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The magnetohydrodynamic-kinetic hybrid theory has been extensively and successfully applied
for interpreting experimental observations of macroscopic, low frequency instabilities, such as the
resistive wall mode, in fusion plasmas. In this work, it is discovered that an analytic version of
the hybrid formulation predicts a bifurcation of the mode dynamics while varying certain physical
parameters of the plasma, such as the thermal particle collisionality or the ratio of the thermal ion to
electron temperatures. This bifurcation can robustly occur under reasonably large parameter spaces
as well as with different assumptions, for instance, on the particle collision model. Qualitatively sim-
ilar bifurcation features are also observed in full toroidal computations based on a non-perturbative
hybrid formulation.

PACS numbers: 52.35.Py, 52.55.Fa, 52.55.Tn

The resistive wall mode (RWM) is a low frequency,
macroscopic instability driven either by the plasma cur-
rent (in tokamaks or reversed field pinches) or pressure
(in tokamaks) [1, 2]. Because of its global nature, the on-
set of this instability, or sometimes even the response of
a marginally stable RWM to external three-dimensional
magnetic field perturbations [3, 4], can cause major dis-
ruption in tokamaks or termination of discharges in re-
versed field pinch devices. This motivates extensive re-
search that have been carried out on this instability in
recent years, both in experiments [5–8] and in theory [9–
16].

The mode originates from ideal external kink mode,
which is a high frequency (comparable to the Alfvén fre-
quency) instability. Whilst the kink mode is often well
described by the ideal magnetohydrodynamic (MHD)
theory, the RWM involves more subtle physics, essen-
tially due to the fact that the modes frequency is much
lower as a result of the surrounding wall eddy current sta-
bilization. In fact the modes frequency, measured in the
laboratory frame, is often below any of the typical drift
frequencies of plasma thermal particles. Consequently,
in the presence of a toroidal flow of the plasma, the mod-
e rotates in the plasma frame. This mode rotation in
the plasma frame can create resonance conditions with
the particle motions, if the toroidal rotation frequency
matches the toroidal precession frequency of particles, or
even the bounce (transit) frequency of trapped (circulat-
ing) thermal ions. This is the primary resonance damping
physics of the RWM which can be described by the drift
kinetic theory [11].

The MHD-kinetic hybrid formulation, which we adopt
in this work, essentially utilizes the single fluid theory to
describe the mode dynamics perpendicular to the equi-
librium magnetic field lines, whilst the parallel motion

is kinetically treated. Neglecting the plasma inertial ef-
fect (because the mode frequency is normally small in
the laboratory frame), the hybrid formulation leads to a
well-known dispersion relation for the RWM [11, 17].

D(ω) ≡ −iωτw +
δW∞ + δWk(ω)

δWb + δWk(ω)
= 0, (1)

where ω = ωr + iγ is the eigenvalue (complex frequen-
cy) of the mode in the laboratory frame, with ωr and
γ being the real frequency and the growth rate, re-
spectively. τw is the typical eddy current decay time
of the resistive wall. For example, in a straight cylin-
der with circular cross section, the wall time, in re-
sponse to a single m Fourier perturbation, is calculated
as τw = µ0σbd(1−a2m/b2m)/(2m), with a, b, d, σ, m and
µ0 being the plasma minor radius, the wall position, the
wall thickness, the wall conductivity, the poloidal mode
number and the vacuum permeability, respectively. This
definition of the wall time will be followed in the first part
of our work, where the dispersion relation (1) is solved
under simplified geometrical assumptions.

Equation (1) is equivalent to an extended energy prin-
ciple for the RWM, with quantities δW∞ and δWb rep-
resenting the perturbed fluid potential energies, without
and with an ideal conducting wall, respectively. δWk is
the perturbed drift kinetic energy representing the mode-
particle resonance physics. In this paper, we shall on-
ly consider the processional drift resonances of trapped
thermal ions and electrons, assuming that the plasma
flow (more precisely the equilibrium E × B flow) is s-
lower than the thermal particle diamagnetic flow. It is
important to note that we keep the mode frequency ω,
though normally being small, into the mode-particle res-
onance condition, leading to a rather non-linear depen-
dence of the drift kinetic energy δWk on ω. This non-
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linearity can introduce multiple branches of the RWM,
as has been shown in earlier work [13, 18], and can also
result in fishbone-like modes [15], if the energetic particle
resonances are included. Different from early results, in
this work we find that bifurcation can occur in terms of
the RWM eigenvalue in the complex plane, with contin-
uous variation of certain plasma parameters.
We adopt a model similar to that developed in Ref.

[17]. Following a large aspect ratio approximation with
circular plasma cross section, the perturbed drift kinetic
energy can be written as [17, 19]

δWk = 2π3/2
∑
e,i

∫
drϵrPC2

l

∫
dλ

(2− λ)2

F

×
∫

dε̂kε̂
5/2
k e−ε̂kQ, (2)

where ϵr = r/R0 is the inverse aspect ratio, P (r) =
P0(1− r2) is the equilibrium plasma pressure, which we
assume to be a parabolic function of the plasma mi-
nor radius r (normalized by a), with P0 = µ0J

2
0/4,

and J0 being the plasma current density which is as-
sumed to be flat along minor radius. λ ≡ µB0/εk is the
pitch angle of (trapped) particles, µ is the magnetic mo-
ment, B0 is the equilibrium magnetic field, ε̂k = εk/T
is the particle energy εk normalized by the tempera-
ture T . In this simple model, a uniform plasma e-
quilibrium current density also yields a flat safety fac-
tor profile q(r) = q0 ≡ 2B0/(µ0R0J0). The coefficient
Cl=0 = |⟨ξR⟩| is the plasma displacement along the major
radius, averaged over one bounce period of the particle,
for a single poloidal Fourier harmonic m. In particu-
lar, ξR = ξr cos θ − ξθ sin θ = (m/F0)r

u−1ei(m−v)θ, with
u = |m|, v = m/u, and F0 = (m− nq0)B0/(R0q0). n is
the toroidal mode number. In a cylindrical plasma with
circular cross section, C2

l can be analytically evaluated
via C2

l=0 = (mru−1/F0)
2C2

m, where

C2
m = |

m−v∑
p=0

(
p

m− v

)
(2ikt)

pGp|2. (3)

The above expression involves a function Gp which re-
sembles elliptic type of integrals

Gp =

∫ π/2

0
dφ(1− 2k2t sin

2 φ)m−v−p(sinφ)p

K(k2t )

×
(√

1− k2t sin
2 φ

)p−1

. (4)

Thus for the m = 2 perturbation, we have

C2
m=2 = G2

0 + 4k2tG
2
1,

and for m = 3, we obtain

C2
m=3 = (G0 − 4k2tG2)

2 + 16k2tG
2
1.

Here K(k2t ) is the complete elliptic integral of the first
kind, and kt =

√
(1− λ− λϵr)/2λϵr.

Among the remaining two factors from expression (2),
F = π

√
2λϵr/2K(k2t ) is the normalized bounce frequen-

cy, and Q is the resonance operator

Q =
nω∗N + (ε̂k − 3/2)nω∗T + nωE − ω

nωd − iνeff + nωE − ω
, (5)

where ω∗N and ω∗T are the diamagnetic drift frequen-
cies due to particle density and temperature gradients,
respectively. For simplicity, we take an assumption that
the equilibrium plasma density is constant, thus ω∗N = 0.
ωE is the E × B rotation frequency, again assumed to
be a constant:ωE = ω0. ωd = Cdε̂kλ[(2E −K)/(2K)]
is the bounce-averaged toroidal precession frequency of
trapped thermal particles due to ∇B drift, with Cd ≡
σ1q(ρl/r)(υth/R0) and ρl ≡ υth/ωc being the Larmor
radius of particle gyro-motion, with the gyro-frequency
ωc = eB0/M . υth ≡

√
2T/M is the thermal speed of the

particle with mass M . σ1 = +1 for ions and σ1 = −1
for electrons. E is the complete elliptic integral of the
second kind.

One key element of the present study is to investi-
gate how the plasma collisionality can affect the drift
kinetic damping and eventually on the mode dynam-
ics. In a previous work [14], it has been shown that
the collisionality can sensitively change the drift kinet-
ic damping on the RWM. In this work, we discover an-
other important role played by the particle collisions,
namely the triggering of the bifurcation in the mode dy-
namics. The effective collisionality is denoted by νeff
in the resonance operator (5). We consider two colli-
sion models: the energy-independent model νeff = ν ≡
√
2nim

1/2
ij Z2

i Z
2
j e

4

12π3/2ϵ20mjT
3/2
j

ln Λ, and a model where the effective col-

lision frequency is also a function of the particle energy

νeff = νε̂
−3/2
k /ϵr, on top of the neoclassical correction.

Heremij = mimj/(mi +mj), Z the particle charge num-
ber, lnΛ the Coulomb logarithm, and ϵ0 the vacuum per-
mittivity. In this work, we assume that for thermal ions,
the ν value, when normalized by the Alfvén frequency,
varies in the range of 10−5 ∼ 10−3. The collisionality for
thermal electrons is (2mi/me)

1/2 times larger than that
for thermal ions.

Using the m/n = 2/1 eigen-function of the RWM for
a circular cylindrical equilibrium the drift kinetic energy
perturbation (2) is analytically derived as

δWk =
µ2
0J

2
0

π1/2B2
0

∑
e,i

∫ 1

0

drr2(u−1)(1− r2)

×
∫ 1

1−ϵr

1
1+ϵr

dλ[G2
0 + 4k2tG

2
1]
K(2− λ)2√

2λϵr

∫ ∞

0

dε̂k[Ωbε̂k

+ΩnΩb +Ωb(
Ωa +Ωn

Ωb
− Ωn)]

ε̂
5/2
k e−ε̂k

ε̂kD +Ωn
, (6)
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FIG. 1. (color online). The (a) real, and (b) imaginary, parts
of the n=1 RWM eigenvalue, normalized by the wall time τw,
versus the toroidal E×B rotation frequency. Compared are
two cases with low and high thermal ion collisions, with each
case having two branches of the RWM as predicted by the
analytic model. Both the E × B rotation frequency and the
collision frequency are normalized by the Alfvén frequency.

where D = λ(E/K − 1/2), and we have introduced the
following factors

Ωa =
nω∗N − 3nω∗T /2 + iνeff

nCd
,Ωb =

nω∗T

nCd
,

Ωn =
nωE − ω − iνeff

nCd
.

In further study, we numerically solve the non-linear
dispersion relation (1) for a fixed equilibrium with a =
1m, R0 = 3m, B0 = 3T , q0 = 1.42. A resistive wall
with thickness d = 0.01a is located at b = 1.20a. The
m/n = 2/1 mode is considered. Whilst the drift kinetic
energy (6) is exactly evaluated following these conditions,
we choose the values for the fluid potential energies such
that (i) the (fluid) RWM is unstable without the drift
kinetic damping, and (ii) the fluid potential energy is by
magnitude comparable to the drift kinetic energy. This
is often the case from the results of the self-consistent
toroidal computations (which is also why the drift kinetic
terms can strongly affect the RWM stability). Here we
set δWb = 0.05 and γfτw = −δW∞/δWb = 4. We find
qualitatively the same results while varying these fluid
parameters within reasonable ranges.
Figure 1 compares the solution of the dispersion re-

lation (1) at two extreme values of the thermal ion col-
lision frequency, ν = 5.0 × 10−5 and ν = 1.0 × 10−3.
The simple collision model, without the particle energy
dependence, is assumed here. In both high and low col-
lisionality regimes, there are two branches of the RWM.
However, these two branches behave qualitatively differ-
ently as the E×B flow velocity varies. With increasing
collision frequency, these two branches merge and form
two new branches. This transition is more clearly shown
in Fig. 2(a), where we plot the eigenvalue of the mode in
complex plane, for various choices of the collision frequen-
cy. The arrows along the curves indicate the direction of
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FIG. 2. (color online). The real (γ) and imaginary (ω) parts of
the n=1 RWM eigenvalue normalized by the wall time τw, as
predicted by the analytic model with various values of the col-
lisionfrequency. Considered are (a) a simple Krook collision
model with effective collision frequency νeff = ν for thermal
ions, and (b) a collision model with particle energy depen-

dence as well as the neoclassical correction νeff = νε̂
−3/2
k /ϵr.

Arrows along the curves indicate the direction of increasing
the toroidal flow velocity.
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FIG. 3. (color online). The perturbed drift kinetic energy,
plotted in the complex plane, calculated for the same cases
(a) and (b) as in Fig.2. Circles indicate constant values for
the growth/damping rate of the mode.

increasing the E × B flow velocity. Two separatrix lines
exist, that divide the complex plane into four regions.
Depending on the particle collision, the modes eigenvalue
can only be located in two of the four regions (i.e. either
side of the separatrix). This is similar to the bifurcation
(of saddle type) of a dynamic system in the phase space.
In practice, this result predicts that the behavior of the
RWM (both growth rate and mode frequency), with vary-
ing plasma flow speed, can be rather different depending
on the plasma collisionality regime. More specifically, at
low collisionality, the plasma flow induced drift kinetic
resonance tends to stabilize one branch of the mode but
destabilizes the other one, whilst at high collisionality,
increasing of the flow speed does not generally change
the stability of either of the branches.

Figure 2(b) shows the same phenomenon, but ob-
tained using the particle energy-dependent collision mod-
el. Plotted in the figure are also cases where two unstable
branches of the RWM co-exist for the same set of plasma
parameter values. The bifurcation of the RWM dynam-
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ics is inherently related to the non-linear dependence of
the perturbed drift kinetic energy on the mode eigen-
value. Indeed, the bifurcation also occurs when plotting
Re(δWk) versus Im(δWk) in complex plane, as shown in
Fig. 3. The circles in these plots indicate constant growth
or damping rates of the mode. This can be understood
by re-writing the real part of the dispersion relation (1)
into the following form

(Re(δWk)−Θ)2 + (Im(δWk))
2 = Γ2, (7)

Γ = (δWb − δW∞)/[2(1 + Re(γτw))], (8)

Θ = − (δWb + δW∞)

2
− (δWb − δW∞)Re(γτw)

2[(1 + Re(γτw)]
. (9)

The marginal stability circle is obtained by setting
Re(γτw) = 0 in Eqs. (8, 9). The RWM is stable
when Re(δWk) and Im(δWk) are located outside this cir-
cle. It is interesting to note that the point Re(δWk) =
−δWb, Im(δWk) = 0 always satisfies Eq. (7), indepen-
dent of the value of Re(γτw). Therefore, all the equal-
growth/damping rate circles in the complex domain for
δWk crosses this point. Another interesting consequence
is that the RWM dispersion relation (1) predicts a full
stability of the mode whenever Re(δWk) < −δWb, inde-
pendent of the value for Im(δWk).
Independent of the sign, the imaginary part of the per-

turbed drift kinetic energy δWk always plays a stabiliz-
ing role for the mode, as can be qualitatively understood
from Fig. 3. However, the real part of δWk can be either
stabilizing or destabilizing. The separatrix lines in the
complex plane for δWk defines the boundaries for these
two qualitatively different roles played by Re(δWk). At
low collisionality, the real part of δWk is generally sta-
bilizing for one branch of the RWM (the one which is
unstable at vanishing flow) but destabilizing for the oth-
er branch (which is stable at vanishing flow). At high
collisionality, the Re(δWk) does not vary much for the
unstable branch, having generally low magnitude. This
branch thus remains unstable as the flow speed increases.
The stable branch at high collisionlity remains stable as
flow changes, for the case shown in Fig. 3(a), mainly due
to the fact that Re(δWk) < −δWb. This is, however, not
always the case. With the particle energy dependent col-
lisionality model (Fig. 3(b)), the value of Re(δWk) varies
in such a way, that the marginal stability boundary is
crossed twice as the flow speed increases.
A more qualitative understanding can be gained by s-

tudying the instability condition for RWM, derived again
from the dispersion relation (1) [11, 20]

−δWbδW∞ > |δWk|2 + Re(δWk)(δWb + δW∞). (10)

In this work, since we choose δWb + δW∞ < 0, a neg-
ative (positive)value of Re(δWk) is stabilizing (destabi-
lizing). This is clearly demonstrated in Fig. 4(a), where
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FIG. 4. (color online). Radial profiles for (a) real and (b)
imaginary parts of the perturbed drift kinetic energy, calcu-
lated for two (thermal ion) collision frequencies. Compared
are also δWk for two branches of the mode at each frequency.
Shown are cases with energy independent collision model, at
E× B rotation frequency ω0/ωA = 0.001.
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FIG. 5. (color online). The real (γ) and imaginary (ω) part-
s of the n=1 RWM eigenvalue normalized by the wall time
τw, as predicted by the analytic model with a fixed colli-
sion frequency ν = 2.0 × 10−4 and with varying parameter
Cp. Considered are two collision models, (a) without, and (b)
with, the particle energy dependence in the Krook collision
operator. Arrows along the curves indicate the direction of
increasing the toroidal flow velocity.

the radial distributions of Re(δWk) are compared for two
(low and high) collisionality cases, with each case having
two branches. The imaginary parts, shown in Fig. 4(b),
are always stabilizing.

The thermal particle collisionality is not the only pa-
rameter that determines the bifurcation of the RWM dy-
namics in this analytic model. It turns out that, by
varying the thermal ion and electron temperature ra-
tio, similar behavior is found. Defining a parameter
Cp = Ti/(Te+Ti), figures 5(a, b) again plot the eigenval-
ue of the mode in the complex plane, with different values
of Cp. The arrows along the curves again indicate the di-
rection of increasing the plasma E × B flow speed. The
collision frequencies are fixed for both ions and electrons
in this scan. The existence of the two separatrix lines
are evident, without (a) or with (b) the particle energy
dependence in the collision frequency.

The analytic model, presented here by Eqs. (1) and (6),
is greatly simplified (cylindrical equilibrium with circu-
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of the n=1 RWM, computed by the MARS-K code for a full
toroidal Solovév equilibrium. Both thermal ion and electron
collisions are included, with νi = ν, νe ≈ 86νi. The equi-
librium temperature of ions and electrons are assumed equal
(Cp = 0.5). Arrows along the curves indicate the direction of
increasing the toroidal flow velocity.

lar cross section, constant q-profile, eigenfunction with
single poloidal harmonic and with prescribed radial pro-
file). In order to verify whether the bifurcation predicted
by this model also occurs in toroidal geometry, we have
performed a self-consistent computations of the RWM
eigenvalue using the MHD-kinetic hybrid code MARS-K
[13], for a toroidal Solovév equilibrium. This equilib-
rium, also used in a recent extensive codes benchmark
efforts [21], has the aspect ratio of 3, the elongation of
1.6 for the poloidal cross section of the plasma, the on-
axis safety factor of 1.9, and the normalized beta value of
βN = 2.85. Kinetic contributions from processional drift
resonances of both trapped thermal ions and electros are
included in the MARS-K computations. Although com-
putationally much more challenging compared to solving
the analytic dispersion relation (1), we find qualitatively
similar bifurcation behavior, as shown in Fig. 6.
In summary, based on both an analytic model and the

full toroidal computations using the MARS-K code, we
have discovered a bifurcation of the RWM dynamics, in
the sense that the mode’s eigenvalue, as a function of the
toroidal flow speed, experiences qualitative change with
continuous variation of certain plasma parameters (the
particle collision frequencies or the equilibrium thermal
ion to electron temperature ratio). Two separatrix lines
divide the complex plane of the modes eigenvalue into
four regions, where the modes dynamics, as well as the

associated drift kinetic energy perturbations, are found
to be qualitatively different. This work thus predicts a
more complicated behavior than previously thought, of
the RWM dynamics due to drift kinetic resonances, de-
pending on the plasma regimes.
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