provides a reasonably accurate approximation.

2.2. Determination of the phase using harmonic analysis

Whereas an algorithm for determining the phase directly from RHEED intensity

curves may be applied successfully to simple cases, it would be desirable to intro-

duce a more general definition for the phase, especially given that any experimen-

tally observed curve involves small intensity fluctuations that need to be filtered out.

This can be achieved using the Fourier analysis. Any periodic function f(t), where

f(t) = f(t + T ) and T is the period, can be represented by a series as follows (Mitura

et al., 1998; Mitura et al., 2002)

f (t) =
1
2
A0 + A1 cos

(
2π

T
t− φ1

)
+

+

[ ∞∑

n=2

An cos
(

n
2π

T
t− φn

)]
, (1)

where we assume that An ≥ 0 for n ≥ 1. The terms corresponding to n ≥ 2 can

be filtered out and ignored. Since A0 is a constant, we see that the shape of oscillations

can be described by only two parameters, A1 and φ1. Appendix A shows how these

two parameters can be found in practice.

We now compare values derived from a direct examination of oscillations with those

deduced using harmonic analysis. For oscillations with simple, cosine-like, function

shape the values computed using the two approaches should be expected to be very
IUCr macros version 2.1.6: 2014/01/16
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close. To ensure this, we need to introduce a normalization convention. For example,

we may compare values of φdir defined as φdir ≡ 2π[(t3/2/T )dir−1.5] and φharm defined

as φharm ≡ φ1 (Mitura et al., 1998; Mitura et al., 2002). In the current paper we adopt

a convention that matches the range of variation of the phase given in Zhang et al.

(1987) and Joyce1988.

In what follows we assume that the phase (t3/2/T )dir defined in Sec.2.1 is equivalent

to (t3/2/T )harm defined as follows

(t3/2/T )harm ≡ φ1/(2π) + 1.5, (2)

where φ1 is the phase entering Eq.(1).

It is illuminating to see how the values of the phase defined using the Fourier analysis

depend on the number of mesh points Ncov used in RHEED intensity calculations.

Three plots of phase (t3/2/T )harm computed using various values of Ncov are shown

in Fig.4. All of them are smooth and it appears that the plot computed for Ncov = 8

already approximates well the limit Ncov →∞.

2.3. Analysis of oscillations

In this section we compare phases of oscillations derived using the two methods

outlined above. As a test, we apply the phase determination algorithms to the inten-

sity oscillation curves computed theoretically using dynamical diffraction theory. To

produce the curves shown in Fig. 5, we first compute RHEED intensity oscillation

curves assuming an off-symmetry azimuth and using dynamical diffraction theory as

explained at the beginning of Sec.2. Then, the phases of oscillations were determined

as described in Sec.2.1 and Sec.2.2. In both cases, the number of mesh points Ncov

used in calculations when approximating surface coverage during growth was equal to

20.

Fig.5 shows that the two plots are fairly similar, and differ only over relatively
IUCr macros version 2.1.6: 2014/01/16
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narrow intervals of angles of incidence: from 1.9◦ to 2.5◦, from 4.6◦ to 5.0◦, and from

7.2◦ to 7.4◦. We note that despite the fact that in the above intervals the values of

phases appear different, in fact the difference is not materially significant since the

phase only enters an expression for an observable quantity (intensity of the specular

beam) through an argument of a periodic function.

To clarify the point we consider two sets of cosine-like oscillations that have the

same period T , but are characterized by slightly different positions of the intensity

minima. If we assume that the first set of oscillations has minima at t = 1.02T whereas

the minima of the second set are at t = 0.99T , we can say that in general both sets

are nearly identical. If we apply the direct method of phase determination to the

two sets we discover that for the first set the value of the phase is 1.02 whereas the

value of the phase derived from the second set is 1.99. The reason for the somewhat

unexpectedly large value of the phase in the latter case is that the intensity minimum

occurring during the first period of oscillations t = 0.99T is not taken into account in

the analysis. Physically there is no difference between the values of 0.99 or 1.99, and

the example illustrates that the direct analysis may deliver discontinuous values if the

phase is close to one of the boundaries of the interval [1, 2].

Still, from the examination of Fig.5 we conclude that the plot of the phase derived

using the Fourier analysis is similar to the plot derived from a direct examination of

oscillations.

3. Interpretation of experimental data

In this section we focus on the interpretation of experimental data. The experimental

phase points shown in Figs. 6-7 are taken from literature (Crook et al., 1989) where the

values were derived by directly examining the oscillation data. Theoretical plots shown

in Figs.6-7 illustrate the angular dependence of the two phases, defined respectively
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in Sec.2.1 and in Sec.2.2.

Theoretical results shown in Figs.6-7 were derived assuming that the surface of the

growing layer was not reconstructed (i.e. the surface structure corresponded to a bulk

terminated crystal with As atoms forming the top layer). We assumed that there was

a small delay associated with the start of MBE growth noted in Osaka et al. (1995).

Therefore, a constant values of 0.25 was added to all the initial values of theoretically

determined phases, i.e. the phases found computationally using the perfect layer-by-

layer model of MBE growth. All the results shown in Fig.6. correspond to scattering

potential evaluated ignoring thermal vibrations of atoms. Thermal vibrations were

taken into account in calculations illustrated in Fig.7. The Debye-Waller factor B for

Ga was set to be equal to 2.0 Å2, and for As it was taken as 2.7 Å2 . The objective

of using different values of B is to take into account the fact that the amplitude of

thermal vibrations of atoms at the surface is greater than in the crystal bulk. To retain

the simplicity of the model we assumed that there is only one value of B characterizing

all the Ga atoms and, similarly, only one value of B characterizing all the As atoms.

The Debye-Waller factors for Ga and As atoms in a perfect crystal at the tempera-

ture similar to the temperature of MBE growth are BGa = 1.85Å2 and BAs = 2.00Å2

(Reid, 1983). The fact that the Debye-Waller factors of Ga and As atoms are different

is significant, since this has a strong effect on the effective potential of interaction

between high energy electrons and the layers of Ga and As atoms parallel to the sur-

face. The atomic numbers of Ga and As are similar (Z=31 and 33, respectively) and

hence the difference between Debye-Waller factors has a particularly strong effect on

the temperature-dependent reflectivity of crystal surfaces.

Figs. 6 and 7 shows that both theoretical plots agree with experimental observations

rather well. Therefore, both methods for the determination of phases of RHEED oscil-

lations appear suitable for the interpretation of experimental data for the directions
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of incidence where one-beam conditions are satisfied.

How do the above conclusions relate to the earlier work (Mitura et al., 1998; Mitura

et al., 2002)? When investigating RHEED oscillations in (Mitura et al., 1998; Mitura

et al., 2002), we assumed that the growing surface was reconstructed. Also, an extra

imaginary part of the scattering potential was included into considerations to account

for the losses of electrons resulting from scattering by step edges in the growing

layer or by atomic disorder on a growing surface (Dudarev et al., 1992; Dudarev

et al., 1994; Dudarev, 1997). The surface reconstruction model known as the β2(2×4)

model, introduced by Chadi (1987), was used in the calculations performed in (Mitura

et al., 1998; Mitura et al., 2002). Taking into account the β2(2×4) surface reconstruc-

tion seems to be indeed appropriate for the As-rich equilibrium GaAs surfaces, and

the use of this reconstruction model in earlier calculations represented a reasonable

assumption (Mitura et al., 1998; Mitura et al., 2002).

The real structure of a non-equilibrium surface is more complex, whereas the surface

structure formed during growth is still not known in sufficient detail. For example,

even at equilibrium, reconstructions different from β2(2× 4) may form, depending on

surface conditions (Ichimiya et al., 2001; Ohtake et al., 2002; Lin & Fichthorn, 2012).

Furthermore, Osaka et al. (1995) showed experimentally that homoepitaxial growth of

GaAs may involve a time delay and suggested that initial ordering of atoms may occur

first. Itoh et al. (1998) investigated, using Monte Carlo simulations, the formation of

surface unit cells, and concluded that intermediate configurations form before the final

structure emerges. More recently, some aspects of growth of GaAs were modeled using

molecular dynamics (Murdick et al., 2007), who showed that the mode of growth of

new atomic layers may indeed be fairly complex.

In this study we decided not to include surface reconstruction effects into consid-

eration, partially for the reason of simplifying the model to assist the most direct
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and transparent determination of the phase of oscillations. We have also omitted the

imaginary part of the potential associated with atomic disorder in the growing layer

(Dudarev et al., 1992), and instead used a model where the imaginary part of the

potential was proportional to its real part, see e.g. (Dudarev et al., 1995). Surpris-

ingly, the level of agreement between experimental and theoretical curves shown in

Figs. 6-7 is somewhat better than what we found earlier. We would not like to over-

state the significance of this improvement. In the first place, the treatment given above

confirms that changes in refraction conditions at the surface do have a significant effect

on RHEED oscillations. We still observe differences between theoretical predictions

and experimental observations, highlighting the desirability of using a more accurate

model of growth and a more accurate model for electron scattering for the interpre-

tation of experimental observations.

4. Conclusions

In this paper we compare phases of RHEED intensity oscillations derived from exper-

imental observations, using two alternative approaches to the determination of the

phase of oscillations. We found that the phases determined using the two methods

were in agreement, although the results were not identical.

Determining the phase directly is a good approach if only a limited amount of exper-

imental information is available. However, the direct method becomes less efficient if

a significant amount of data is available. Harmonic Fourier analysis may offer certain

advantages in the latter case, particularly given that such analysis makes it possible

to filter out fluctuations. In this paper we showed how to apply the Fourier analysis

to perfectly periodic oscillations, and there is room for extension of the method, for

example to the case of damped oscillations.
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Appendix A
Determination of oscillation phase using harmonic analysis

Below we explain how to find values of A1 and φ1 in Eq. (1). It is well known that

a periodic function f(t) can be represented by a Fourier series

f (t) =
1
2
C0 +

∞∑

n=1

[
Cn cos (n

2π

T
t) +

+ Sn sin (n
2π

T
t)

]
, (3)

where

C0 =
2
T

∫ T

0
f(t)dt (4)

and, for n ≥ 1,

Cn =
2
T

∫ T

0
f(t) cos (n

2π

T
t)dt, (5)

Sn =
2
T

∫ T

0
f(t) sin (n

2π

T
t)dt. (6)

Using a basic trigonometric relation cos(α−β) = cosα cosβ +sinα sinβ, where α and

β are real, we transform Eq.(1) as follows

f (t) =
1
2
A0 +

[ ∞∑

n=1

[
An cosφn cos (n

2π

T
t) +

+ An sinφn sin (n
2π

T
t)

]
. (7)
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Comparing terms in Eq.(3) and Eq.(7) we find,

A0 = C0 (8)

and, for n ≥ 1,

An cosφn = Cn, (9)

An sinφn = Sn. (10)

Using Eqs.(9-10) we derive formulae that enable one to compute A1 and φ1. In Eq.(1)

it was assumed that A1 ≥ 0. Accordingly, A1 satisfies the following condition:

A1 =
√

C2
1 + S2

1 . (11)

Furthermore, since A1 > 0, the magnitude of φ1 can now be found using the following

relation:

φ1 =

{
arccos(C1/A1) if S1 > 0,

−arccos(C1/A1) if S1 ≤ 0.
(12)

It should be mentioned that in the limiting case A1 = 0 the magnitude of φ1 is not

defined, but encountering such a limit in practical calculations is not likely.

Eqs. (11-12) can be used to find A1 and φ1 if the values of C1 and S1 are known.

Two latter values can be determined using the following formulae:

C1 ' 2
Ncov

Ncov−1∑

l=0

f
( lT

Ncov

)
cos

( 2πl

Ncov

)
, (13)

S1 ' 2
Ncov

Ncov−1∑

l=0

f
( lT

Ncov

)
sin

( 2πl

Ncov

)
. (14)

Eqs.(13-14) are the approximate versions of Eqs.(5-6). Namely, Eqs.(13-14) were derived

assuming that values of f(t) were defined on Ncov discrete points corresponding to a

set of discrete time points t.
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Fig. 1. A typical run of oscillations appearing in experiment. Vertical lines are drawn
for t = T and t = 2T to make it easier to recognize intensity changes in the second
period of oscillations.
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Fig. 2. Runs of oscillations which need to be admitted in theoretical work: (a) oscilla-
tions which can be described with the help a cosinus-like function, (b) oscillations
with double minima and maxima in one period, (c) the intensity changes which are
strongly asymmetric within one period.
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Fig. 3. Plots of the phase found directly from runs of theoretical oscillations for two
numbers Ncov of coverages considered for the growing layer.
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Fig. 4. Plots of the phase determined with the help of the harmonic analysis of the-
oretical oscillations. The plots are shown for different numbers Ncov of coverages
assumed for the growing layer.
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Fig. 5. Plots of the oscillation phase determined using two different methods (direct
and employing the Fourier series, respectively) for the identical sets of theoretical
oscillations, Ncov = 20.
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Fig. 6. Comparison of the experimental and theoretical phase of oscillations. Exper-
imental data collected by Crook et al. (1989) are shown with crosess. Theoretical
results obtained by the direct examination of oscillations runs are shown with the
solid line, theoretical results obtained using harmonic analysis are shown with the
dotted line. Thermal vibrations of atoms were ignored in the theoretical model.
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Fig. 7. The same as for Fig.6, however, theoretical results are for the model taking into
account thermal vibrations of atoms. The following vaules of Debye-Waller factors
were assumed: BGa = 2.0 Å2 and BAs = 2.7 Å2.
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Synopsis

The phase of RHEED intensity oscillations is determined by examining the oscillation runs or
by using harmonic analysis.
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