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The resonant interaction between the energetic particle triggered fishbone mode and the shear 

Alfven waves is, for the first time, computationally observed and firmly demonstrated based on a 
tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K [Y. Q. 
Liu et al., Phys. Plasmas 15, 112503 (2008)]. This type of continuum resonance, occurring 
critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the 
eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed 
parallel current density near but offside the q=1 rational surface (q is the safety factor). The 
self-consistently computed radial plasma displacement substantially differs from that being 
assumed in the conventional fishbone theory. 
PACS numbers: 52.50.Gj, 52.55.Fa, 52.55.Tn, 52.65.-y 
 

It is well known that a magnetohydrodynamic (MHD) mode, which is rotating in the plasma 
frame in a tokamak, can experience resonances with continuum waves such as the shear Alfven 
waves and the sound waves. Such types of resonant interactions do not often occur, since many 
MHD modes, such as the internal kink mode, the tearing mode, the peeling-ballooning mode, the 
infernal mode, normally rotate together with the plasma, and thus appearing static in the plasma 
frame. One well known exception is the resistive wall mode (RWM), which is an external kink 
instability, strongly interacting with the surrounding resistive wall(s) in toroidal devices such as 
tokamaks or reversed field pinches. As a result, the mode is well locked to the wall even when the 
plasma is rotating. The resonant interaction between the RWM and the continuum waves in a 
rotating plasma provides one of the key damping mechanisms for the former [2-3]. 

In this work, we identify, for the first time, the similar resonant interaction physics for the 
internal kink mode, which is driven unstable by kinetic resonances with precessional drift motions 
of trapped energetic particles (EPs), resulting in the so called fishbone instability [4,5]. In other 
words, the internal kink is stable without the EPs drive. More importantly, the triggered fishbone 
mode has a finite real frequency even for a static plasma equilibrium, meaning that the mode 
rotates in the plasma frame. Consequently, the mode experiences resonances with plasma 
continuum waves. More specifically, coupling of the fishbone to the shear Alfven waves is firmly 
identified, whilst no significant resonance effect from the sound waves is found for the plasma 
considered in this work. 

The key physics consequence, that can be identified from the self-consistent toroidal 
computations, is the significant modification of the fishbone eigenmode structure near the mode 
resonant surface. More specifically, two large peaks, for the perturbed parallel current density, 
appear near but offside the q=1 rational surface. The gap between these two current peaks 
increases nearly linearly with the fishbone frequency. This is quantitatively confirmed by both 
toroidal computations and by the analytic estimate. The computed radial displacement of the mode 
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switches sign near the q=1 surface, being qualitatively different from the conventional theory 
assumptions, of being either a step-like function, or a hyperbolic tangent function describing the 
smooth transition within the inertial layer.  

The aforementioned toroidal computations are performed with the MHD-kinetic hybrid code 
MARS-K [1]. The code is well benchmarked against other codes with similar drift kinetic effects 
[6,7], and has been extensively applied to study MHD perturbations associated with external kink 
modes [8-11]. One key feature, which allows us to perform the study reported in this work, is the 
non-perturbative approach employed in the MARS-K formulation. The MHD equations and the 
drift kinetic equations are solved together in MARS-K, thus allowing (i) the self-consistent 
modification of the internal kink eigenfunction by the drift kinetic effects from trapped EPs, and 
(ii) the wave-wave resonance interactions between the fishbone and the plasma continua. 
Therefore, both types of resonance physics – the resonance between internal kink and EPs and the 
resonance between fishbone and Alfven waves, being of different physics origins, are included 
into the MARS-K model and employed in this study. 

Assuming an ideal plasma with toroidal equilibrium flow, the core equations of the MARS-K 
model can be written as 
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, pv  represent the plasma displacement, the perturbed velocity, 

magnetic field, current and pressure tensor. ω is the complex eigen-frequency of the mode, 
defined in the laboratory frame and is subject to a Doppler shift Ωn , with n being the toroidal 

mode number,  the plasma rotation frequency along the toroidal angle Ω φ . ρ is the plasma 

mass density. Variables , J
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B
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 represent the equilibrium current and magnetic field strength, 

respectively. R is the major radius. Ẑ
v
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 are the unit vector in the vertical direction and for 

the vector tensor, respectively. The kinetic effects are included via the parallel and perpendicular 
pressure components, evaluated from the perturbed distribution function   1
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parallel and perpendicular velocities of the particle guiding center drift motion, respectively. The 
sign σ represents particle species (electrons, ions and energetic particles). The perturbed 
distribution function , defined in the Lagrangian frame, satisfies the following equation, 1

Lf
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where is the equilibrium distribution function of particles, assumed to be Maxiwelian for 

thermal ions and electrons, and slowing down distribution for energetic ions. and denote the 

derivatives with respect to the particle energy and canonical momentum, respectively. 
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poloidal magnetic flux.  is the particle total energy with Z being the charge 
number and  being the equilibrium electrostatic potential. The total canonical momentum is 

defined as . 
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 represents particle Lagrangian perturbation with 
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is the magnetic moment of particle. The solution of Eq. (8) has been discussed in details in Ref. 
[1]. Equations (1-8) form a close system to study the fishbone modes. In this work, the above 
equations are solved in a PEST-like straight field line (SFL), toroidal coordinate system (s,

BMv 2/2
⊥=μ

χ ,φ ). 
Here, the first variable s represents the square root of the normalized poloidal magnetic flux,  
varying between 0 (magnetic axis) and 1 (plasma boundary). The second and the third 
variables, χ ,φ , correspond to a generic poloidal angle and the geometrical toroidal angle, 
respectively. 

An experimental equilibrium configuration of HL-2A, with neutral beam injection (NBI) 
heated plasma, is considered. The equilibrium obtained from the EFIT code, as well as the 
relevant kinetic profiles, are shown in figure 1. The main parameters are: the toroidal magnetic 
filed B=1.3 T, the major/minor radii R=1.6m/a=0.4m, the central electron density ne(0)=1.6×1019 
(m-3), the electron temperature Te(0)=1.5 (keV), the ion temperature Ti(0)=1.5 (keV), the 
temperature ratio of the hot to thermal ions Th/Ti=30, the density fraction of hot ions nh/ni=0.04, 
the on-axis safety factor q(0)=0.9 and the edge safety factor q(a)=4.08. In order to avoid the 
stabilizing effect of the plasma flow on the fishbone instability, the plasma equilibrium is assumed 
to be static. The energy distribution of energetic ions is a slowing-down function, and the pitch 
angle distribution is specified by Gaussian functions [1]. In this work, the orbit width of EPs and 
the particle collision are neglected. The contours in Fig. 1(a) are flux surfaces showing the diverter 
configuration of HL-2A, with the bold line representing the plasma boundary. The curves in Fig. 
1(b) represent the normalized, flux surface averaged toroidal current density profile 

(dash-dotted line), the safety factor q (dotted line), the normalized plasma 

equilibrium pressure  (solid line), and the pressure profile of energetic ions  

(dashed line), as functions of s. The pressure of energetic ions was given by 
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where the pressure fraction factor, for energetic ions, is defined as thhh ppp /ˆ = . Here, pth 

represents the pressure of thermal particles. The total pressure, which satisfies the equilibrium 
force balance, is the sum of the thermal and EPs pressures. 
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Fig.1 (a) The diverter configuration of HL-2A, and (b) the equilibrium kinetic profiles for the 

normalized current density  (dash-dotted line), the equilibrium pressure 

 (solid line), the pressure of energetic ions 

)2/(ˆ
000 BRjj φφ μ=

2
00 /ˆ Bpp eqeq μ= )1/(ˆ heqhh pppp )) +=  (dashed line) and 

the safety factor (dotted line), as functions of s, defined as the square root of the normalized 
poloidal magnetic flux. 
 

The diamagnetic drift of energetic particles is the dominant factor driving the fishbone 
instabilities. We shall only consider the mode resonance with toroidal precessional drift motion 
(including both the drift and the curvature drift) of EPs. The other resonances, due to 
bounce/transit motions of EPs, are neglected. With non-uniform radial distributions of density or 
temperature, energetic particles usually interact with the (stable) internal kink mode, driving the 
fishbone instability, as long as the EPs pressure is sufficiently large. Moreover, the real frequency 
of the fishbone mode is usually about half of the precessional drift frequency of EPs at the 

particle birth energy (i. e. 

B∇

2/dhr ωω = ). The growth rate of the mode is roughly a linear function 

of the EPs pressure [4-5]. Compared with previous studies based on the energy principle, the 
advantages of using the MARS-K code is the self-consistent treatment of not only the eigenvalue 
but also the mode eigenfunction for fishbone. 

The MARS-K computed eigenvalues of the fishbone mode, for our equilibrium, are shown in 
figure 2(a), as function ofβh/βth. The real and imaginary parts of the eigenvalues represent the 
real frequency (solid line) and the growth rate (broken line), respectively, of the fishbone mode. 
These quantities are normalized to the on-axis Alfven frequency. Shown in Fig. 2(b) is the 

toroidal precessional drift frequency dω̂ , averaged over the particle velocity space and normalized 

to the on-axis Alfven frequency, versus the the plasma minor radius, atβh/βth=0.84 and beam 
energy Eb=45keV, based on the equilibrium from figure 1. The minimum value of the toroidal 
precession frequency of EPs is about 0.1 in our case.  Figure 2(a) shows that the fishbone is 
excited by energetic ions, whenβh is larger than a critical value. The real frequency of the 
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excited mode keeps nearly constant, being approximately equal to half of the toroidal 
precessional drift frequency (i. e. 0.05), agreeing well with theoretical expectations [4-5]. In 

MARS-K, the toroidal precession frequency is calculated as )//(/ //// sJJdh ∂∂∂∂= εω , where 

 denotes the longitudinal adiabatic invariant of the particle motion. In the large 

aspect ratio approximation, the above expression for the precession frequency is roughly reduced 

to 

∫= dlvJ ////

rqdh /∝ω . With a parabolic-like safety factor profile in the HL-2A plasma, the toroidal 

precession frequency is thus expected to decrease with s near the magnetic axis, and increase 
with s in the outer region. This is exactly what we numerically find as shown in Fig. 2(b).     
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Fig. 2 (a) Real (solid line) and imaginary (broken line) parts of the fishbone eigenvalue, 
normalized to the on-axis Alfven frequency, i. e. )0(/ˆ Aωωω = , versus the beta fraction of 
energetic ions with beam energy Eb=45 keV. (b) The normalized toroidal precessional drift 

frequency of energetic ions )0(/ˆ Ad ωωω = , as a function of square root of the normalized poloidal 

magnetic flux. 
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Fig. 3 Real (solid lines) and imaginary parts (broken lines) of the normalized radial displacement 
of the plasma versus the minor radius, for (a) the fishbone mode, and (b) the single fluid MHD 
predicted ideal internal kink mode. The eigenfunctions are self-consistently computed with 
MARS-K. The vertical dashed line indicates the location of the q=1 rational surface. 
 

Figure 3 shows the MARS-K computed eigenmode structure, in terms of the (normalized) 
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radial displacement of the plasma, for the n=1, m=1 harmonic, versus the plasma minor radius. 
Compared are displacements between (a) the fishbone mode and (b) an unstable ideal internal kink 
mode within the single fluid approximation. It is important to note that these eigenfunctions are 
obtained from self-consistent MARS-K computations. The fishbone mode is computed atβh/β
th=0.84, beam energy Eb=45 (keV), and with an eigenvalue of . The 
plasma displacement associated with the ideal internal kink is, as expected, nearly constant inside 
the q=1 surface, and monotonically decays to zero outside the rational surface. What is not 
expected, however, is the more complicated mode structure for the fishbone instability. Sharp 
variation of the m=1 displacement across the q=1 surface is observed, with strong peaking occurs 
at the radial locations of s

)1036.2,101.1(ˆ 23 −− ××=ω

1=0.354 and s2=0.389. This new feature of the fishbone mode structure 
results from the kinetic effects of energetic particles on the mode, as well as from the resonant 
interaction between the mode and the shear Alfven waves, as will be elucidated next. We remark 
here that, in previous work, the eigenmode structure of fishbone is often assumed as a step-like 
function, making analytic utilization of the energy principal possible [4-5]. What we find here 
shows that this may not always be a good approximation.  

The resonance between the fishbone mode and the shear Alfven waves occurs, when the real 
frequency of the fishbone, in the plasma frame, matches that of the Alfven waves. 

22
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Note that, with relatively slow mode frequency (~ the toroidal precession frequency of fast ions) 
for the fishbone, the above resonance can only occur near the q=1 rational surface, where the 
parallel wave number κ|| is small. Thus, for an ordinary q-profile, there are two resonant positions, 
located from both sides of the q=1 surface. The mode eigen-function is substantially modified near 
these two resonant surfaces, as shown in Fig. 3.  

Even more interestingly, strong current sheets are formed at the radial locations of these two 
resonant surfaces, as shown in Fig. 4. These current sheets form part of the fishbone 
eigen-function, as the self-consistent solution of the MHD-kinetic hybrid equations. For the case 
shown here, the perturbed parallel current density amplitude peaks at q1=0.97796 and q2=1.02081, 
corresponding to the radial positions of s1=0.354 and s2=0.389, respectively.  
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q
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Fig. 4 The self-consistently computed perturbed current sheets, located from both sides of the q=1 
rational surface, as a result of the wave-wave resonance between the fishbone mode and the shear 
Alfven continuum. Plotted is the real part of the perturbed parallel current density versus the 
safety factor q, from the same MARS-K computation as in Fig. 3. 

 6



 
The radial gap between these two current sheets is numerically determined and shown in Fig. 

5, as the distance between the upper and lower circles, at each computed mode frequency, which 
varies as a result of changing the temperature of EPs. The gap almost linearly increases with the 
mode frequency. On the other hand, the lines in Fig. 5 correspond to the analytic estimates 
following the exact solution of Eq. (9). Quantitative agreement between the numerical results and 
the analytic estimates confirm the shear Alfven wave resonance nature for the fishbone mode. No 
sound wave resonance induced current sheets are observed in these computations, though 
theoretically such resonance, between the fishbone and the sound wave (or the slow 
magneto-acoustic wave) continuum, can also occur.  
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Fig.5 The radial positions of the resonant surfaces from both sides of the q=1 rational surface, are 
plotted versus the real frequency )0(/ˆ Arr ωωω =  of the fishbone mode. The resonant surfaces 
occur due to interaction between the fishbone mode and the shear Alfven waves. 
 

It is the conventional understanding that the EPs kinetic effects mainly act on the bulk part of 
the internal kink eigenmode (i.e. not inside the inertia layer which is normally very narrow). 
Toroidal computations allow us to investigate this aspect in more details, also in the context of the 
mode coupling to the Alfven waves as studied in this work. For this purpose, we apply an artificial 
window function along the plasma minor radius, of width 2δsa, as a multiplier to all the drift 
kinetic terms associated with the trapped EPs [12]. The function value is zero inside the window 
and 1 outside the window. The window is symmetrically located from both sides the q=1 rational 
surface. By varying this numerical parameterδs, we can study how the kinetic effects inside the 
layer affect the fishbone mode instability. The computational results, shown in Fig. 6, indicate that 
fishbone stability is not much affected, as long as the window width does not exceed the q=1 
inertia layer width, which is about 0.1a as shown in Fig. 3. On the other hand, a too large window, 
covering the whole inertia layer and beyond, quickly reduces the EPs drive, resulting in the loss of 
the fishbone excitation. 
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Fig.6 The real frequency (solid line) and growth rate (broken line) of the computed fishbone mode, 

as functions of sδ , representing the width of the window for an artificial weighting function on 

the kinetic terms in the MARS-K model.  The eigenvalue is normalized to the on-axis Alfven 
frequency, )0(/ˆ Aωωω = . 
 

Figure 7 shows one example of the MARS-K computed fishbone eigenmode structure, but 
plotted in the 2D domain for the plasma core region. The same EPs parameters, as that in Fig. 3, 
are assumed. The n=1, m=1 internal kink structure is evident. Note, however, the sharp variations 
of the mode structure near the q=1 rational surface, which is self-consistently generated due to the 
mode resonance with shear Alfven waves. This is different from the conventional internal kink 
eigen-structure as predicted from the fluid computations, e.g. that shown by the M3D code [13]. 
Finally, we remark that, as a linear eigenfunction, the toroidal phase of the computed plasma 
displacement is undetermined. Therefore, only the relative phase between the real and imaginary 
parts, shown in Fig. 7, has physics significance.   

 

 
Fig. 7 One example of the eigenmode structure of the n=1 fishbone, computed with MARS-K and 
plotted on the poloidal plane for the core region of the plasma. Plotted are the real and imaginary 
parts of the plasma radial displacement. The dashed lines indicate the location of the q=1 rational 
surface.  
 

In summary, the non-perturbative toroidal modeling, using the well benchmarked MARS-K 
code, allows us to firmly identify, for the first time, the resonant interaction physics between the 
trapped EPs triggered fishbone mode and the shear Alfven waves in tokamak plasmas. Such 
interaction is possible, thanks to the finite mode frequency driven by EPs toroidal precession, even 
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in a static equilibrium. The Alfven resonance qualitatively modifies the eigenmode structure of the 
fishbone, by introducing a double-peak structure in the perturbed parallel current density near the 
q=1 rational surface, and by causing substantial plasma radial displacement reversal near the same 
surface. These new features should be taken into account in further development of more accurate 
fishbone models, as well in the future interpretation of experimental results. 
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