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ABSTRACT 

An unstable fishbone-like non-resonant external kink mode (FLEM) is numerically found to be 

driven by the precessional drift motion of trapped energetic particles (EPs) in both RFP and 

Tokamak plasmas. The FLEM originates from a stable external ideal kink mode, which is stabilized 

by a close-fitting ideal conducting wall. In the presence of a sufficiently large fraction of EPs in the 

plasma, and with the satisfaction of the resonance condition d rn n     (d is the precession 

frequency of trapped EPs, r the kink mode frequency and  the plasma toroidal rotation 

frequency), the FLEM instability occurs. The frequency of the FLEM, therefore, varies with the 

plasma flow speed, and is usually much higher than that of the typical resistive wall mode (RWM). 

In general, the growth rate of FLEM does not depend on the wall resistivity. However, the wall 

position can significantly affect the mode’s property. The drift kinetic effects from thermal particles 

(mainly due to the transit resonance of passing particles) play a stabilizing role on FLEMs. In the 

presence of EPs, the FLEM and the RWM can co-exist or even couple to each other, depending on 

the plasma parameters. The FLEM instabilities in RFP and Tokamak have rather similar physics 

nature, although certain sub-dominant characters appear differently in the two configurations 
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1. Introduction 

The energetic particle physics is an important issue to be studied in order to understand the behavior 

of the burning plasmas which represents the primary scientific challenge faced by ITER and fusion 

research in general. E.g., self-heating in Fusion reactor is provided by the alphas generated at 

3.5MeV by the D–T fusion reactions. In addition, other energetic ions, generated by neutral beam 

injection (NBI) and ion cyclotron resonant heating (ICRH), are expected to play major role in 

achieving optimal burning plasma scenarios with external heating and/or current drive. On the other 

hand, the Energetic Particles (EPs) may interact with the bulk plasma waves and instabilities, which 

possibly lead to destabilize/stabilize the existing turbulence in the bulk plasma, even to excite a new 

type of instabilities, which may result to redistribution and losses of EPs.  

It is well-known that future advanced tokamak devices (AT) need to steadily operate in a rather 

high- region (20P/B2, the ratio of the plasma pressure to the magnetic field pressure). 

However, the achievable maximum  is often limited by macroscopic MHD instabilities such as the 

external kink mode[1], which causes a global distortion of the plasma that often results in a major 

disruption. Although, under a limit value of  (so-call ideal wall beta limit) the external kink mode 

can be completely stabilized by a perfectly conducting wall located close enough to the plasma 

surface, it could convert to other unstable branches under certain circumstances. The most well-

known destabilizing mechanism is the replacement of the ideal wall with a realistically existing 

resistive wall in the fusion experimental devices, which allows the magnetic perturbation of the 

kink penetrates through the wall and leads to the Resistive Wall Mode (RWM) instability[1,2]. In 

this work, instead, we study another destabilizing mechanism: the precession drift motion of the 

trapped energetic ions can induce the Fishbone-like External kink Mode (FLEM) instability even 

under an ideal wall condition. 

 The original experimentally observed Fish-bone instability[3] has been well studied theoretically 

around years 80s[4,5 ]. It was reported that the trapped energetic particles provide an additional 

destabilizing mechanics, producing a new unstable branch to the internal kink mode dispersion 

relation. 

In the recent Tokamak experiments, a fishbone-like bursting modes are newly observed and studied 

when NBI were applied[6-9]. Theoretical studies[10,11] also found a new branch in the presence of 

trapped EPs by the analytical solution of the RWM dispersion relation. Furthermore, an unexpected 

high frequency (comparable to geodesic acoustic mode and beta induced Alfven eigenmode) 

fishbone has also been observed in JET experiments, and theoretic interpretation is provided by a 

new suitable dispersion relation[12,13 14]. In RFPs, only recently NBI is applied on the Madison 

Symmetric Torus (MST) and the energetic particle induced MHD fluctuations are observed[15-17]. 
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All those works provided helpful investigations on the physics of energetic particle interacting with 

the global MHD mode. Certainly still a wide area on this problem remains to be further studied. 

In this work we numerically study the energetic ions interacting with MHD external kink mode in 

both RFP and tokamak plasmas and make comparison between the two configurations. This study 

would be much relevant to the current and future experiments with the presence of EPs. Toroidal 

stability code MARS-K is adopted in the study, where the drift kinetic theory for both Energetic 

ions and bulk thermal particles are self-consistently involved. It is found that the Fishbone like-

external kink mode instability can be driven by the precessional drift motion of the trapped 

energetic ions in both tokamak and RFPs even in the plasmas surrounded by an ideal wall. The 

various physical natures of the FLEM are further clarified by the numerical analyses, and its 

relation with the RWM (co-existence/coupling) is also investigated. The FLEM satisfies the 

external kink dispersion relation, in which the kinetic effects of the hot ions are considered. The 

kinetic contribution by trapped hot ions is a unique destabilizing (driving) mechanism for FLEM 

instability. While for RWM, the trapped hot ions alone can play only a stabilizing (damping) role 

through their kinetic contribution to the energy component in the dispersion relation. 

The paper is organized as the follows: Section 2 describes the kinetic-MHD hybrid theoretical 

model and the formulation, as well as the equilibrium model of EPs used in this work. Section 3 is 

devoted to the investigation of the FLEM in RFP configuration, the discussion of the physics 

mechanism of the FLEM instability and related nature of the modes. The possibility of co-

existence/coupling with RWM is also presented. Section 4 presents the study of FLEM in tokamak 

plasmas (circular cross section with a similar geometry as RFP), and the compares the various 

natures of FLEM with what shown for RFP plasmas. Physics understanding is also provided by the 

numerical analysis. The summary and a brief discussion are presented in Section 5. 

 

2. Models and formulations 

2.1 Toroidal self-consistent MHD-kinetic hybrid model  

The MARS-K code numerically solves the linearized, single fluid MHD equations with self-

consistent inclusion of drift kinetic resonances in toroidal geometry [18]. For a given curvilinear 

flux coordinate system (s, χ, φ), and by assuming that all the perturbations have the form A(s, χ, φ, t) 

=A(s, χ) e−iωt−inφ, the MHD equations are written in the Eulerian frame in the code 

    2i n R      ξ v ξ         (1) 

    22 ˆi n R                 v p Q B B Q Z v v  (2) 
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      2i n R       Q v B Q       (3) 

垐 垐p p ( )  p bb I bb         (4) 

And 2 1
j j

j

p M v f d ,    2 11

2
j j

j

p M v f d         (5) 

where s is the normalized radial coordinate labeling the equilibrium flux surface.   is a generalized 

poloidal angle. r i     is the complex eigenvalue of the mode (being the mode growth rate, 

r the mode rotation frequency in the laboratory frame). The mode frequency is corrected by a 

Doppler shift in , with n being the toroidal mode number,   the plasma rotation frequency in the 

torodial direction . , v, Q, j, p represent the perturbed quantities: the plasma displacement, the 

perturbed velocity, magnetic field, current and kinetic pressure tensor, respectively.  is the 

unperturbed plasma density. B is the equilibrium magnetic field. R  is the plasma major radius. Ẑ  

is the unit vector in the vertical direction. A conventional unit system is assumed with the vacuum 

permeability o=1; and the subsonic plasma flow is assumed. 

The perturbed kinetic pressure tensor p includes both parallel (to the equilibrium magnetic field), p||, 

and perpendicular, p┴, components. Each component involves both adiabatic (superscript “a”) and 

non-adiabatic (superscript “na”) parts: p||=p||
a+p||

na , p┴= p┴
a+ p┴

na. 

a o
g g j

j

p d E ( f )     ,         (6) 

1na
g g j

j

p d E f        g ,  ,      (7) 

Where E||=Mv||
2, and 

2E Mv   . I is the unit tensor, and b= B/|B|.  denotes the velocity space of 

particles, and j denotes the particle species including thermal ions and electrons as well as energetic 

ions ( j=i,e,a). fo
j is the equilibrium distribution function. fj

l, is the solution of the perturbed drift 

kinetic equation, which we solve together with the fluid equations[19,20]. Therefore this self-

consistent approach provides a drift kinetic closure to the single fluid MHD equations. Besides, a 

set of vacuum equations for the perturbed magnetic field Q, and the resistive wall equation based on 

the thin-shell approximation, are solved together with equations (1)–(4) [21]. 

We assume a Maxwellian equilibrium distribution for the thermal ions and electrons, and adopt a 

slowing down distribution for the energetic ions (In the next, we use “EPs” referring to the 


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energetic ions), simulating the energetic alpha particles and /or fast ions produced by the neutral 

beam injection[22] :  

0
3 2 3 2

0
{

k

o
a k

k

c( )

/ /
k cf ( , )






   

  
  

  
      (8) 

Where  2 3 1 33

4

/ /a i
c e

i e

M M
( ) ( )( ) T

M M


  , Mi, Me and Ma denote the mass of thermal ion, 

electron and energetic ion respectively; The constant  is the so called birth energy, 

defined as 

   
3 5 α - particles

beam -driven fast ions
{ . Mev

( s ) 


      (9) 

The c() is a normalization factor, determined by o
a aN f d  . Nb is the Eps’ density. 

The drift kinetic effects from each spices of particles are self-consistently coupled to MHD 

equations; the detail description can be found in Ref.[18]. For the thermal particles, the key element 

in this formulation is the wave-particle resonance operator, expressed as  

 
 

* *3 / 2kN T

ml

d b eff

n

n m nq l n i

    
 
       


   


    

      (10) 

where  = r +i , d is the bounce-orbit-averaged precession drift frequency. For trapped particles, 

=0, and b is the bounce frequency. For passing particles, =±1, and b represents the transit 

frequency. Similar to thermal particles, the precessional drift resonance operators for fast ions can 

be expressed as 

o o
a a

a

da eff

f f
n( / Ze )

n n i

 


 
 

   
         (11) 

Where da is the bounce orbit averaged precession drifts frequency of the fast ions. To start with, 

we ignored the finite banana orbit effect in the study and consider only the isotropic energetic 

particle distribution. These two effects can be readily extended to the further studies. 

2.2 Quadratic energy term 
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In order to gain better physical understanding, we compute various components of the quadratic 

energy form[23,24], for both fluid and drift kinetic energy perturbations, from the self-consistent 

solution. We define the following energy components of the fluid potential energy WF and the 

kinetic potential energy Wk. 

F j Q pW W W W             (12)
 

Where 

21

2
jW Q Jdsd d     

1

2
Q

Q
W J ( P ) Jdsd d

B

 
  

 
          

 
b Q  

1

2

a
pW ( ) Jdsd d

      p  

J is the Jacobian of the flux coordinates. The kinetic energy term is obtained as  

 
//

* * *

/ /

1 1

2 P

na na

K

V

W Jdsd d p Q B p
B  

 
     

 
 ξ κ ξ        (13) 

Taking into account the eq (7), the kinetic energy component contributed from the thermal ion and electrons 

can be expressed as [ ] 

 
25/2

, ,

,

,02

k b

k

i l nq t ine i e i
k bk e i l L

l
e i l

W d P d e d e H
B

    
    

  
    

   



 
      

where  is the equilibrium poloidal flux, ,e iP denotes the ion and electron equilibrium pressure, 

0 / kB    (B0 is the on-axis field strength), ( )sign v  . The integration is taken in both the real 

and the velocity spaces. The sum is over the poloidal Fourier harmonics m and bounce harmonics l, 

the passing and trapped particles, as well as the particle species (e, i). For trapped particles, =0,

=1/2 and b  is the bounce period normalized by a factor / 2 kM  ; for passing particles, = , 

=1 and b  represents the normalized transit period. < > denotes the time average over the 

bounce/transit period. 

The contribution from the trapped energetic particles (ions) is written 

2
31

2

o
a in ( t ) aa

k k L
k

f
W dx d ( ) e H ( t ) 
     


     ?(14) 
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HL
j is the perturbed particle Lagrangian of the j species[20 ]. 

   
0

, , 2 1j

LH s Q B
h B

 

  
       

 
ξ κ ξ      (15) 

where 
0 /h B B . The total kinetic energy component is the combination of the contribution from 

the all particle species. 
j

k k
j

W W   . 

In the energy calculations, we neglect the centrifugal and the Coriolis force terms in the RHS of Eq. 

(2), assuming a slow (subsonic) equilibrium flow. The vacuum energy, Wv∞ and Wvb, without 

wall and with an ideal wall at the minor radius b, respectively, are written as 

2

1 1

1 1 ˆ
2 2

p

n

v s
S

V

W Jdsd d b V J d d    




    Q      (16) 

2

1 1

1 1 ˆ
2 2

p

b

n b

vb s
S

V

W Jdsd d b V J d d   Q          (17) 

where b1
n is the normal magnetic field perturbation  V1

∗∞,b is the complex conjugate of the perturbed 

magnetic scalar potential, which is determined by the ideal wall position and bn
1 at the plasma 

surface [24]. In the above calculations, we have considered cases with vanishing perturbed surface 

currents, and with vanishing equilibrium pressure at the plasma edge, i.e. P(a)=0. 

2.3 The equilibrium profiles of the energetic particles. 

In the following study, the density fraction and pressure fraction of EPs’ with respect to the bulk 

thermal particles are denoted by N*=Na/Ne, and by P*= Pa/Pth respectively , where the subscripts 

“a” ,”e” and “th” denote the species of EPs (
2

3

o
a k aP f d N     ), electrons and the bulk 

thermal particles (ions plus electrons). The total plasma pressure is Ptotal= Pth + Pa. Both N* and P* 

are the functions of s, which is the coordinate linked to the poloidal magnetic field fluxes. 

Consequently the beta fraction of energetic particles is denoted by *, *=a/th. For RFPs, the 

poloidal beta value p is commonly in use, while in tokamaks the total beta value  is usually used 

in the plasma description. By seeking convenience for the numerical analysis, we consider two 

types of the P*(s) profiles (normalized by Bo
2/o): (1) P*(s)= o* ,which is a constant along the 

minor radius, thus *= o* .(2) P*= o*(1-s2)8, in which, obviously, the value of * appears much 

smaller than o*.  As examples, in Fig.1, corresponding to type (1) and *=o*= 0.3, the 

equilibrium pressure (a) and density profiles (b) of the hot ions,  bulk thermal particles, and total 
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particles are plotted separately. Fig.2 shows the pressure and density profiles of type (2), where 

o*=1.0 and *=0.176. 
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Fig. 1 The equilibrium profiles corresponding to case P*=constant are plotted. (a)The pressure profiles (normalized by 

Bo
2/o) for the hot ions, bulk thermal particles and  total particles; (b) density profiles (normalized by Ne(s=0) at the 

magnetic axis) for the thermal ions(Ni)  and electrons(Ne), as well as the energetic ions(Na). The equilibrium 

parameters are Pa/Pth=0.3(*=o*=0.3 )., p=0.155, and =100kev.  
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Fig.2. The equilibrium profiles corresponding to 2 8
0(1 )*P*(s) s  are plotted. (a) The pressure profiles (normalized by 

Bo
2/o) of the hot ions, the bulk thermal particles and the total particles; and (b) the density profiles (normalized by the 

Ne(0) at the magnetic axis) for the thermal ions (Ni) and the electrons(Ne) as well as the energetic ions (Na). p=0.14 

and =100kev, *=0.176, (o*=1.0). 

The profile of Fig.2 will be used in the most following computations without specific statement. 

The profile of *=o
*=constant is used in a few numerical analyses for seeking a simplicity, which 

will be stated at the figure captions. The difference of these two profiles does not cause a qualitative 

change on the nature of the FLEM instabilities.  

3. 3. FLEM in RFP plasmas  
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4. In this paper we firstly discuss the physics of FLEM in RFP plasmas, because the FLEM 

instabilities in RFP possess the poloidal coupling mainly between non-resonant modes (with the 

rational surfaces outside the plasma) and presented a relatively simple physics. In tokamak plasmas 

the FLEM instability essentially has similar nature as studied in this section though the (dominant) 

non-resonant mode coupled with the resonant modes (with the rational surfaces inside the plasma). 

Only marginal differences come from the different configurations regarding with the EPs kinetic 

effects. 

5.  

3.1 Driving mechanism of FLEM 

RFP magnetic configurations is characterized by the reversed toroidal magnetic field, which allows 

a RFP to operate in the parameter region where the resonant ideal kink modes appear to be stable. 

While the non-resonant external ideal kink modes could be strongly unstable due to the large 

plasma current, unless a surrounding perfect conducting wall is sufficiently close to the plasma 

surface. Therefore, the non-resonant external kink modes are the easiest to be excited modes among 

the kink mode spectrum of RFP plasmas. 

It is interesting to find that, contrary to the RWM, FLEMs satisfy the usual external ideal kink 

dispersion relation: 

0F vb kI W W W            (18) 

where I represents the inertial energy component. The normalized Eq.(18) (by 
2 3dx  ) can be 

further written in the real and imaginary parts separately 

2 2 r r r r r
r F vb k b k bk( n ) W W W W W W               (19.1) 

2 i i
r k F( n ) W W              (19.2) 

where the superscript ”r” denotes the real part of the energy components and “i’ denotes the 

imaginary part. In the fluid theory ( where Wk=0) , Wb> 0 indicates the external kink mode being 

stable with an ideal wall at r=b. Thus Wb =0 set a stability boundary, beyond which, Wb <0, the 

ideal wall can no longer stabilize the mode. The value of Wb depends on the equilibrium 

parameters of the plasma. For a given current profile, the value of Wb sensitively depends on the 

plasma beta value ( p in RFP) and the wall proximity, expressed by the normalized minor radius of 

the wall i.e. r = b/a In fact, Wb =0 corresponds to the so-called the “ideal wall beta limit” in the 
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RWM study, where the ideal non-resonant external kink modes stay near the marginal stability with 

an ideal wall. Furthermore, when the kinetic (wave –particle interaction) effects are taken into 

account, as shown in Eq.(19.1), the contribution of the kinetic energy component Wk
r modifies the 

stability boundary of the ideal kink mode. This will be shown in the next figures. 

The numerical analysis found that usually the imaginary part of Wk is much larger than that of Wf, 

i.e. Wk
i>> WF

i
 , Therefore, Eq.(19) generally can be written as  

2 2 21

2

r i
r bk bk k( n ) W ( W ) ( W )

 
      

  
     (20.A) 

And 
2

i
k

r

W

( n )


  


        (20.B) 

Moreover, it is found that in most parameter region of RFP plasmas, Wb
r is a dominant term in 

Wbk
r, and << r. The Eqs.(19) can be further approximated to  

r
r b| n | W            (21.A) 

2

i
k

b

W

W


 


          (21.B) 

Eq. (21.A) and (21.B) clearly indicates the FLEM physics: The kink mode frequency is mostly 

determined by the real part of the energy components Wb
 , and the growth rate of the instability is 

mainly contributed by Wk
i , which comes from the precession drift resonance of the trapped 

energetic ions. If the frequency r falls inside the range satisfying the resonant condition with the 

precession frequency of a given type of EPs, i.e. 
a

r dn n     , the instability of FLEM may 

appear. Therefore, the FLEM frequency r directly links to the value of da, and the plasma rotation 

provides a Doppler shift n on the frequency.  

Obviously, in the limit case, where plasma p reaches to the vicinity of the ideal wall beta limit, 

Wbk ≈ 0, and Wk
i plays the major role in the dispersion relation, Eq.(19) results to  

2i
r k| n | W /     .        (22) 
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Fig.3 shows (a) the normalized growth rates and (b) the frequencies of FLEM instability as a 

function of * in RFP plasmas computed by MARS-K code, only the kinetic effects from the 

precession drift motion of trapped EPs is taken into account in the calculation. The comparison has 

also been made between the results by directly solving the set of equations (1)-(5) from MARS-K 

code and that calculated by using the dispersion relation Eq.s (21); A good agreement is found and 

presented in the figure. In the plots, both the frequencies and the growth rates are normalized by A, 

A o o o oB / ( R )    . The birth energy  of the hot ions from NBI is taken as =100ev. The 

EPs’ beta fraction profile is taken as *=o*. We take a fixed value of the total plasma poloidal beta, 

p=0.135, and the * value varies from 0.0 to 2.0 (corresponds to the value of N* changing from 0 

to 0.4591 ). Two cases, without plasma rotation =0 and with rotation /A=0.05 are plotted. It 

shows that when * overcomes a critical value *c ≈ 0.28 the FLEM instability appears with rather 

high frequency, which is in the range of the Alfven frequency. With increase of the * value, the 

mode growth rate is enhanced due to the increase of the kinetic energy component Wk
i . 

Nevertheless, the FLEM frequency remains almost invariant due to the fact that the value of Wb 

remains invariant, because the total plasma beta p and the wall position b are unchanged. Since the 

birth energy  , thus da is the same for the two cases, with and without rotation, by following the 

condition of a
r dn n     , the mode has a higher frequency with plasma rotation than the one 

without due to the Doppler shift n 

The value of Wk
i is mainly determined by the two features of EPs: 1) the density fraction of EPs 

Na/Ne, and 2) the birth energy which directly links to the precession frequency d
. The 

parameter *(=/thermal) reflects the combination of these two effects. We note here that in 

contrary to the RWM theory, where the Wk
i contributed from the kinetic resonant, as a damping 

factor, plays only a stabilizing role. While in FLEM the imaginary part of the kinetic energy 

component Wk
i is the only possible driven mechanism for the instability. 
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Fig. 3. plots of the normalized (a) growth rates   and (b) the real frequencies r/A of FLEM as a function of the 

beta fraction of the energetic particles *=/thermal. Two cases: =0 and /A=0.05 are calculated. The comparison 
between the results from direct MARS-K computations and that by using the dispersion relation Eq.(21) is shown. The 

equilibrium parameters are chosen as: p=0.135, b/a=1.12, F=-0.06, =a/R=0.23, and q(0)=0.1448. 

3.2 Excitation conditions of FLEM instability 

The Eps can induce an unstable external ideal kink mode by the precession resonance under the two 

conditions: 1) the sufficient fraction of the trapped EPs. (2) The range of the kink mode frequency 

r can match the resonant condition r dan n     .  

As regard to the effect of the EPs’ fraction on the FLEM instability, the important measurement is 

their contribution to the imaginary part of the kinetic energy component Wk
i as indicated in the 

dispersion relation Eq.(21.B). Since the value of Wk
i contributed from EPs is promotional to the 

value of Pa, both density fraction Na* and the birth energy  can influence Wk
i via Pa. Besides, a 

more important fact is the value of  , which directly relates to the EPs’ precession frequency da, 

thus sensitively affects the resonant condition and the kinetic resonant energy component Wk
i. We 

find that though both Na and  can influence the value of *, the birth energy  affects the FLEM 

instability nature with higher sensitivities. Fig.4 shows the normalized mode growth rates and 

frequency versus the density fraction of EPs for two different birth energies =100 ev and =80 

ev. The EPs with a higher birth energy can drive FLEM instability at much lower critical * value 

and low density fraction. For the same * value, the higher birth energy leads to the higher growth 

rate. The mode frequencies are almost same for the two cases due to the same p value for the two  

 cases. 
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Fig.4 growth rates and frequencies of FLEM instability are plotted as a function of the density fraction of Energetic 

ions N*(s=0)=Na/Nth for two different birth energies =80ev (dotted lines)and  =100ev(solid lines). The values of * 

and o* corresponding to the starting and ending points of the curves are marked in the figure. p=? 

The total plasma beta value significantly influences the behavior of FLEM instability. In Fig.5 the 

growth rates and the frequencies of FLEM instability as a function of the total plasma poloidal beta 

p are shown in (a) and (b) respectively for the birth energy =100kev. Four different 

considerations of the kinetic resonant effects are presented: (1) The kinetic effects contributed by 

only hot ions with o
*=0.3 (*=0.062 ) (2) by only hot ions with higher EPs fraction o

*=1.0 

(*=0.176 ), (3)contributed by both hot ions and bulk thermal particles o
*=1.0 (*=0.176 ) (4) by 

the usual thermal particles only (without hot ions), thus the FLEM instability disappears; And only 

a RWM instability can be found if the wall is a resistive one. When the wall is an ideal one, only the 

ideal kink instability exists in the region where the value p beyond the ideal wall beta limit, p
ideal. 

This is presented in curve (5). Comparison between the case (1) and (2) indicates that EPs with 

higher * (implies higher density fraction N*) can drive FLEM instability in wider region, which 

extends to smaller p value, and have higher growth rates. In case (3) we take into account the 

kinetic effects of the thermal bulk particles. It is found that the unstable region becomes smaller, 

due to the cancellation of the kinetic contributions to Wk
i  between the driving mechanism of the 

precession resonance of EPs and the damping effect of the transit resonance of the thermal particles. 

In another word, the ion acoustic Landau damping of the thermal ions play a stabilizing role on 

FLEM.  
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Fig.5 The Growth rates(a) and the frequencies(b) of the n=-6 FLEM instabilities plotted as a function of the plasma 

poloidal beta p for different * values of the energetic particles with birth energy =100kev. Comparison made for 5 

cases: Curve (1) and (2): only consider the kinetic contribution of EPs with o
*=0.3(*=0.062) and o*=1.0 (*=0.176) 

respectively, Curve (3): the kinetic contribution from both EPs and bulk thermal particles are considered o*=1.0 

(*=0.176). Curve (4) and (5), without EPs, only thermal particles are involved in computation, with a resistive wall 

(penetration time scalew/A=4.4x103), and an ideal wall respectively. b/a=1.12, F=-0.06, qo=0.1448.  
 

The upper-bound of the FLEM instability interval appears at the region p ≈ p
idealp ≤ p

ideal), 

where the external kink mode is near marginal stability and has lowest frequency resulted from 

small Wb. For given EPs (*, ), when p decreases, the value of fluid potential energy 

component |WF| (WF <0) decrease due to reducing the pressure driven effects, and resulting to a 

larger Wb (Wb =WF+Wvb, Wvb>0). Therefore, r increases. When p comes down to sufficient 

low value, and r becomes too high to meet the requirement of the resonance condition, EPs cannot 

contribute enough driving energy Wk
i, so FLEM disappears.   

The vertical lines in figure 5 represent the ideal wall beta limits for various cases mentioned above. 

The contribution of the kinetic effects can modify the ideal wall beta limits predicted by the fluid 

theory, which has been observed experimentally [25]. In figure 5, we also indicate that the ideal 

wall beta limits p
ideal are significantly influenced by the various kinetic effects. As marked in the 

figures, the fluid theory predicted the minimum value of p
ideal,notedasp

fluid=0.159 (corresponds 

to Wb=0); the kinetic effects from only energetic particles shift the value near to p
hot=0.162 

(corresponds to Wbk=0); the effects of only kinetic thermal particles move the value to  p
th=0.175; 

when taking into account the kinetic effects from both hot ions and thermal particles, the value 

shifts to the maximum as p
th+hot=0.182.  

Fig.6 presents the radial profiles of the various frequencies averaged over poloidal angles and 

velocity space for the curve(3) of Fig.5. The precession frequencies of the EPs and the transit 

frequencies of the thermal ions for three different p values (p=0.14, 0.16, 0.18) are presented. The 
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shaded area presents the frequency range corresponding to full unstable region for curve (3) of Fig.5. 

The plot confirms that both EPs precession resonance and transit resonance of thermal ions can 

occur and play significant roles to FLEM instability. 
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Fig.6 the precession frequencies of Energetic ions da and the transit frequency of the thermal ions (m-nq)p 

corresponding to different p values, p=0.18(1), 0.16(2), 0.14(3), are shown for RFP plasmas, and compared with the 

FLEM frequencies. The shaded area presents the frequency range corresponding to the unstable FLEM region of curve 

(3) in Fig.5 , where the kinetic effects of both EPs and thermal particles are considered.  

In Fig.7 we plotted the unstable region of FLEMs on the p-b/a plane for two different birth 

energies of the energetic ions.  The solid (black) line represents the ideal wall beta limit, while the 

dashed (red) line (=100ev) and the dotted (blue) line=150ev) represent the lower-bounds of 

the unstable regions. No plasma rotation is considered. The shaded area represents the unstable 

FLEM region. It shows that the higher * value (higher birth energy  in this case) results to a 

larger unstable parameter region. For a given wall position b/a  
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Fig 7. The unstable region of the n=6 FLEM is plotted in the plane of the poloidal beta p versus the wall position b/a. 

The solid line with square points represents the ideal wall beta limit, which is also the upper-bound of the beta value for 

the Instability; while the other two lines (dashed  line and the dotted line) represent the lower-bounds of the instability 
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window for the two cases: o*=0.3 =100kev and o*=0.51 and =150kev.  The other equilibrium parameters are 

F=-0.06, q0=0.1448, and =0. 

the shaded p interval exists, where the discrete external ideal kink mode possesses appropriate 

frequency r ,which can resonant with the precession motion of EPs. Similarly, for a fixed p value, 

an interval of the wall position b/a also exists.  

3.3 The role of the surrounding wall on the FLEM instabilities. 

Due to the FLEM instability has rather high frequency, the usually existing resistive wall in 

experiments plays a role of an ideal wall for FLEM. In fact, it is found that the instability appears 

independently from the wall resistivity in most resistivity range. For extremely high resistivity wall, 

the FLEM may connect to the branch of the no-wall ideal kink instability. However, the wall 

position can give a strong influence on the FLEMs. In figure 8, we plot the mode growth rates and 

frequencies as a function of the wall position b/a for different EPs birth energies  and plasma 

poloidal beta values p. The comparison is made between a resistive wall and with an ideal wall 

bounderies. The lines in the figure denote the results with an ideal wall, while the dots represent the 

results with a resistive wall having a normalized penetration time scale as w/A= 4.4103  . 
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Fig.8 plot of the growth rates and the frequencies of n =-6 FLEM instability vs. the normalized wall position b/a 

computed by MARS-K. The lines represent the results with an ideal wall and the dots represent the results with a 

resistive wall having penetration time scale equal  to w/A= 4.4103   . The other parameters are the same as in Fig.7 

The ideal wall and the resistive wall give almost the same results. The wall being closer to plasma 

could set more serious condition for the FLEM excitation. In the lower p case, p=0.1 , The ranges 

of the wall position b/a for FLEM instability are b/a=1.16-1.225 for =100kev and b/a=1.05-1.225 

for =150 kev respectively. Obviously, the EPs with higher  can extend the instability to smaller 



 

17 

 

b/a.  For higher p case, p=0.135, the instability region of b/a extents to the vicinity of the plasma 

surface. 

3.4 The kinetic effects of the thermal particles on FLEMs 

The kinetic effects of the thermal particles play a stabilizing role on the FLEM instability, which 

has be shown in the subsection 3.2, in Fig.5 , curve (3). It indicates that by taking into account the 

kinetic effects of thermal particles, the instability requires higher p value and has the lower growth 

rates than that by considering the EP’s kinetic effect alone. The kinetic damping effects are mainly 

contributed by the transit resonance of the passing ions. As shown in Fig.6, the transit frequency of 

the passing ions is comparable with the precession frequency of the EPs; and both can resonant with 

the FLEMs. However, the contribution to the imaginary part of the kinetic energy from thermal 

particles partially cancels the contribution from EPs, thus the thermal particle play a damping role 

on FLEM instability. In Figure 9, we plotted the perturbed energy components (normalized by 

2 3dx  ) corresponding to the point of p=0.14 in Fig.5 and two cases ( with and without kinetic 

thermal particles) are compared for the same * values, *=1.0: In the first group of the energy 

columns only the kinetic contribution of hot ions is considered (corresponds to the case (2) in Fig.5). 

In the second group of the energy columns, both kinetic effects from hot ions and the thermal 

particles are included (corresponds to the case(3) in Fig.5). In each group, the first column 

represents the fluid contribution of Wb, second column is Wbk=Wb+ Wk
r. Third is Wk

r and 

fourth is the imaginary part of kinetic energy Wk
i. It shows the value of Wk

i in second group 

dramatically decreases with respect to the first group, while other components have only minor 

changes. This implies that the kinetic damping of the thermal bulk particle cancels the kinetic 

driving effects of the hot ions, leads to smaller growth rates and narrower parameter region of 

FLEM instability. In addition, It is easy to be understood that the mode frequency becomes slightly 

lower due to the modification made by Wk
r on Wb, ( Wbk<Wb).  
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Fig.9 Comparison of the energy components between the two groups: first group represents the results where only 

kinetic effects of the hot ions are considered in the computation. The second group involved the kinetic effects of hot 

ions and the full kinetic effects of the thermal particles. The parameters used as the same as in Fig.5 at point of p=o.14 

and 0*=1.0. 

In Fig.10, (a) the imaginary parts and (b) the real part of the kinetic energy components are plotted 

as a function of plasma toroidal beta p, corresponding to the curves (3) of Fig.5.  In Fig.10(a), It 

shows that the significant cancelation occurs in the whole unstable region for the imaginary part 

Wk
i between the contribution of the hot ions and the bulk thermal ions. This implies that the ion 

Landau damping by the thermal particles plays a stabilizing role for the FLEM instabilities. 

Fig.10(b) indicates that the kinetic resonance provided by the thermal particles also slightly modify 

(cancel) the contribution to the real part of Wk
r from the energetic ions , resulting to the 

modification of the mode frequencies. 
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Figure 10. The kinetic energy components Wk versus the poloidal plasma beta p are plotted with o* =1.0, *=0.176 , 
corresponding to the case (3) of the figure 5. The analysis is made for 3 cases: kinetic energy component contributed 

from the hot ions ( marked “hot”), from the thermal particles ( marked “thermal”), and  contributed from both  hot and 

thermal together ( “full”).  a) the imaginary part Wk
i . (b) the real part Wk

r .The other parameters are same as that in 
the figure5. 

3.5 Relation with the RWMs 

Fish-bone like external kink mode can co-exist and/or couples with Resistive Wall Mode. Both 

modes are originated from the ideal external kink, which is stable in the plasmas with a sufficiently 

closed ideal wall. The RWM instability is caused by the replacement of the ideal wall with a 

resistive wall, which allows the penetration of the perturbed magnetic field; while the FLEM 

instability is driven by the precession motion of trapped energetic particles, which resonates with 

the external kink mode. 

Fig.12 shows the normalized mode growth rates /A and frequencies r/A of both FLEMs and 

RWMs as functions of the plasma rotation frequency /A, for various * values of EPs; while the 
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beta value of the thermal particles thermal=0.015 remains invariant. Only the kinetic effects of hot 

ions are considered here. Part (a) shows the negative rotation (<0) cases, where the Doppler shift 

leads the value of the FLEM frequency decreasing with the rotation. Further increase ||, r crosses 

the zero (in the vicinity of RWM frequencies), and becomes negative. The FLEM instability 

remains unstable when the plasma rotation increases because the condition of r dan n     is 

satisfied. The RWM instabilities, instead, are damped by the same motion of the hot ions, and 

become stable with the negative rotation, where the same resonance of r-n-nda ≈ 0 (r≈ 0 for 

RWM) can be satisfied. The figure shows two unstable modes ( FLEM and RWM) generally can 

coexist. In the particular case of *=2.13, p=0.040, at the rotation /A ≈ -0.047, the coupling of 

the two modes appears, since both the frequencies and the growth rates of the two modes are very 

close to each other. The positive rotation case is presented in (b), where the r of FLEM increases 

rapidly with rotation due to the Doppler shift, and cannot be vanish. The RWM cannot be stabilized 

by kinetic effects of EPs alone, the stabilization can be reached if the ion acoustic continuum 

damping by the thermal particles is taken into account [26], which is not the case of present figure. 

The coupling of the two modes has not observed due to the large differences in both the frequency 

and growth rates. Therefore, only the coexistence is presented in the figure. 
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Fig. 12 The normalized growth rates and the frequency of the RWM and the FLEM (co-existing and coupling, n=6), are 

plotted as a function of the normalized plasma rotation frequency /A for * =3.1 (P =0.05), * =2.6 (P =0.045) 
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and * =2.1 (P =0.04) with the unchanged thermal poloidal beta thermal =0.015. The model of *=const. for pressure 

fraction of EPs has been used in the computation.  b/a=1.275 and =100keV, F=-0.015 and q(0)=0.145.  

Fig.13 compares the eigenfunctions of FLEM and RWM, where only the kinetic effects of hot ions 

are considered.   denotes the displacement of the modes in the radial direction and Q1 denotes the 

radial component of the perturbed magnetic field. The data are taken as 0 1 0* .  , p=0.12, and 

without rotation. The penetration time scale of the wall is taken as w/A=4.4∙103 . It shows that the 

two “external kink” originated modes have rather similar shapes of the eigenfunctions for both  

and Q1. Nevertheless, the eigenfunctions of FLEM have been pushed toward to the plasma core by 

the wall, clearly show almost vanished Q1 at the wall position. The eigenfunction Q1 of RWM , 

instead, penetrates through the wall and extends to the vacuum region. Therefore, the wall for 

RWM (r /A ≈ 0) is a resistive wall and allows the magnetic perturbation penetrating. For FLEM 

(with r /A ≈ 0.48), however, it works as an ideal wall. 
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Figure 13. The absolute values of the dominate components of (a) the radial plasma displacement 1| |  (n=6, m=-1) 

and (b) the radial perturbed magnetic field 1|Q | (n=6, m=-1,-2,-3) are plotted along the minor radius for the FLEM and 

the RWM. s=1 corresponds to the plasma edge, and wall locates at b/a=1.125. Only the kinetic effects of hot particles 

are considered and without the plasma rotation. *
o=1.0, p=0.12. The poloidal Fourier harmonics are taken from m=-5 

to -1 for computation. The other parameters are chosen as the same as Fig.5.  

4. FLEM instability in Tokamaks 

4.1 Excitation of FLEM instability 

The FLEM instability can be driven in Tokamak by the same mechanism. The modes show a 

similar nature with what studied in RFPs. Nevertheless, the FLEM driven by EPs in tokamaks has 
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much lower frequencies than that in RFPs (with the same birth energy ). The reason is that the 

tokamak configuration has the larger scale length of magnetic gradient and curvature radius (order 

of major radius R) than that in RFP configuration (order of minor radius r), resulting in the lower 

precession frequency of hot ions in Tokamak than in RFP. Besides, the Landau damping by the 

bulk thermal ions in RFP would be relatively stronger than in tokamak due to the shorter connection 

length in RFP than in tokamaks.  

Figure 14 shows the growth rates and frequencies of n=1 FLEM instability versus the total plasma 

beta  in the circular tokamak(similar geometry as the RFP in previous section) with q(0)=1.14 , 

q(a)=3.68, and b/a=1.12. The poloidal harmonics are taken from m=-10 to 5. The parameters of the 

energetic ions with =100kev are taken similar as in Fig.5. Three cases are studied: (1) 

0*=0.3(*=0.067) and (2) 0*=1.0 (*=0.19), where only the kinetic effect of EPs are considered; 

case (3) 0
*=1.0 (*=0.19),  the kinetic resonances from both EPs and bulk thermal particles are 

taken into account.  The figure shows the similar behaviors of FLEM instabilities as what shown in 

Fig.5 for RFPs: The FLEM in Tokamak  can also be triggered by EPs, when the plasma beta   

exceeds a critical value, which depends on the fraction (*) of the EPs. The comparison between 

case (1) o
*=0.3 and (2)o

*=1.0 indicates that the higher fraction of EPs leads to the lower critical  

value, and higher growth rates. The real frequencies r A/   of the FLEM, which are linked to the 

precession frequency of EPs, are also reduced by increasing the plasma beta. Nevertheless, the 

values of r are much smaller than those for RFPs. The thermal ion landau damping also plays a 

stabilizing role, which can be observed by comparing case (2) (kinetic effects of hot ions alone) and 

case (3) (kinetic effects of  hot plus thermal ions). In the Tokamak, the poloidal harmonics of 

FLEM can be non-resonance and/or resonance, where the dominant non-resonant external kink 

mode (e.g. m=-1, n=1) couples with the resonant external kink modes (e.g. m=-2, -3, n=1). The no-

wall  limit 0 0078nowall
limit .  (N

nowall =2.11) and the ideal wall  limits N
ideal for various cases are 

marked in the figure. Similarly as shown in RFP case(Fig.5) the value of the ideal wall beta limit   is 

modified by the kinetic effects: 0 0124idealwall
limit .  (N≈3.34) for EPs kinetic effect alone and 

0 0139idealwall
limit .   for full kinetic ( both EPs and thermal ions) effects. Here N is defined as βN = 

βT(aBT/I ), βT = 2μ0<p>/BT
2, <p> is the average plasma pressure, μ0 is the vacuum permeability and 

BT is the strength of the toroidal magnetic field. 
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Fig.14 The n=1 FLEM (a) growth rate /A and (b) real frequency r/A versus the plasma beta  value are plotted. 

The solid lines represent the kinetic effects contributed only by the EPs for two different fractions o
*=0.3(*=0.067) 

and o
*=1.0 (*=0.19) respectively. The dashed line represents the results where the kinetic contribution from both 

EPs and thermal ions are considered, with o
*=1.0 (*=0.19). b/a=1.12, =0 and =100kev. 

The general dispersion relation for external kink mode of Eq.(20) can still apply to the 

Tokamaks. However, the dispersion relation of Eq.(21), which under the approximation of 

r>>, is no longer valid since the values of r are comparable with in tokamaks. Thus the 

kinetic energy component Wk introduces an additional influence on the mode frequency r. 

The 2-D plots show in Fig.15 (a) is the precession frequencies of the EPs nda (averaged 

over the velocity space), and (b) the imaginary parts of the kinetic energy Wk
i for FLEM in 

tokamak plasmas .Only the kinetic effects of hot ions are taking into account here. The 

parameters taken for this computation are =0.012 (N=3.02) and o
*=1.0, *=0.19; 

the corresponding point can be found in Fig.14 case (2). The Fig.15(b) shows that the 

main contribution to the kinetic energy Wk
i comes from the region close to the 

magnetic axis of the low field side, corresponds to the area of nda ≈ 0.015-0.06 in(a), 

which is in the vicinity of the FLEM frequency r/A≈ 0.065 obtained in Fig.14 for  

=0.012. Thus, the Wk
i is contributed by the interaction of EPs with the external kink 

through the precession resonance. We notice that the values of nda which provide 

maximum contribution to the kinetic energy Wk
i do not completely well coincide 

with the mode frequency r. This discrepancy may be due to the fact that, the plot of 

nda in (a) is made by the average over the velocity space, which can only give a 
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rough ideal about the averaged value of da, cannot always exactly describe the 

resonance process. 

    

Fig. 15. The 2-D plots of (a) the precession frequency of the EPs nda (averaged over the velocity space), and (b) the 

imaginary parts of the kinetic energy component Wk
i for the FLEM, with the plasma beta =0.012 (N=3.02) and the 

fraction o
*=1.0 (*=0.19) are shown in the R-Z plane. The other equilibrium parameters are chosen as Fig.14. 

The unstable regions for n=1 FLEMs on the plan of the total plasma vs. wall 

position b/a are shown in Fig.16 for 0 0 3* .   ( 0 067* .  ), 100keV   and  0 0 51* .   

( 0 107* .  ) , 150keV   respectively. The instability area appears above the no-wall beta 

limit (marked in Figure as nowall=0.0078) and below the ideal wall beta limit. The latter is 

the upper-bound of the unstable region. The EPs with higher birth energy and/or higher 

fraction * lead to a larger unstable area. The plasma with a closer surrounding wall 

requires higher beta value to excite the FLEMs. Furthermore, the figure indicates that the 

kinetic effects modify the ideal wall beta limit, thus the upper-bound of the unstable region. 

Beyond this limit, the ideal kink mode is intrinsically unstable whatever without/with the 

kinetic effects of EPs. 
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Figure 16. The unstable regions of the n=1 FLEM are plotted in the plane of the plasma beta  (left) and N (right) 

versus the wall position b/a. The horizontal dashed line represents the no wall beta limit (nowall=0.0078). Two different 

EPs parameters are compared: o
*=0.3(*=0.067), =100kev, and o

*=0.51 (*=0.107), =150kev. The shaded areas 

are the FLEM unstable area. In both cases, the solid lines denote the ideal wall beta limit modified by the kinetic effect, 
and the dashed lines denote the stable/unstable boundary of the FLEMs. No plasma rotation is considered.  

4.2 Co-existence of FLEM and RWM 

The co-existence of RWM and FLEM can also be observed in tokamaks,which is shown in Fig.17 , 

where both positive and negative directions of the rotation have been investigated, and the kinetic 

effects for trapped hot ions, trapped thermal particles are considered in the computation. For the 

FLEM instability, since the frequency should be determined by the resonance condition r ≈ 

da+nthe positive plasma rotation increases the mode frequency, and the negative rotation 

decrease the frequency. However, the rotation does not significantly influences the growth rates of 

FLEM in both directions provided the resonance condition satisfied. For RWM instability, the mode 

frequencies are much lower than FLEM. In the positive rotation > 0 region, RWM can be 

stabilized by the kinetic damping contributed by the precession drift of the thermal trapped 

electrons [18, 27-29 ] at a very slow rotation velocity (/A ≤ 0.014 as shown in Fig.17); and no 

resonance-stabilizing effects comes from the EPs. In the negative rotation  < 0, both hot ions and 

thermal ions contribute to the kinetic energy Wk
i. The RWM can be stabilized in the relatively slow 

(or vanish) negative rotation mainly by the contribution of the thermal trapped particles. When the 

rotation becomes more negative the RWM can be stabilized again mainly by the kinetic damping of 

the hot ions. We would discuss these RWM phenomena in detail elsewhere. Therefore, the figure 

presents a coexistence of the unstable FLEM and RWM. In the parameter region we investigated, 

there is no mode coupling observed, this may be due to the fact that the role of the negative plasma 

rotation frequency n, (n=1) in tokamak could not decrease the FLEM frequency such rapidly as in 
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RFP where n=6, thus, before the FLEM frequency going down and reach the RWM frequency (near 

zero), the RWM has already stabilized by the kinetic damping of the EPs.  
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Fig. 17. The normalized growth rates and the frequencies of the co-existing RWM and the FLEM are plotted as a 

function of the plasma rotation frequency. The mark “hot” denotes the case where the kinetic effects contributed only 

by hot ions; “th+hot” denotes by both hot ions and thermal trapped particle. The parameters are taken as o
*=1,0 

(=0.19), =0.012, , b/a=1.12 and =100kev.  

The eigenfunctions of the co-existing FLEM and RWM are plotted in Fig.18, the radial 

displacements |1| (absolute value) for most important poloidal modes (n=1, m=-1 to -4) are 

presented in (a) and the radial components of perturbed magnetic field |Q1| are presented in (b). The 

taken parameters correspond to the two coexisting modes shown in Fig.17 at the rotation frequency 

/A=0.2, The kinetic effects contributed from both hot ions and thermal trapped particles are 

considered (the curves marked with “th+hot” in Fig.17). The figure presents both non-resonant 

poloidal harmonic n=1,m=-1,-4 and resonant harmonics n=1,m=-2,-3. Similar to RFP cases, the 

eigen-functions of FLEM and RWM have similar shapes in general. However, the eigenfunctions of 

FLEMs are pushed toward to the plasma center due to the “ideal-like“ wall, and show lower 

amplitudes of the displacements with respect to the one of the RWMs. The |Q1| of FLEMs vanish 

when reach the wall; while for the RWMs |Q1| can penetrate through the resistive wall and extend 

to the vacuum region. 
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Figure 18 The radial components of (a) the plasma displacement 1| |  and (b) the perturbed magnetic field 1|Q | (n=1, 

m= -1 to -5) are plotted along the minor radius for the FLEM and the RWM, corresponding to the point in Fig.17 (full 

kinetic case) with the plasma rotation 0 02A/ .   . The total poloidal Fourier harmonics taken in the computation 

are m= -10 to 5. The other parameters are chosen as the same as in Fig.17 

 

4.3 Damping by thermal particles 

Similarly as in RFP plasmas, the thermal passing ions provide ion acoustic Landau 

damping on FLEMs instabilities also in tokamak. Fig.19 shows the various energy 

components, in particular, the imaginary part of the kinetic energy Wk
i contributed 

by different species: energetic particles, the thermal particles and both together. 
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Figure 19. the kinetic energy components Wk
i and dWk

r versus the plasma beta  computed by considering kinetic 

resonances of both EPs and thermal particles are plotted, which corresponds to the curve “th+hot” in Figure 14. The 

contributions to Wk by various species are presented: the curve “thermal” denotes the contribution of the thermal 
particles. “ hot” denotes the contribution by energetic ions. “full” denotes the combination of the two species. The 

parameter used are the same as Figure 14 for curve ‘th+hot”, where o
*=1.0 (*=0.19). (a) is the plot of imaginary part 

of the kinetic energy Wk
i and (b) the plot of the real part Wk

r.  
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The figure shows that the kinetic effects of thermal particles (passing ions) 

contributes to Wk
i with the opposite sign of the contribution from EPs, and lead to 

cancelation to the driving force provided by EPs. Therefore, considering the kinetic 

effects of the thermal particles in tokamak, the FLEM instability becomes weaker 

with respect to the case of considering the hot ions alone (requires a higher value 

for instability and results to a lower growth rate, as shown in Fig.14). However, the 

damping of thermal particles on the FLEMs in tokamaks seems not give a significant 

modification on driving effects from EPs; the cancellation of the thermal particles by 

their negative Wk
i is relatively smaller than the RFP plasmas. The comparison 

between Fig.19 and Fig.10 (for a RFP) supports this conclusion. This is due to the 

fact that RFP configuration has shorter connection length than tokamak one, usually 

one observes a stronger Landau damping by thermal passing particles than what in 

tokamaks. This fact has also observed in the studies of other type of instabilities[30-

32 ] in RFP plasmas. 

7.Summary and discussion 

In this paper, The fish-bone like external kink mode (FLEM) instability driven by the precession 

drift motion of the trapped Energetic Particles is numerically investigated for both RFP and 

Tokamak (circular cross section with similar geometry) magnetic configurations. The MHD-kinetic 

hybrid toroidal stability code MARS-K was applied to the studies, which self consistently takes into 

account the drift kinetic effects of thermal particles and energetic particles. Numerical analyses 

have been made on the results in order to provide an understanding on the mode physics. The 

various physics natures of the FLEM are presented and its relation with the Resistive Wall Mode 

(RWM) is discussed.  

       The FLEM in RFP plasmas is firstly presented, where the instability is predicted for non-resonant 

modes, which are the least stable kink modes in RFP configuration. When a sufficient fraction of 

EPs presents in the plasma and the condition of resonance da rn n     is satisfied, the stable 

non-resonant ideal kink mode (stabilized by the sufficiently closed ideal conducting wall) can be 

converted to a unstable FLEM by the precessional drift resonance of the EPs (hot ions). The mode 

frequency is linked to the precessional drift frequency of EPs and the external kink mode, therefore, 

is much higher than the frequency of RWMs, around the range of the ideal MHD time scale, and 
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varies with the plasma rotation frequency. The instability occurs at rather high plasma beta value p. 

In fact, the value of p
idealwall is the upper-bound of the parameter region of the FLEM instability, 

where the external ideal kink stays near the marginal stability, thus is easiest to be excited under the 

ideal wall boundary. From another point of view, the energy component Wb is small enough near 

p
idealwall (p ≤p

idealwall ), resulting to a sufficient low frequency r of the external kink mode, which 

is easily match the precession frequency da of EPs. For given parameters of EPs (, *), when 

total plasma beta value p decreases, Wb increases due to decreasing of |WF| (farther from the 

marginal state). Therefore, the external kink frequency r increases with the decreasing of p ( Eq. 

21A). When r becomes large enough and no longer matches the precession frequency da of EPs 

to be resonance, the instability disappears. The higher fraction of EPs (with higher *) could 

provide larger contribution to Wk
i , certainly resulting easier excitation of FLEM instability. 

Spatially, higher birth energy  leads to higher precession frequency, which would sensitively 

enlarge the plasma parameter region of the unstable FLEM.  

In general, the instability of FLEM does not depend on the wall resistivity. However, the wall 

position could significantly affect the mode property. The closer wall to the plasma, the higher 

plasma beta is required for the excitation of the instability. The kinetic effect of the thermal 

particles (transit resonance of passing particles) can cancel the driving mechanism contributed by 

the precession resonance of EPs, thus plays a stabilizing role on FLEMs.  

With the presence of EPs in the plasma, the FLEM and the RWM can coexist. They can couple to 

each other if plasma rotates, depending on the plasma parameters. However, RWMs can be 

stabilized by the plasma rotation, while FLEMs remain unstable with the usual plasmas rotation. 

The same type of the instability is observed in the Tokamak plasmas, where the (dominant) non-

resonant external kink mode (e.g. m=1, n=1) couples with the resonant external kink modes (e.g. 

m=2, 3, n=1). The similar natures of FLEM to what mentioned above for RFPs are observed. 

Nevertheless, in Tokamaks the frequency of FLEM is much lower than what in RFP due to the 

lower precession frequency of EPs in a Tokamak than in RFP (with same birth energy). 

Furthermore, the Landau damping of the transit resonance by the passing thermal particles in 

Tokamak is weaker than in RFP due to the longer connection length in Tokamaks.  

In this work, due to the non-resonant nature of the FLEMs in RFP plasmas, where the mode n=6 

with most important poloidal harmonics (e.g. m=-5 to 5) are non-resonant, the Alfven continuum 

damping seems be rather low and does not crucially influence the instability nature. As for the 

tokamak, where the non-resonant harmonic (n=1, m=1) is still an important factor, although it 

couples with some resonant modes, we do not observe a dramatically modification on the 
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conclusions for the FLEM instability due to the coupling between the non-resonant and the resonant 

modes. This point needs to be further investigated in our future study. 
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