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Abstract 

Within the single fluid resistive magneto-hydrodynamic (MHD) model, systematic toroidal 

modelling efforts are devoted to investigate the plasma response induced screening of the 

applied external 3D magnetic field perturbations, in the presence of sheared toroidal flow.  

One particular issue of interest is addressed, when the local flow speed approaches zero at the 

perturbation rational surface inside the plasma.  Subtle screening physics, associated with the 

favourable averaged toroidal curvature effect (the GGJ effect [Glasser A H et al 1975 Phys. 

Fluids 7 875]), is found to play an essential role at slow flow near the rational surface, by 

enhancing the screening at reduced flow. A strong cancellation effect between different terms 

of the Ohm’s law is discovered, leading to different screening physics in the GGJ regime, as 

compared to that of the conventional screening of the typical resistive-inertial regime 

occurring at faster flow. These modelling results may be applicable to interpret certain mode 

locking experiments, as well as type-I edge localized mode suppression experiments, with 

resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal 

torque. 

mailto:l.li@fz-juelich.de


1. Introduction 

The plasma response to external magnetic field plays important role in understanding various 

three-dimensional (3D) physics relevant to tokamak plasmas, such as the resonant field 

amplification (RFA) [1-5], the active control of the resistive wall mode (RWM) with 

magnetic feedback [6-11], the mode locking [12, 13] and the error field correction [14-16], as 

well as the suppression or mitigation of the edge localized modes (ELMs) in H-mode plasmas 

using resonant magnetic perturbations (RMP)[17-20]. 

One key element of the plasma response to 3D fields is the screening of the magnetic 

pitch aligned resonant components.  Perfect screening occurs if the plasma is assumed to be 

ideal (i.e. with vanishing resistivity), which is often the case in modelling the RFA and the 

RWM control experiments for high beta (high temperature) plasmas, where the plasma 

pressure often exceeds the no-wall Troyon beta limit for the ideal kink instability [21]. On the 

other hand, only partial screening occurs in a resistive plasma, which is often the adopted 

model for simulating tokamak experiments at lower beta.  This is particularly relevant for the 

mode locking experiments due to field errors, as well as the ELM control experiments using 

RMP fields. Understanding the field screening phenomena in these low beta (below the 

Troyon limit), resistive plasmas is the primary objective of the present work.  

In a resistive plasma, the screening effect, or eventually the screening current generated 

inside the plasma, is a combined result of both the plasma conductivity and the plasma flow. 

Significant theory and modelling efforts have been devoted to study the plasma response 

induced screening.  Early work is often developed within the cylindrical approximation, and 

applied mainly to the tearing mode (TM) locking [12, 13, 22], as well as the ELM control 

related RMP problems [6, 23].  During recent years, significant modelling efforts have been 

carried out to study the plasma response to the 3D RMP fields in toroidal geometry [24-32]. 



It is now well established that the detailed screening physics, associated with the plasma 

flow, depends on the plasma model assumptions. In particular, the single fluid model predicts 

a strong screening due to the toroidal flow of thermal ions [13, 24], whilst the two fluid theory 

predicts screening due to the perpendicular (to the magnetic field lines) flow of thermal 

electrons [26, 27, 33]. In the limit of vanishing speed of the respective flow (at rational 

surfaces), both models would predict full penetration of the external resonant fields.        

However, few modelling work has been performed, in order to understand how the 

screening changes, as the plasma flow gradually approaches zero near the perturbation 

rational surface inside the plasma, and how the flow shear affects the results. This is of 

particular interest following the recent realization that, according to the single fluid theory, at 

very slow flow, the favorable averaged toroidal curvature effect, which is often associated 

with the TM stabilization in a toroidal plasma, provides additional screening of the external 

fields [34]. This work provides the first systematic, numerical investigation of this so called 

GGJ-screening regime using the MARS-F code [35]. Comparison is also made with the 

conventional resistive-inertial (RI) regime [13], which occurs at faster flow than the GGJ 

regime. The results may be relevant for interpreting not only the mode locking experiments, 

but also the ELM control (in particularly the ELM suppression) experiments using RMP 

fields at low input toroidal torque.     

We shall only consider the single fluid model in this study. The electron flow screening 

physics may be particularly relevant for studying the RMP penetration problem, where the 

primary interest is in the H-mode pedestal region. The electron diamagnetic flow is normally 

large in pedestal.  In this work, we are mainly interested in the flow screening for the core TM 

(at the 2q   surface here), where the electron diamagnetic flow contribution is normally not 

significant.  Even for the typical RMP problem, it seems that the single fluid approximation, 

including the toroidal flow induced plasma response screening, works satisfactorily well when 



compared with experiments [19, 25, 36]. This can be partially explained by the fact that the 

conventional single fluid flow screening and the perpendicular electron flow screening are 

essentially equivalent when casted in the proper mathematical formulation, as discussed in 

Ref. [16].    

Section 2 briefly describes the MARS-F single fluid, resistive plasma response model. 

Section 3 introduces three families of radial profiles for the toroidal rotation frequency of the 

plasma. Systematic rotation scan study is based on these flow profiles. Section 4 reports the 

computational results using the first two families of the flow profiles, both assuming 

unidirectional flow across the whole plasma minor radius. Section 5 reports results with the 

third family of flow profiles, where we allow the flow reversal near the rational surface. 

Peculiar screening physics is discovered and studied in this section.  Section 6 draws 

conclusion and discussion.  

2. The toroidal, single fluid, resistive plasma response model 

We used the MARS-F code [35] to compute the plasma response to the external magnetic 

field under the dc condition, while prescribing a radial profile for the plasma flow speed 

0
ˆR  V , where R  is the plasma major radius,  is the angular frequency of the toroidal 

rotation, specified as a function of the plasma minor radius,  and ̂  is the unit vector along the 

geometric toroidal angle  . MARS-F solves the linearized single fluid, resistive, full MHD 

equations in a general toroidal geometry. 

    ˆ
RMPi n R     ξ v ξ                                                                          (1) 

    ˆˆ2RMPi n p Z R                
 

v j B J b v v                                        (2) 

      ˆ
RMPi n R        b v B j b                                                                  (3) 



 RMPi n p P P       v v                                                                                          (4) 

j b                                                                                                                    (5) 

where the variables ξ , v , p , j  and b  denote the plasma displacement, perturbed velocity, 

pressure, current and magnetic field, respectively. The equilibrium plasma density, magnetic 

field, pressure and current are denoted by  , B , P  and J , respectively. n  is the toroidal 

harmonic number. We consider 1n   in this study. The equations are written in the 

dimensionless form, with the length normalized to the major radius of the magnetic axis, the 

time to the toroidal Alfvén time A , the magnetic field to the on-axis vacuum toroidal field 

0B , the pressure to 
2

0 0B  . The toroidal rotation frequency   is normalized to the Alfvén 

frequency A .  

The external 3D field is generated by the coil currents set in vacuum. In MARS-F code, 

the coil current density RMPj , as a source term, is prescribed which satisfies Amper’s law 

RMP b j . The frequency of the source current is denoted by RMP  in Eqs. (1)-(4). This 

term vanishes if dc coil currents are assumed, as in this study. This is often the case for field 

errors as well as for the RMP fields in the ELM control experiments.  

The above equations are solved in an equilibrium magnetic flux surface based straight 

field line coordinate system, where the toroidal angle is chosen as the geometric angle. The 

minor radius is labelled by the equilibrium poloidal flux function.  The poloidal angle is 

chosen such that the jacobian, associated with the transformation from the cylindrical 

coordinates, is proportional to 
2R . 

3. Specification of the plasma equilibrium and flow profiles 



To facilitate understanding of the numerical results from the MARS-F runs, we shall consider 

a simple equilibrium, the same as that assumed in Ref. 34. This equilibrium has a single 

rational surface associated with the 1n   perturbation inside the plasma. The radial profile of 

the equilibrium plasma pressure and the safety factor is shown in figure 1(a) and 1(b), 

respectively. The radial coordinate is defined as ns  , with n  being the normalized 

poloidal flux. Most of the physics effects that we shall study in this work are associated with 

the 2q   rational surface.  The GGJ screening effect, occurring at slow flow, is essentially 

due to the finite equilibrium pressure gradient at the 2q   surface.  

 

Figure 1. Radial profiles of (a) the plasma equilibrium pressure, and (b) the safety factor. The radial coordinate is 

the square root of the normalized equilibrium poloidal flux. The vertical dash line in (b) denotes the location of 

the rational 2q   surface. 

All results in Ref. 34 were obtained assuming a uniform equilibrium rotation profile. 

With the primary objective of this work to study the effect of the local flow speed at the 

rational surface on the plasma screening of the external 3D fields, we wish to understand: (i) 

what happens if the local flow speed vanishes near or at the perturbation rational surface?  (ii) 

what is the role played by the local flow shear as well as the global flow profile? (iii) what is 

the difference in the screening as the flow speed approaches zero without or with the reversal 

of the flow direction?   



In order to answer the these questions, we consider various ways of specifying the flow 

profiles, taking special care of the local variation of the flow profile near the rational surface.  

More specifically, we choose three families of sheared plasma rotation frequency profiles as 

shown below. 

3.1. Model A: A unidirectional flow with global variation of flow profile 

Such a profile is prescribed by the following model 

  2 3

0 1 11 2s s                                                                   (6) 

where 0 is the amplitude of the plasma rotation frequency at the magnetic axis, and 1  is 

defined as the rotation frequency at the plasma surface [24]. An example of such a profile, 

normalized to unity at the magnetic axis, is shown in figure 2(a). Similar to the magnetic 

shear, we define the flow shear as 

 S s d ds     

Note that if 1  vanishes in Eq. (6), the above defined flow shear is a constant while varying 

the flow amplitude.  In numerical computations, we normally assume a very small edge flow 

1 . Thus the local flow shear is kept nearly constant, while varying the global flow profile by 

adjusting the flow amplitude.  

3.2. Model B: A unidirectional flow with local variation of flow amplitude 

In order to investigate the relative effect of the flow shear and the flow amplitude, at the 

rational surface, on the plasma response to the external magnetic field, we consider a new 

family of profiles, with nearly vanishing plasma flow speed at the rational surface. The profile 

is defined as 



 
  

2
32 102 3 2 30

2 3
2 2 1

2

q

q q q

q q

s s s s e
s s

   
          

                                         (7) 

where qs  is the radial position of the rational surface 2q  , and  q  is the plasma rotation 

frequency at this surface. The model allows a large variation of q , by orders of magnitude, 

without significant change of the core rotation 0. In addition, the local flow shear at the 

rational surface vanishes. Figure 2(b) shows one example of the radial equilibrium plasma 

rotation frequency profile, where   is again normalized to unity at the magnetic axis 0 .  

 

 

Figure 2. Three types of radial profiles for the equilibrium toroidal rotation frequency of the plasma: (a) without, 

and (b) with, a strong local variation of the flow profile near the 2q   rational surface, indicated by black 

dashed vertical lines, (c-d) with reversal of the flow direction, with (d) showing the details near the rational 

surface. The blue vertical dash line indicates the position of the vanishing flow surface. 



Compared to the global flow model as described in subsection 3.1, the above model 

allows more flexibility in independent variation of the on-axis flow amplitude and the local 

flow amplitude at the rational surface, at the same time without introducing the flow reversal 

effect that is described by the next model.   

3.3. Model C: A flow profile with local reversal of direction near rational surface 

As shall be shown later in this work, the local reversal of the flow direction introduces a 

subtle degeneracy into the screening physics (the Ohm’s law), when the zero-crossing 

coincides with the radial location of the rational surface.  Numerically we investigate the 

screening in this peculiar situation, by radially separating the zero-crossing surface for the 

flow and the rational surface. We then gradually decrease the distance between these two 

surfaces. 

The flow model is thus proposed as follows 

    
2

22 3 2 30

2 3
2 2 1

2

q D

q q q

q q

s s s s e
s s

         
   

                                     (8) 

where the definitions of qs , q  are the same as in Model B. At fixed rotation frequencies on 

the magnetic axis ( 0 ) and at the rational surface ( q ), parameter D  controls the distance 

between the flow reversal surface ( 0 ) and the rational surface ( 2q  ). Taking 310D   

for example, Fig. 2(c-d) show the radial rotation profile with definition (8), with figure 2(d) 

showing the detailed profile near the rational surface. The flow frequency is again normalized 

to unity on the magnetic axis. In further computations, the on-axis rotation frequency 0  is 

also one of the scanned parameters. 

We note that such a choice of the flow profile (8) again yields vanishing flow shear at the 

rational surface. Compared to a case without the exponential factor in (8), this choice allows a 



larger radial separation between the zero-crossing surface for the flow and the rational surface, 

while reducing the local flow amplitude at the rational surface. As a result, it becomes easier 

to isolate the two effects, associated with the distance between the two surfaces on one hand, 

and the local flow speed at the rational surface on the other hand. The fact that the local flow 

shear becomes zero is not essential in understanding the screening physics, since as will be 

shown in the following, the local flow shear does not play a significant role in the screening 

of the GGJ regime. 

Note also that the specification of Model C bears close similarity to that of Model B, 

allowing comparison between different models.  In both Models B and C, the on-axis flow 

speed 0  and that at the rational surface q can be independently varied, whilst this is not 

possible with the flow profile Model A, where the flow speeds on the axis and at the rational 

surface always change in proportion. 

4. Screening due to unidirectional toroidal flow 

We have carried out extensive modeling and analysis efforts, in order to identify the screening 

physics associated with the local variation of the plasma flow speed near the rational surface. 

The results, computed by the MARS-F code, are summarized in figure 3, showing plasma 

response amplitude at the 2q   surface, for the 2 1m n   resonant harmonic of the perturbed 

radial field, while scanning the local flow amplitude 2q at the rational surface.  The radial 

component of the perturbed magnetic field b  is defined as     1b q d ds s   b B , 

where    axis edge axiss       . The total field 1

totb  produced by both the external coil 

currents and the perturbed currents of the plasma due to the plasma response. 
1

vacb  is the free-

space vacuum field generated by the external coil currents alone, in the absence of the plasma 

response. 



 

Figure 3. Comparison of the flow screening effects between the uniform flow profile and (a) the flow profile 

Model A, (b) the flow profile Model B. Plotted is the amplitude of the resonant ( 2 1m n  ) radial field 

component including the resistive plasma response, normalized by that of the vacuum field, versus the local flow 

speed at the 2q   surface. Various values of the normalized plasma resistivity, of constant radial profile, are 

assumed in (a), where the results with the uniform flow (lines with crosses) are compared with that of Model A 

flow profile (lines with circles). Various on-axis flow amplitudes, 2

0 10 A

   , 3

0 10 A

    and 

6

0 10 A

   , respectively, are chosen in (b) for the flow profile Model B, at the normalized plasma resistivity 

810  . 

 Two flow profile models (Model A and B) are used in Fig. 3. Fig. 3(a) compares the 

plasma response behavior assuming either a uniform flow profile, or the profile Model A at 

fixed small edge flow speed of 2

1 010   , with different choices of the plasma resistivity. 

The resistivity parameter   is defined as a dimensionless number by normalizing the physics 

quantity to a factor 2

0 0 AR v A , with 0 0 0Av B   ,  A  being the aspect ratio and 0 the 

on-axis plasma density.  Effectively  is the inverse of the Lunquist number.  Here a uniform 

resistivity profile is assumed along the plasma minor radius. 

It is interesting to note that, the flow profile model A, which has a finite local flow shear 

at the rational surface, produces nearly the same screening as that by the uniform flow, 

indicating that the local flow shear is not important in producing the screening effect. In other 

words, it is the local flow amplitude that quantitatively determines the resonant field 

screening. This holds for both screening regimes shown in Fig. 3(a) – the GGJ regime at slow 



flow and the RI regime at fast flow. Note that in the GGJ-regime, the response field amplitude 

decreases (i.e. screening is enhanced) with decreasing the plasma flow speed, whilst the 

opposite occurs in the RI-regime, where the enhanced screening is achieved by increasing the 

flow speed. 

The plasma resistivity is another key factor affecting the screening. For both regimes, 

increasing the plasma resistivity generally reduces the screening.   

Model A does not allow strong variation of the local flow profile near the rational surface. 

A subtle difference appears when such a strong local variation is indeed allowed, as in Model 

B (Fig. 2(b)). The computed plasma response using this type of flow profile is summarized in 

Fig. 3(b). Because of the possibility of independently varying the flow speed on the magnetic 

axis ( 0 ) and at the rational surface ( 2q ) with Model B, we choose three different values 

of 0  while scanning 2q . The results are also compared with that of the uniform flow 

profile. As expected, both the GGJ and the RI screening regimes are again obtained, at slow 

and fast flow at the rational surface, respectively. An interesting observation is that the 

separation between these two regimes occurs at the same 2q  value, which is about 

52 10 A

   in our case, independent of the on-axis flow speed 0 . This again points to the 

critical role played by the local flow amplitude, on the plasma response induced screening of 

the resonant field component. 

However, the on-axis flow speed, or in other words the global flow profile, does affect 

the GGJ screening regime as well. Generally at a fixed rational surface flow, increasing the 

on-axis flow speed reduces the GGJ screening effect. Interestingly, no such effect is seen for 

the RI screening regime. In order to better understand these two screening regimes, we 

perform a detailed investigation of the key physics elements that determine the screening. 



The flow screening is essentially described by the radial component of the Ohm’s law, Eq. 

(3). It turns out that, with a proper choice of the basis vectors, the radial component of Eq. (3) 

can be rigorously written for each individual Fourier harmonic ( ,m n ) in a straight field line 

coordinate system, even for a generic toroidal equilibrium 

 1 1

mn mn

mn

JB
b i m nq J   



 
       

                                     ( 9 ) 

where 1

mnb  is the Fourier harmonic of the radial field 
1b  as defined before, 1

mn  is the Fourier 

harmonic of the radial displacement defined as 
1 s  ξ , J  is the parallel (to the 

equilibrium field line) component of the perturbed plasma current, J  is the jacobian of the 

coordinates transformation, B  is the equilibrium magnetic field amplitude, and finally 

d ds   . In the curve-linear flux coordinate system ( , ,s   ), all the perturbed quantities 

have a im ine    dependence for the ( ,m n ) Fourier harmonics. By representing the perturbed 

plasma current in the form 1 2 3j s j j      j , the parallel component J  is calculated 

as  

 2 3J j qj
JB





                                                                                                  (10)  

Representation (9) greatly simplifies the physics analysis of the flow screening effect, 

without compromising the toroidal coupling effect. Three terms are identified in Eq. (9): the 

left hand side (LHS) term, 1

mnb , is related to the radial component of the perturbed magnetic 

field, indicating the plasma response in terms of the total field; the first right hand side (RHS1) 

term,   1

mni m nq    , is associated with induction, and thus further referred to as the 

induction term,  the second right hand side (RHS2) term,  
mn

JB J      , is the resistive 



term in Ohm’s law. The eventual amplitude of the plasma response field, i.e. the screening 

effect, is the combined result of both RHS terms in Ohm’s law.  

 

 

  

Figure 4. Comparison of key perturbed physics quantities associated with screening, between the RI-regime at 

fast plasma flow (
3

0 10 A

   , 
4

2 10q A



   , left panels) and the GGJ-regime at slow flow (
6

0 10 A

   ,

7

2 10q A



   , right panels). The radial profiles, near the 2q   rational surface indicated by vertical dashed 

lines, are compared for (a, b) the real, and (c, d) the imaginary, parts of three terms in Eq. (9), representing the 



screening contributions from the induction term (RHS1) and the resistive term (RHS2) in Ohm’s law, and their 

sum (LHS), and (e, f) the (dominant) imaginary parts of the plasma response generated, 2m  perturbed parallel 

currents, Eq. (10). The flow profile Model B is assumed, with normalized plasma resistivity of 
810  . 

Figure 4 compares all the key physics components, participating into Ohm’s law, 

between the RI regime and the GGJ regime. For two examples based on the flow profile 

Model A. Similar results are obtained using the flow Model B. The radial distributions of all 

three terms of Eq. (9), just near the 2q   rational surface, are plotted in Fig. 4(a-d). In the 

GGJ screening regime (right panels), a large cancellation is observed between the induction 

term and the resistive term in Ohm’s law. It is indeed because of this cancellation, the 

perturbed radial field is small, resulting in the so called GGJ screening. 

On the other hand, no such cancellation occurs in the RI regime (left panels). In this case, 

the major contribution to the plasma response near the rational surface comes from the 

resistive term RHS2.  

Since the screening is eventually associated with the plasma generated current 

perturbation, we also compare the resonant component of the parallel current as defined in Eq. 

(10). This is shown in Fig. 4(e-f). In the conventional screening regime (figure 4(e)), 

perturbed parallel current peak is at the rational surface, providing the screening of the 

externally applied resonant fields. In the GGJ regime (figure 4(f)), however, the perturbed 

parallel current peaks are off (but very close to) the rational surface. It is eventually these two 

off-resonant peaks that provide the screening of the external magnetic field in the GGJ regime. 

5. Screening due to toroidal flow with local reversal of direction near rational surface 

The plasma response is more subtle when the toroidal flow locally switches direction near the 

rational surface. Numerically we find that a strong singularity occurs in the response solution 

near the rational surface, as the flow speed crosses zero, switching sign, exactly at the rational 



surface. No such singular behavior in the response solution is observed with the flow Model B, 

as the local flow speed approaches zero exactly at the rational surface.  

We attribute the singular solution, associated with the Model C, to the degeneracy of the 

Ohm’s law in Eq. (9). Indeed in the case of  approaching zero at the rational surface, the 

coefficients in the three terms, associated with the perturbed quantities in Eq. (9)  (radial field, 

radial displacement, and parallel plasma current, respectively), approach zero with different 

orders. This gives constraints on the possible radial distribution near the rational surface, for 

the perturbed quantities which have to be self-consistently determined (i.e. satisfying all other 

MHD equations). This can lead to different possibilities for the response solution. The flow 

Model B based response solution, for instance, resolves the degeneracy in the equilibrium 

coefficients by the vanishing parallel current perturbation at the rational surface (at finite 

resistivity  ). The self-consistent response solution based on the flow Model C, on the other 

hand, does not seem to follow the same cancellation rule. As a result, a stronger singularity 

develops in the solution near the rational surface, which we believe is un-physical, and cannot 

be numerically resolved.   

However, we still have the possibility to study the flow screening in this case, by two 

means. First, we separate the resonant surface and the surface where the flow vanishes 

(further referred to as the zero-flow surface), and gradually decrease the radial distance 

between these two surfaces.  Secondly, we consider a resistivity model that also vanishes at 

the rational surface 

 
4

0 min 1, q     
  

                                                                   (11) 

Such a model, to certain degree, removes the degeneracy of Eq. (9).    



Figure 5 summarizes the computed response results, following the aforementioned 

procedures. Since the radial distance between the rational surface and the zero-flow surface is 

controlled by the model parameter D  in Eq. (8), we show two cases (a) and (b), representing 

roughly two extreme cases: case (a), with 35 10D   , corresponds to the situation where 

these two surfaces are well decoupled, whilst case (b), with 310D  , shows the results when 

the physics effects at these two surfaces start to strongly couple to each other.   

 

Figure 5. Comparison of the flow screening effects between the uniform flow profile and the flow profile Model 

C with two choices of the value for the model parameter D : (a) 35 10D   , and (b) 310D  . Plotted is the 

amplitude of the resonant ( 2 1m n  ) radial field component including the resistive plasma response, 

normalized by that of the vacuum field, versus the local flow speed at the q=2 surface. Different on-axis flow 

speeds are chosen here in Model C, with 
3

0 5 10   , 
3

0 10  , 
4

0 10  , 
5

0 10  , respectively. The 

normalized plasma resistivity is fixed at 
810  .  

First, we note that all these subtle physics have almost no effect on the RI screening 

regime. They do, however, affect the GGJ regime, although the effect is not as significant as 

that by the flow Model B. Compared to the uniform flow results, the decoupling between the 

rational surface and the zero-flow surface results in minor modification of the GGJ screening, 

as shown by Fig. 5(a). On the other hand, the strong coupling effects between the two 

surfaces do change the GGJ screening as shown in Fig. 5(b). More interestingly, the screening 

becomes even stronger than the uniform flow case, as the on-axis flow speed is increased. 



This is opposite to the results with the flow Model B, where the GGJ screening effect is 

always weaker than the uniform flow case. 

 

Figure 6. The amplitude of the resonant ( 2 1m n  ) radial field component including the resistive plasma 

response, computed assuming the flow profile Model C and normalized by that of the vacuum field, plotted 

versus the distance between the rational 2q   surface and the vanishing flow surface. This surface is controlled 

by varying the model parameter D , with the black and blue vertical dashed lines corresponding to 
35 10D    

and 
310D  , respectively. Fixed are the on-axis flow speed 
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    , the flow at the rational surface 

7

2 5 10q A



    , as well as the normalized plasma resistivity 
810  .  

In order to demonstrate the sensitive dependence of the flow Model C based GGJ 

screening, on the separation between the rational surface and the zero-flow surface, Fig. 6 

shows the computed resonant response field amplitude versus the radial distance (normalized 

by the plasma minor radius) between these two surfaces, while scanning the parameter D  in 

Eq. (8) using the flow profile Model C. The response amplitude stays nearly constant as the 

zero-flow surface is located far away from the rational surface. As the two surfaces radially 

merge, the plasma response is significantly reduced, resulting in enhanced GGJ screening by 

the flow reversal near the rational surface. 



 

 

 

Figure 7. The key perturbed physics quantities associated with screening, computed using the flow profile Model 

C with two choices of the value for the model parameter D : 35 10D   (left panels) and 
310D  (right panels). 

The radial profiles near the 2q    rational surface are compared for (a, b) the real, and (c, d) the imaginary, 

parts of three terms in Eq. (9), representing the screening contributions from the induction term (RHS1) and the 

resistive term (RHS2) in Ohm’s law, and their sum (LHS), and (e, f) the (dominant) imaginary parts of the 

plasma response generated, 2m   perturbed parallel currents, Eq. (10). The black (blue) vertical dash line 

indicates the radial location of the rational 2q   (the vanishing flow) surface. Fixed are the on-axis flow speed 
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2 5 10q A



    , as well as the normalized plasma 

resistivity 
810  . 

Figure 7 compares the radial distribution of the key quantities participating into the 

screening physics, assuming the flow profile Model C without (a, c, e) and with (b, d, f) 

strong coupling effects between the rational surface and the zero-flow surface. The radial 

distributions of the induction and resistive terms are somewhat similar. There is still a large 

cancellation between the inductive and the resistive terms in these two cases, both being in the 

GGJ screening regime. However, the cancellation is less complete than that of the flow profile 

Model B case. The significant difference between the decoupled surfaces and the coupled 

surfaces is the amplitude of the plasma generated perturbed parallel current density, shown in 

Fig. 7(e) and (f), respectively. The coupled case results in about 3 times larger current 

amplitude, thus stronger screening as shown in Fig. 5 and 6. 

6. Conclusion and discussion 

This work aim at computational understanding of the plasma induced screening effect on the 

externally applied 3D resonant magnetic field perturbations, in a situation when the plasma 

flow becomes small, or even vanishes, at one rational surface of the perturbation. The 

modelling is carried out using the MARS-F code, which incorporates the single fluid, full 

MHD, resistive plasma model, with full toroidal geometry. We have considered three families 

of toroidal flow profiles, representing three typical situations of how the flow speed can 

approach zero near the rational surface. The key physics here is that the presence of a finite, 

but very slow flow changes the screening regime within the single fluid MHD theory – from 

the conventional resistive-inertial type of screening to the so called favorable averaged 

toroidal curvature induced GGJ screening. 



We performed a comprehensive investigation of the subtle and non-trivial screening 

physics associated with the GGJ effect, in the presence of toroidal flow and flow shear. We 

find that the local flow amplitude, not the local flow shear, at the rational surface, that is more 

important in determining the GGJ screening. In addition, the global flow profile also affects 

the GGJ screening, despite the fact the screening eventually occurs near the rational surface. 

An important observation is the nearly perfect cancellation effect between the induction 

term and the resistive term in Ohm’s law, when the GGJ physics is in operation. This is 

identified as the key physics of the GGJ screening, since the near cancellation between these 

two terms results in very small amplitude of the resonant radial magnetic field perturbation. 

On the other hand, such a cancellation does not occur for the RI regime, where the induction 

term contribution is very small compared to that of the resistive term. These two regimes also 

significantly differ in terms of the plasma generated screening current. The conventional 

resistive layer model, which is valid at relatively fast flow, results in a shielding current that 

peaks at the rational surface, whilst the GGJ model (valid at slow flow) yields a double-peak 

structure of the perturbed parallel current density along the plasma minor radius. These two 

peaks occur close but off the rational surface.  

We also find that the standard resistive MHD model has an inherent defect in describing 

the situation where the plasma flow speed vanishes, with the reversal of the flow direction, 

exactly at the radial location of the perturbation rational surface. Such a degenerated situation 

leads to un-physical singularity in the plasma response solution. In this study, this degeneracy 

is resolved by slightly separate the zero-flow surface and the rational surface,  and by 

introducing a peculiar plasma resistivity radial profile, which vanishes at the rational surface, 

the latter can be viewed as a straightforward, but not unique, way of introducing additional 

physics into the resistive MHD model without changing the equations. A better model may be 

obtained by introducing new terms into the equation, such as the hyper-resistivity term in 



Ohm’s law [37]. We also point out that no such un-physical singularity is numerically found 

when the flow speed vanishes at the rational surface while keeping unidirectional flow, as 

described by our second flow profile model.  

The GGJ induced screening may offer a possible interpretation of an interesting 

observation in the mode locking experiments  carried out in TEXTOR [38], where the 

threshold amplitude of the DED current, to induce the mode locking, is experimentally 

determined while scanning the toroidal flow speed of the plasma in both directions. It was 

found that a finite minimum DED current threshold is required for the mode locking, even at 

zero flow speed at the rational surface. The single fluid theory without the GGJ screening 

always predicts zero DED current thresholds at vanishing flow (corresponding to full 

penetration). The inclusion of the electron diamagnetic flow cannot offer the explanation 

either, since this only shifts the location of the minimum DED current, without changing the 

fact of the existence of the finite current threshold.    

The results from this study also predict that, with the right conditions (e.g. the plasma 

does enter into the GGJ screening regime), a low torque regime (thus slow plasma flow) does 

not necessarily mean a better ELM suppression regime using the RMP fields. This is because 

the GGJ screening at slow flow may actually prevent the penetration of the RMP field.  

Finally, we emphasize that the single fluid model certainly does not contain all the 

relevant screening physics, in particular the electron diamagnetic flow and the effects of the 

(anisotropic) thermal transport terms near rational surfaces [39, 40]. These remain the topics 

of our future investigation. 
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