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1.  Introduction

It is well known that periodic toroidal field ripples can have 
negative effects on plasma performance, particularly in 
H-mode plasmas [1, 2]. Fast ion loss due to ripple fields is one 
of the significant concerns at ITER and future fusion reactors. 
It is for this reason that ferritic inserts (FIs) have been designed 

for ITER in order to reduce the ripple fields, which predomi-
nantly have an n  =  18 (n is the toroidal mode number) comp
onent due to the symmetry of the toroidal field coils. While 
cancelling the ripple fields, these FIs produce small, but not 
negligible, field errors in other toroidal mode numbers.

Test blanket modules (TBMs), which are not periodi-
cally distributed along the toroidal angle of the torus, have 
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Abstract
Computations in toroidal geometry are systematically performed for the plasma response to 
3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) 
for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady 
state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI 
and TBM fields, the plasma response for all the n  =  1–6 field components are computed and 
compared. The plasma response is found to be weak for the high-n (n  >  4) components. The 
response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is 
not reduced by an order of magnitude. This is essentially due to the strong screening effect 
occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils 
(EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the 
baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of 
the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of 
these field errors, according to various optimisation criteria. On the other hand, even without 
correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping 
for the 15 MA baseline scenario.
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also been designed for ITER. These TBMs contain massive 
ferromagnetic materials (several tons), which again generate 
3D error fields (EFs) at ITER. Unlike the present devices, 
where the EFs can be minimised by careful alignment of the 
machine and coil system, the EFs at ITER, as well as their cor-
rection, are a substantial concern, partly due to the presence 
of TBMs. In particular, a broadband toroidal spectrum of the 
EFs is expected at ITER due to the non-periodic distribution 
of TBMs.

Recent TBM experiments carried out in DIII-D [3, 4] using 
mock-up coils have shown that, whilst having little effect on 
the L-mode plasmas and a moderate impact (up to 20%) on 
particle and energy confinement in H-mode plasmas, the 
TBM coils do have a significant effect on plasma stability—
particularly on plasma flow damping and the subsequent 
mode locking in DIII-D. It is therefore of critical importance 
to investigate TBM-induced mode locking at ITER. It should 
also be mentioned that the vacuum magnetic field produced 
by the mock-up coils in DIII-D is about three times larger than 
that predicted by the ITER TBM.

Understanding the structure of the vacuum fields produced 
by FIs and TBMs is certainly an important first step. However, 
as has recently been realised, taking into account the plasma 
response to the 3D external fields may be crucial. This is useful, 
not just for understanding the modification (plasma shielding 
and/or amplification) of the field structure due to the plasma 
response, but also—and perhaps even more importantly—for 
providing better guidance in correcting these field errors, for 
understanding the potential mode locking induced by the low-
n components of these fields, and for further investigation of 
energetic particle losses in the presence of total 3D field per-
turbations, including the plasma response [5].

Various physics models have recently been developed 
and applied to model plasma response to external 3D fields.  
In particular, the ideal single fluid plasma response model has 
been used to guide error field correction at ITER (not including 
EFs resulting from FIs and TBMs, though) [6], and ideal/
resistive single fluid models have been successfully applied to 
simulate resonant magnetic perturbation (RMP) experiments 
in DIII-D [7–11], MAST [12], and ASDEX Upgrade [13].  
A magnetohydrodynamic-kinetic hybrid model has been 
shown to quantitatively reproduce the response of plasmas 
with pressure approaching, or even exceeding, the no-wall 
limit for the external ideal kink instability [14]. A two-fluid 
model has been assumed to compute the plasma response in 
DIII-D [15]. Successful comparisons have been made between 
various models and experiments [9].

In this work, we use the MARS-F/K/Q codes suite [16–
18] to model the plasma response due to ripples, FIs, TBMs, 
and for limited cases also with the inclusion of the fields 
from edge-localised mode (ELM) control coils. The plasma 
response to the ELM coils has previously been more system-
atically modelled for ITER [12, 27]. We shall consider four 
ITER scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 
9 MA steady state, and finally the 7.5 MA half-field helium 
plasma. Three issues are addressed: (i) the linear plasma 
response to various decompositions of the vacuum fields and 
of the different toroidal mode numbers n  =  1–6 for all four 

scenarios; (ii) optimal correction of the n  =  1 field errors 
due to FIs and TBMs, using the ITER error field correction 
coils (EFCC) for the 15 MA baseline scenario for the pur-
pose of avoiding mode locking; (iii) simulation of plasma flow 
damping due to the n  =  1 FI and TBM fields for the 15 MA 
plasma, using both the quasi-linear MARS-Q code, and the 
JINTRAC code [19] coupled to the MARS-F code.

Section 2 briefly describes the MARS-F/K/Q models, 
followed by discussions on the input data for the model-
ling—primarily the equilibrium specifications for four ITER 
scenarios—in section  3. Section  4 reports the systematic 
study of the linear plasma response for the four ITER sce-
narios from section 3. Section 5 reports the modelling results 
for the n  =  1 error field correction (EFC). Section 6 reports 
the MARS-Q and JINTRAC results on the plasma toroidal 
momentum confinement in the presence of the n  =  1 FI and 
TBM fields. Section 7 summarises the work.

2. The MARS-F/K/Q model for computing plasma 
response

We compute the linear plasma response in the framework of 
the single fluid, resistive MHD approximation. The plasma 
model, with a given toroidal rotation, φ̂= ΩRV0 , is thus 
described by the following set of equations:

ξ ξ φΩ + Ω = + ⋅ ∇Ωn Rvi ,EF( ) ( ) ˆ� (1)
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= ∇×j b,� (5)

where R is the major plasma radius, φ̂ the unit vector along 
the geometric toroidal angle φ of the torus, and Ẑ the unit 
vector in the vertical direction in the poloidal plane. ΩEF is 
the excitation frequency of the external (to the plasma) 3D 
field perturbations. In this work, these 3D fields, which are 
generally referred to here as the error field (EF), are caused 
by ripple fields, FI and TBM, as well as edge-localised mode 
(ELM) control coils. We assume that these 3D fields are 
generally dc fields, with Ω = 0EF . n is the toroidal harmonic 
number. For a linear response of axi-symmetric equilibria, 
we need to consider a single n only. The plasma resistivity is 
denoted by η. The variables ξ pv b j, , , ,  represent the plasma 
displacement, perturbed velocity, magnetic field, current and 
pressure, respectively. The equilibrium plasma density, field, 
current, and pressure are denoted by ρ PB J, , , , respectively.

The last term in equation (2) describes the effect of parallel 
sound wave damping [20], where κ is a numerical coefficient 
determining the damping ‘strength’. ( / )/∥= −k n m q R is the 
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parallel wave number, with m being the poloidal harmonic 
number and q being the safety factor. /=v T M2th,i i i  is the 
thermal ion velocity, with T M,i i being the thermal ion temper
ature and mass, respectively. The parallel component of the 
perturbed velocity is taken along the equilibrium field line. 
In this work, we assume ∥κ = 1.5, corresponding to strong 
sound wave damping, which has been shown to be adequate 
for modelling the low beta plasma response to external 3D 
fields [12, 13].

The external 3D field is normally generated by the source 
current, or an equivalent surface current jESC, located in the 
vacuum region outside the plasma

∇× = ∇ ⋅ =b j j, 0.ESC ESC� (6)

In this study, the source current is specified as a surface cur
rent, following a rigorous procedure as described in [21].

Note that for plasma response modelling, we also make 
use of the divergence-free condition for the total field pertur-
bation b in the plasma region, by replacing one of the equa-
tions in Ohm’s law (3) with ∇ ⋅ =b 0. This is to ensure that 
the field divergence-free condition is numerically enforced. 
The plasma/vacuum interface conditions are the continuity of 
the normal component of the field b, and the (total) perturbed 
pressure balance condition. The former is satisfied automati-
cally by solving for the total b field across all regions.

All the perturbed quantities are decomposed into Fourier 
harmonics along the toroidal and poloidal angles of the torus. 
For linear perturbations, we solve equations (1)–(5) for each 
toroidal harmonic n separately. For each given n, all the 
poloidal harmonics, however, couple together and need to be 
included in the solution at the same time. Along the radial 
direction, equations (1)–(5) are solved using the finite element 
method.

Details of the drift kinetic extension of the above model are 
described in [17, 22]. This is essentially an MHD-kinetic hybrid 
model, based on the so-called non-perturbative approach. 
The code implementation (MARS-K) benchmarking results 
were reported in [23] and validated against experiments 
[14, 24]. The quasi-linear extension, implemented to model 
the external-3D-field-induced toroidal flow damping of the 
plasma, was reported in [18]. Various momentum sink terms 
associated with 3D field perturbations, including the electro
magnetic resonant ( ×j b) torque, the neoclassical toroidal 
viscous (NTV) torque, as well as the torque due to Reynolds 
stress (REY), have been implemented into MARS-Q, bench-
marked [25] and validated [26].

The MARS-F/K/Q models have been extensively used to 
study the plasma response in DIII-D [7–11, 14, 28], NSTX 
[24], MAST [12, 26], ASDEX Upgrade [13], as well as 
ITER [27].

3.  Specification of ITER equilibria and 3D vacuum 
fields

The main input data for the MARS-F/K/Q modelling are (i) 
the plasma equilibria, and (ii) the external perturbed vacuum 
3D magnetic fields. In this study, four plasma scenarios are 

defined for ITER, as listed in table 1. For the baseline and the 
hybrid scenario, two phases are considered: the plasma cur
rent ramp-up phase and the current flat-top phase.

These four ITER plasma scenarios, which will be consid-
ered for the plasma response computations, are the 15 MA 
inductive scenario at Q  =  10 and at the full-field (5.3 T), at 
one time slice during current ramp-up (RU, with =I 12p  MA)  
and one time slice during current flat-top (FT); the  
12.5 MA hybrid scenario at full-field, at one time slice during 
current ramp-up ( =I 10p  MA) and one time slice during  
current flat-top; the 9 MA steady state scenario at full-field, 
at one time slice during the steady state phase. The half-field 
(2.65 T) and half-current (7.5 MA) scenario with the helium 
plasma, at one time slice during current flat-top. These equi-
libria were produced by the JINTRAC transport code [19].

Figures 1 and 2 show two examples of the equilibrium pro-
files for the 15 MA baseline scenario and the 9 MA steady 
state scenario, respectively. Both equilibria shown here are in 
the current FT phase. For the baseline plasma, the safety factor 
q95 is 3.23. The normalised plasma pressure is β = 2.04N . 
Transport modelling produces two toroidal rotation profiles, 
depending on the assumption of the Prandtl number Pr (the 
ratio of momentum diffusivity to thermal diffusivity). For the 
9 MA plasma, the q95 value is 5.84. The normalised plasma 
pressure is β = 2.87N .

In order to compute the plasma response, the external 3D 
fields caused by the toroidal ripples, FIs or TBMs, have to be 
properly specified and included in the MARS-F model. These 
vacuum fields, including additional (not small) contributions 
from the irregular neutral beam ports at ITER, are computed 
by a combined finite element using the Biot–Savart law inte-
grator method [29]. Based on these vacuum fields, a rigorous 
procedure, which is valid in a generic toroidal geometry, has 
been devised [21] to compute the plasma response fields. This 
procedure relies on computing the equivalent surface cur
rent (ESC), which is a current that produces exactly the same 
vacuum field inside a virtual surface (VS)—shown by the 
solid line in figure 3—as that of the external 3D field. Thus, 
the eventual plasma response computation is converted into 
the response of the plasma to the ESC.

The above ESC procedure is strictly valid only if the 
external field sources (e.g. the current source) are not per-
turbed by the plasma response. In our study, the external field 
sources (FI and TBM) are ferromagnetic, and therefore will 
eventually react to the pure plasma response field produced 
by the perturbed plasma current. This effect is neglected 
in this work, since, as will be shown later, the pure plasma 
response field is generally small compared to the applied 

Table 1.  Plasma scenarios considered in the study.

Scenario B0 (T) Ip (MA) Ref.# FT or RU

Baseline 5.3 15 10 470 Flat-top
10 060 Ramp-up

Hybrid 5.3 12.5 13 090 Flat-top
13 050 Ramp-up

Steady-state 5.3 9 10100 Flat-top
Half-field helium 2.65 7.5 10920 Flat-top

Nucl. Fusion 56 (2016) 066001
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vacuum external field for these ITER plasmas. It is possible to 
design a more involved procedure that takes into account this 
secondary effect, similar to the so-called backward coupling 
scheme as envisaged in [30, 31], where stability problems 
(instead of the response problem) were considered, and where 
the influence of the plasma response on the external structures 
(the conducting walls) is rigorously taken into account.

In this work, three contributions to the external fields (rip-
ples, FIs, TBMs) have mainly been provided as input data. The 
toroidal Fourier harmonics of these fields are then computed 
and analysed for each individual n-component. In particular, 
analysis of these input vacuum fields shows that the ferritic 
inserts do compensate, though only partially, the n  =  18 ripple 
field, as observed in figure 4. The peak amplitude of the field 
inside the VS is compared in the figure. Note that while com-
pensating the ripple field at n  =  18, the FIs also introduce 
other n-components to the vacuum field, though at a low level. 
The largest vacuum fields, with a broad toroidal spectrum, are 
generated by the TBMs.

4.  Plasma response to 3D fields by FIs and TBMs

In this section, we report and analyse the MARS-F plasma 
response computations for all four ITER scenarios as described 

in the previous section. Before showing the computed plasma 
response, we discuss two particular issues relevant to the 
plasma response computations.

4.1.  Plasma response at high n and computing magnetic 
field outside the virtual surface

The first issue is related to the plasma response for high-n 
vacuum field components, since both the ripple field and the 
TBM field contain rather high-n components, as shown in 
figure 4.

Using MARS-F, we computed the plasma response to  
the n  =  18 ripple field for the 9MA plasma. A comparison 
of the total field (including the plasma response) with that of 
the vacuum field shows almost no difference between these 
two fields. In order to ensure numerical convergence, we have 
included 280 poloidal Fourier harmonics (from m  =  −140 to 
140) in computing the plasma response of the n  =  18 field.

We identify two major reasons why the plasma response is 
weak for high-n harmonics. First, the largest modification that 
the plasma response brings to the vacuum field is for the reso-
nant Fourier harmonics of the radial field. These harmonics 
are essentially shielded by the plasma response (either ideal 
response leading to complete shielding, or the resistive plasma 

Figure 1.  Equilibrium radial profiles of (a) the safety factor q, (b) pressure normalised by /µB0
2

0, (c) plasma density normalised to unity at 
the magnetic axis, and (d) toroidal rotation frequency for the modelled 15 MA baseline plasma at the current flat-top phase.
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response with flow leading to partial shielding). However, for 
large n field components, the dominant poloidal harmonics, 
which are normally at low-m, are non-resonant and are thus 
not shielded by the plasma response. For the example shown 
in figure  5, all the harmonics with the m number below 23 
are non-resonant. The first resonant harmonic for this n  =  18 
radial field is m/n  =  24/18, since the qmin value is 1.3248 for 
this 9 MA plasma equilibrium. Since all the m  >  23 Fourier 
harmonics have a field at least three orders of magnitude lower, 
their contribution to the total field—even taking into account 
plasma-response-induced modification—is small. Second, the 
plasma is normally deeply stable with respect to the high-n 
kink mode. Therefore, the plasma-response-induced kink 
amplification, which is often observed in low-n RMP response 
modelling [10, 12, 13, 28], does not occur for high-n fields.

In fact, as will be shown later on, the plasma response is 
already relatively weak for the n numbers above 4 for all the 
plasma scenarios considered in this work. Therefore, in most 
of the work, we shall perform the plasma response computa-
tions for n  =  1 to 6.

Another important issue is how to obtain a total plasma 
response field which is valid in the whole computational 
domain. The ESC procedure, as devised in [21], only ensures 

that the plasma response is valid inside the VS. What we have 
realised, however, is that it is possible to rigorously obtain the 
plasma response in the whole domain even beyond the VS. 
The key idea here is to first compute and store the perturbed 
(3D) plasma currents as a result of the plasma response to 
the external fields. Next, the magnetic field produced by 
the perturbed plasma current is computed based on a proce-
dure equivalent to the Biot–Savart law. Finally, the plasma- 
current-perturbation-induced field and the original vacuum 
field, which can both be evaluated in the whole space, are 
combined to obtain the total response field. Examples of this 
new procedure are shown below.

4.2.  Plasma response for four ITER scenarios

The plasma response has been computed for all four ITER 
scenarios, with six plasma equilibria in total, as listed in 
table 1. For each equilibrium, the response is computed for 
each individual n  =  1–6 field component. For each equilib-
rium and each n, we separately compute the plasma response 
to the ripple  +  FI and ripple  +  FI  +  TBM fields. In addition, 
the plasma response to the ELM control coil currents is also 
computed for the 15 MA baseline scenario and the 9 MA 

Figure 2.  Equilibrium radial profiles of (a) the safety factor q, (b) pressure normalised by /µB0
2

0, (c) plasma density normalised to unity at 
the magnetic axis, and (d ) toroidal rotation frequency normalised by the on-axis toroidal Alfvén frequency for the modelled 9 MA steady 
state plasma.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

ψ
p

(a)

sa
fe

ty
 f

ac
to

r

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ψ
p

(b)

p
re

ss
u

re

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ
p

(c)

d
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

ψ
p

(d)

to
ro

id
al

 r
o

ta
ti

o
n

Nucl. Fusion 56 (2016) 066001



Y. Liu et al

6

steady state scenario—again for each individual n  =  1–6. For 
the RMP fields, the corresponding (optimal) coil configura-
tions are taken from [32]. Some of this response field data 
has been used for further investigation of the fast ion losses 
at ITER [5].

As an example, figure  6 plots the plasma response field 
(only the BR component along R at Z  =  −0.03 m is shown) 
for all n  =  1–6 components for the 9 MA steady state equi-
librium at FT. The ripple, FI and TBM contributions are all 
included. The addition of the TBM contribution normally 
results in a field several times larger than the FI field. It is also 
interesting to note that the plasma response is not very strong 
(compared to the corresponding vacuum field) when all fields 
are included. It turns out that the plasma response leads to a 
larger amount of vacuum field modification when the TBM 
contribution is absent. This shows that the poloidal spectrum 
of the applied vacuum field can significantly affect the plasma 
response. It is also evident that the pure plasma response (i.e. 
the fields produced by the perturbed plasma response cur
rents, shown in red) is already small compared to the applied 
vacuum field (shown in blue) for the n  =  4-component.

For the 9 MA equilibrium, which has high beta, we have 
also tested whether the drift kinetic effects from thermal parti-
cles can significantly modify the low-n plasma response. The 
kinetic effects include the resonances between the mode and 
the drift motions of bulk plasma particle species, including 
the toroidal precession of thermal ions and electrons, and the 
bounce (transit) motion of trapped (passing) thermal ions. The 
comparison, shown in figure 7, indicates that the drift kinetic 
modification is moderate for this ITER equilibrium for the 
n  =  1 and n  =  2 plasma response.

Figure 8 compares the n  =  1 plasma response for all six 
equilibria considered in this work. The plasma response 
appears particularly strong for the 7.5 MA half-field helium 
plasma scenario. This is associated with the strong core kink 
amplification effect of the plasma [12, 28].

4.3.  Sensitivity of plasma response to flow variation

Due to the well-known uncertainty in the transport prediction 
of the toroidal flow speed for ITER (one example is shown 
in figure 1(d)), it is important to verify whether the MARS-
F-computed plasma response is sensitive to the equilibrium 
flow. We choose the 15 MA FT plasma for this study. We 
consider the n  =  1 ripple plus FI fields only, since the plasma 
response yields a relatively larger amount of modification to 
the vacuum field in the absence of the TBM field.

Figure 9 shows the MARS-F-computed total response field 
while artificially scanning the whole flow profile obtained 
by the JINTRAC modelling assuming the Prandtl number of 
0.75, by a factor F, which varies between 0.1 and 2. The total 
response field does not significantly change when F varies 
within a factor of two along both ends. This also indicates 
that the difference between the two rotation profiles, shown 
in figure 1(d), should not strongly affect the computed plasma 
response. Indeed the MARS-F computations confirm that the 
plasma response is almost identical using these two flow pro-
files from figure 1(d).

However, the plasma response does significantly change if 
the flow speed is reduced by one order of magnitude, as shown 
in figure 9. Similar observations have been made by previous 
studies [10, 12].

4.4.  Evaluation of the Chirikov parameter

The magnetic islands and the Chirikov parameter are associ-
ated with the resonant 3D field perturbations. These islands 

Figure 3.  An example of the virtual surface (VS, solid line) where 
the normal component of the vacuum magnetic field is specified, 
plotted together with the plasma boundary shape (dashed line) and 
the test surface (dash-dotted line). Considered here is the 15 MA 
baseline scenario at flat-top, with an n  =  1 vacuum field.
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Figure 4.  Comparison of the peak amplitude of the vacuum field | |B  
inside the virtual surface for toroidal harmonics n  =  1  −  20 of the 
ripple field (dash-dotted), the ripple plus the FI field (solid), and of 
the total field (ripple  +  FI  +  TBM, dashed line). The 9 MA steady 
state plasma is considered here.
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are formed as a result of forced reconnection. The MARS-F 
resistive plasma response model enables us to compare the 
island width (and consequently the Chirikov parameter) with 
that of the vacuum approximation.

The MARS-F-computed radial field perturbation is decom-
posed in Fourier harmonics, in a PEST-like straight field line 
coordinate system

⎛

⎝
⎜

⎞

⎠
⎟

ψ
φ

=
⋅ ∇

⋅ ∇
Q

b

B
,

mn

p

eq
� (7)

where Q denotes the (m, n)th Fourier harmonic of the perturbed 
radial magnetic field b, and ψp is the equilibrium poloidal 
flux function, which also labels the radial coordinate r, with 

( )/( )ψ ψ ψ≡ − −r 00 p 0 . Note that here we have assumed 
that the equilibrium poloidal flux is ψ0 on the magnetic axis, 
and vanishes at the plasma edge. Beq denotes the equilibrium 
magnetic field and φ is the geometric toroidal angle.

As shown in the appendix, the width of the magnetic 
island, located at the rational surface q  =  m/n, can be evalu-
ated in general toroidal geometry as

ψ
=
∆
=w

r

a

Q

nS
4

2
,

0
� (8)

where ( / ) /≡S r q q rd d  is the magnetic shear, evaluated at the 
same rational surface.

Assuming that two neighbouring islands of width w1 and 
w2 are located at the minor radii of r1 and r2, respectively, the 
Chirikov parameter is conventionally defined as

( )/
σ =

+
| − |

w w

r r

2
.2 1

2 1
� (9)

In the following, we shall plot the Chirikov parameter for 
the ITER 15 MA scenario based on the computed plasma 
response. A similar investigation has been carried out for the 
9 MA case but not shown here. Before showing the results, 
we point out that the Chirikov parameter only provides an 

estimate of the field line stochasticity, induced by the islands 
overlapping. A more accurate knowledge is obtained by direct 
field line tracing (Poincare plot) using the computed plasma 
response field.

We have compared the computed Chirikov parameter under 
the vacuum field (ripple plus FI fields) assumption between 
the current ramp-up phase and the flat-top phase for the 15 
MA baseline scenario and for each of the n  =  1–6 toroidal 
components. As expected, the Chirikov parameter is generally 
larger for all ns during the RU phase. No single n component 
yields significant island overlapping, even near the plasma 
edge—the Chirikov parameter is always below 1.

As an example, figure  10 compares the Chirikov para
meter without (blue) and with (red) the plasma response for 
each n-component of the 15 MA FT case with the applied 
ripple plus the FI fields. Except for the n  =  6 case, the plasma 
response generally reduces the magnetic island width com-
pared to the vacuum island, and hence the Chirikov parameter 
as well. The reduction is significant towards the plasma core, 
but generally moderate near the plasma edge due to both 
higher plasma resistivity (lower thermal electron temperature) 
and slower plasma flow in the edge region. The amplification 
of the magnetic islands by the plasma response, shown here 
for the n  =  6-component, is also plausible—as has already 
been noted in previous studies [33, 34].

Combining all n-components yields a Chirikov parameter 
locally exceeding 1, as shown in figure  11. This is largely 
because more islands of different helicities now co-exist at 
very close distances. The Chirikov parameter, as a function of 
the plasma minor radius, thus shows rather irregular behav-
iour when combining together all the islands with different 
n-numbers. This complicates the judgement on the field line 
stochastisation near the plasma edge region. A better defini-
tion—rather than simply the Chirikov parameter—such as 
that defined in [32], would be more useful. The best way of 
judging field line stochasticity is probably still the Poincare 
field line tracing plot; nevertheless, figure  11 still quantita-
tively shows a clear reduction in the Chirikov parameter by 
the plasma response.

We also find that for a given n (n  =  3 and n  =  4 for ITER), 
the largest field perturbation comes from the ELM control 
coils (the RMP fields). On the other hand, the symmetry of 
the ELM coil distribution along the toroidal angle at ITER 
normally generates a narrow-band toroidal spectrum of the 3D 
field perturbation, compared to the rather broad spectrum (for 
n up to 20) generated by the ripples, FIs, and particularly the 
ITER TBMs.

5.  Error field correction using EFCC

5.1.  EFCC specification

In this work, we consider using the ITER error field correc-
tion coils (EFCC) to correct the 3D fields produced by the 
FIs and TBMs. The correction takes into account the plasma 
response as computed by MARS-F, following various EFC 
optimisation criteria.

Figure 5.  The logarithmic plot of the n  =  18 vacuum radial field 
amplitude versus the poloidal harmonic number m for the combined 
field from ripples, FIs and TBMs of the 9 MA case.
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The EFCC design, shown in figure 12, is taken from [35]. 
Each row consists of six coils, covering 60 degrees along the 
toroidal angle for the top and bottom rows, and 36 degrees 
for the mid-plane row. The upper limit of the coil current is  
10 kA, with 32 turns designed for the top and bottom rows, 
and 20 turns for the mid-plane row of the EFCC.

Here we shall consider the correction of the n  =  1 field 
component by three rows of the EFCC. This is motivated by 
the fact that the n  =  1 field component normally leads to the 
most severe consequences for mode locking. We shall con-
sider the EFC for the 15 MA scenario at the flat-top phase. 
Two studies, with and without the TBM contribution to the EF, 

shall be carried out. Here, by the EF we specifically refer to 
the combined fields from the ripple, the FIs, and/or the TBMs.

5.2.  Criteria for EFC optimisation

We shall consider various optimisation criteria, following a 
similar study that has been carried out for the MAST plasmas 
[21]. In particular, according to criteria A, we choose the 
EFCC currents such that the m/n  =  2/1 resonant component 
of the total field (EF  +  EFCC) vanishes at the q  =  2 surface. 
This choice is motivated by the fact that the mode locking 
observed in experiments is often associated with the 2 /1 

Figure 7.  The computed BR field (in Tesla), both real (solid) and imaginary (dashed) parts, along the major radius at the vertical position 
Z  =  −0.03 m, for the 9 MA steady state scenario at the flat-top phase and including (a) the n  =  1, and (b) n  =  2 field contributions from the 
ripple, the FIs, TBMs, as well as (the low-n side-bands of) the ELM control coils. (i) The vacuum field (black), (ii) the total response field 
assuming the fluid model (blue), and (iii) the total response field assuming the drift kinetic model (red) were compared.
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Figure 6.  The computed BR field (in Tesla), both real (solid) and imaginary (dashed) parts, along the major radius at the vertical position 
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Each of the sub-plots (a)–( f ), corresponding to n  =  1–6, respectively, shows (i) the vacuum field (blue), (ii) the response field produced by 
the perturbed plasma current (red), (iii) the directly computed total field valid within the virtual surface (black, in the major radius range 
between 4 m and 8.4 m in this plot), and (iv) the total field valid everywhere, by combing fields (i) and (ii).
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tearing mode. Two possibilities are considered: either the full 
cancellation of the vacuum EF only by the vacuum EFCC 
(further referred to as criterion AV), or that of the full field 
including the linear resistive plasma response to both EF and 
EFCC (further referred to as AP).

With criterion B, we minimise the net resonant electro
magnetic torque (the ×j b torque) acting on the whole plasma 
column, due to the plasma response to both the EF and the 

EFCC field. This is again motivated by the mode locking 
physics.

The third family of criteria, criteria C, is designed to mini-
mise various aspects of the 3D corrugation of the plasma 
surface as a result of the plasma response to 3D EF. This 
includes the overall peak displacement of the plasma surface 
(further referred to as criterion CA), the averaged value of 
the surface displacement (AE), the low-field side mid-plane 

Figure 8.  The computed n  =  1 BR field (in Tesla) contributed by the ripple, the FI and TBM fields, both real (solid) and imaginary (dashed) 
parts, plotted along the major radius at the vertical position Z  =  −0.03 m. Each of the sub-plots (a)–(  f  ) corresponding to (a) the 15 MA 
baseline scenario at flat-top, (b) the 12.5 MA hybrid scenario at flat-top, (c) the 9 MA steady state scenario at flat-top, (d ) the 15 MA 
baseline scenario at ramp-up, (e) the 12.5 MA hybrid scenario at ramp-up, and (  f  ) the 7.5 MA half-field helium scenario at flat-top, 
respectively, shows (i) the vacuum field (blue), (ii) the response field produced by the perturbed plasma current (red), (iii) the directly 
computed total field valid within the virtual surface (black, in the major radius range between 4 m and 8.4 m in this plot), and (iv) the total 
field valid everywhere, by combing fields (i) and (ii).
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(CI) as well as the maximal displacement near the equilibrium 
X-point (CX). This family of criteria, initially designed for 
correcting the EF in MAST plasmas [21], may also be of prac-
tical usefulness in ITER (e.g. to minimise the peak amplitude 
of plasma displacement, thus avoiding the plasma locally 
touching the first wall).

The actuators for the EFC optimisation are obviously the 
three rows of EFCC currents. Assuming that the n  =  1 cur
rents flowing in the upper, lower and middle rows are specified 
as ( ) ( )Φ ΦI Iexp i , exp iU U L L , and ( )ΦI exp iM M , respectively, we 
end up with a generally six-dimensional optimisation problem 
in the real space ( )Φ Φ ΦI I I, , , , ,U L M U L M . In order to simplify 
the problem, we shall fix certain parameters, and carry out 
most of the optimisation in two-dimensional sub-spaces. 
Such an approach not only simplifies the optimisation pro-
cedure, but also allows easy illustration of the robustness of 

the obtained optima. Even though a systematic investigation 
has been performed, we shall only report below the samples 
illustrating the key results.

5.3.  EFC optimisation results

For the first study, we choose three typical cases of speci-
fying the EFCC current amplitude: (i) = =I I IU L M, (ii) 
= =I I I2 2U L M, (iii) = =I I I2U L M. For each case, we 

assume the same toroidal phase for the upper and lower rows 
of coils, i.e. Φ = Φ = ΦU L , and independently vary the two 
phase parameters ( )Φ Φ, M . The assumption of Φ = Φ = ΦU L  
is not unique but representative. In fact, we have also made 
the optimisation assuming Φ = −Φ = ΦU L , but found that the 
optimal results are not sensitive to this.

Figure 11.  Comparison of the Chirikov parameters corresponding to all n  =  1–6 vacuum (blue) and total response (red) ripple  +  FI fields 
combined together for the 15 MA scenario at the flat-top phase, (a) in the whole plasma region, and (b) near the plasma edge.
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Figure 10.  Comparison of the Chirikov parameters, corresponding to each individual n  =  1–6 ripple  +  FI vacuum (blue) and total response 
(red) field for the 15 MA scenario at the flat-top phase.
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We adopt the following optimisation procedure: first, 
we run the MARS-F code to compute the plasma response 
fields (or the vacuum field for the vacuum-field-based cri-
terion AV) for each individual row of coils, assuming a unit 
current amplitude and zero toroidal phase. Next, we perform 
the superposition of the computed fields by linearly scaling 
each of the fields by the coil currents in the corresponding 
rows. The superposition is always valid for the linear plasma 
response. The EFC optimisation was carried out with or 
without the TBM field.

One example, based on the vacuum field correction crite-
rion AV, is shown in figure 13. Here, only the ripple and FI 
contributions are included. We fix the coil current amplitude 
at = = = =I I I I 10U L M  kAt, and vary the coil’s phasing 
in the 2D domain of ( )Φ = Φ = Φ Φ,U L M . The optimal point, 
Φ = °90  and Φ = °100M , is shown by the ‘  +  ’ symbol in the 
figure. Note that even though the optimal (corresponding to 
minimal /b2 1

1  amplitude) point is relatively robust, there is also 
a global maximal point at Φ = °90  and Φ = °280M  that cor-
responds to the worst correction of the n  =  1 vacuum island.

Taking into account the plasma response, however, signifi-
cantly shifts the optimal point, as shown by figure 14. The optimal 
coil phasing now becomes (Φ = Φ = ° Φ = °340 , 330U L M ). 
Also, note the significantly reduced field amplitude compared 
to the vacuum field shown in figure 13.

The next example also includes the TBM field contribution. 
The results, following optimisation criterion B, are reported in 
table 2, for various choices of combination for the coil current 
amplitudes. At each combination, the optimal EFCC current 
phasing is presented. Overall, it is interesting to note that with 
the inclusion of the TBM contribution, the optimal phasing 
for the middle row EFCC remains relatively fixed at around 
Φ = °300M , according to all but the vacuum criteria.

As an example, one optimum point from table  2, with 
= = = =I I I I2 2 18U L M  kAt, Φ = °120  and Φ = °300M , is 

shown by the ‘+’ symbol in figure 15. The negative value of 
the torque indicates the net ×j b acts to brake the plasma flow.

Next, we fix the EFCC current phasing and optimise 
the current amplitude. We choose two cases of specifying 
the EFCC current phase: (i) Φ = Φ = Φ = ΦU L M , and (ii) 
Φ = Φ = = ΦI0,U L M . For each case, we assume the same 
current amplitude for the upper and lower rows of coils, i.e. 
= =I I IU L , and independently vary the two amplitudes 

( )I I, M . We adopt a similar procedure to that described for the 
coil phasing optimisation.

Even though the optimum varies depending on the applied 
3D field configuration (with or without TBM), and on the 
chosen criterion for optimisation, an overall conclusion is that 
the dominant correction comes from the middle row EFCC for 
the ripple, FI and/or TBM fields. This is also evident from one 
example shown in figure 16 by the fact that the optimum point 
is much more sensitive to the middle row coil current than the 
top and bottom row EFCC currents.

6.  Flow damping due to FI and TBM fields

Here, we again choose the 15 MA baseline scenario at the flat-
top phase. We run the MARS-Q [18] code to model the time 
evolution of the toroidal flow, assuming the presence of (i) the 
ripple  +  FI fields, (ii) the ripple  +  FI  +  TBM fields, and (iii) 
the ripple  +  FI  +  TBM  +  RMP fields. As in the case of the 
EFC study (and following the same motivation), we consider 
only the n  =  1 external 3D fields. The MARS-Q model has 
been shown to well reproduce RMP-induced flow damping in 
MAST [26] for various n numbers. The code has also recently 
been applied to model flow damping due to the pure RMP 
fields (with n  =  3 and n  =  4) for one of the ITER 15 MA  
plasmas [27]. The flow damping modelling in this study 
always starts with an initial rotation profile obtained from 

Figure 12.  Location of the top, mid-plane, and bottom rows of the 
EFCC in ITER, plotted together with the plasma boundary shape 
(red) and the double vacuum vessel model (blue).
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the JINTRAC modelling, with the assumption of a Prandtl 
number of 0.5 (see figure 1(d )).

One peculiar aspect of the initial value modelling for this 
15 MA plasma is that this equilibrium with =q 0.95min  is 
unstable for the n  =  1 internal kink mode. Since MARS-Q 
does not have sawtooth crash physics incorporated into its 
code, we shall model two possible situations. The first is the 
flow damping in the presence of an unstable internal kink 
(i.e. before the sawtooth crash). Such a simulation will even-
tually lead to an unrealistically large amplitude of internal 
kink mode, which fully brakes the toroidal flow. The physi-
cally meaningful time period of the simulation corresponds to 
the stage where the amplitude of the internal kink mode still 
remains reasonably small.

The second situation is to model the flow damping after the 
sawtooth crash, where qmin becomes slightly above 1 and the 
internal kink mode is stable. Indeed, by slightly decreasing 
the total equilibrium plasma current, we can elevate the qmin 
to be slightly above 1, thus ensuring a stable internal kink 
mode. Table 3 lists the linear growth rate and frequency (both 
normalised by the on-axis toroidal Alfvén frequency) of the 
MARS-F-computed n  =  1 internal kink mode while scanning 
the qmin value near unity. The toroidal plasma flow is included 
in the computation. The mode becomes marginally unstable 
at =q 1.03min  and becomes stable at =q 1.04min . The real 
frequency of the mode matches that of the core plasma rota-
tion speed; in other words, the mode rotates together with the 
plasma.

We emphasise that changes to the original equilibrium are 
minimal in the scan listed in table  3. The largest change is 
in the q-profile, which is still minor, yet the stability of the 
internal kink changes, which affects the flow damping model-
ling by MARS-Q.

We have performed the MARS-Q modelling for several 
choices of q-profile shown in table 3. Figures 17 and 18 show 

and compare three cases for the perturbed resonant field 
amplitude and the net toroidal torques, respectively. All the 
n  =  1 3D external fields are included.

Higher qmin generally leads to slower growth of the plasma 
response field, until full saturation is reached when the internal 
kink mode becomes marginally unstable or stable. For the 
three cases shown in figures 17 and 18, the original equilib-
rium, with =q 0.95min , is most unstable for the n  =  1 internal 
kink—also agreeing with the computed linear growth rates of 
the mode shown in table 3. For such cases, the non-linear runs 
terminate after the resonant field perturbations at rational sur-
faces reach too large an amplitude (over 1 Gauss level) and 
the net toroidal torques become unrealistically large at a very 

Figure 14.  The amplitude of the m/n  =  2/1 total response radial 
field at the q  =  2 rational surface with varying toroidal coil 
phasing for the EFCC. The field is a combination of the plasma 
response to the ripple  +  FI fields and the EFCC field assuming 
= = = =I I I I 10U L M  kAt.

Figure 15.  The computed net ×j b torque acting on the whole 
plasma column, with varying toroidal coil phasing for EFCC. 
The torque occurs due to the plasma response to the combination 
of the ripple  +  FI  +  TBM fields, and the EFCC field assuming 
= = = =I I I I2 2 18U L M  kAt.

Figure 16.  The computed X-point displacement of the plasma 
surface with varying EFCC current amplitudes. The displacement 
occurs as the plasma responds to the combination of the 
ripple  +  FI  +  TBM fields, and to the EFCC field assuming 
Φ = Φ = Φ = Φ = °300U L M .
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short time scale (a couple of milliseconds). Within this time 
interval, the MARS-Q results show that the toroidal flow is 
not strongly affected. The linearly unstable internal kink mode 
eventually leads to the numerical crash of the simulation, in 
the absence of additional non-linear physics associated with 
the sawtooths in MARS-Q.

For the fully saturated solution (where the internal kink is 
linearly stable), the final flow is again found to be nearly the 
same as the initial flow (i.e. in the absence of 3D fields). We 
also find that the saturated amplitude for the resonant radial 
field harmonics remains well below the 1 Gauss level. This 
is due to the strong screening of the magnetic islands by the 
plasma flow in the plasma core region. The saturated toroidal 
torques are well below the 1 Nm level, even with the inclusion 
of the TBM field.

The periodic oscillations shown in figures 17 and 18 are 
related to the mode rotation. In fact, the estimated oscillation 
frequency from figure 17 recovers well the computed mode 
frequency shown in table 3. The oscillation frequency for the 
torques (figure 18) is roughly twice the mode rotation fre-
quency, as expected.

The inclusion of the n  =  1 RMP contribution from the 
ELM control coils almost does not affect the simulation 
results, for either the core flow damping or the net toroidal 

torques. This is because the ELM coils are configured to pro-
duce predominantly the n  =  3 field perturbation in this case. 
The n  =  1 side-band field is very small. The inclusion of the 
TBM contribution does significantly increase the torques by a 
factor of about 10, though the resulting damping is still gener-
ally too weak to substantially affect the plasma flow.

The MARS-Q modelling does not assume the equilibrium 
evolution. Moreover, we only model the change of the toroidal 
momentum due to the applied 3D fields (in our case the 
ripple  +  FI  +  TBM  +  RMP fields), by assuming that a steady 
state momentum balance (essentially between the momentum 
source terms and the momentum diffusion term) has already 

Table 2.  Optimal EFCC current phasing (in degrees) for correcting ripple  +  FI  +  TBM fields following the plasma-response-based 
criterion B.

= = =I I I IU L M = = =I I I I2 2U L M = = =I I I I2U L M

I(kAt) Φ ΦM T(Nm) Φ ΦM T(Nm) Φ ΦM T(Nm)

2 140 300 −2.6760 140 300 −2.7866 140 300 −2.9474
4 140 300 −1.9864 140 300 −2.1783 140 300 −2.4615
6 140 300 −1.4115 140 300 −1.6550 140 300 −2.0225
8 140 300 −0.9512 140 300 −1.2169 140 300 −1.6304
10 130 300 −0.6029 130 300 −0.8626 140 300 −1.2851
12 130 300 −0.3674 130 300 −0.5925 140 300 −0.9866
14 130 300 −0.2453 130 300 −0.4069 140 300 −0.7351
16 110 310 −0.2206 120 300 −0.3049 140 300 −0.5303
18 90 310 −0.2425 120 300 −0.2822 130 300 −0.3707
20 70 320 −0.2625 80 310 −0.3139 130 300 −0.2563
22 60 320 −0.2939 60 310 −0.3474 130 300 −0.1881
24 50 320 −0.3388 40 310 −0.4016 120 310 −0.1532
26 40 320 −0.3930 30 310 −0.4764 110 320 −0.1410
28 30 320 −0.4597 340 300 −0.5573 110 320 −0.1465
30 30 320 −0.5275 340 300 −0.6539 100 330 −0.1394

Note: Here Φ = Φ = ΦU L  and T is the minimal net ×j b torque for each choice of the EFCC current amplitude.

Table 3.  Linear growth rate γ and frequency ω of the n  =  1 internal 
kink mode for the 15 MA baseline plasma.

Case# qmin γτA ωτA

1 0.9488 3.671 91E-3 9.519 08E-3
2 1.0057 4.454 95E-3 9.356 99E-3
3 1.0100 3.998 06E-3 9.312 78E-3
4 1.0200 2.688 33E-3 9.193 79E-3
5 1.0300 1.030 62E-3 9.017 98E-3
6 1.04 <0 —

Figure 17.  Time evolution of all the resonant harmonics of 
the radial field perturbations, computed by MARS-Q for three 
sets of 15 MA baseline equilibria with =q 0.95min  (thin lines), 
=q 1.02min  (medium-thick lines) =q 1.03min  (thick lines), 

as a result of the quasi-linear plasma response to the n  =  1 
ripple  +  FI  +  TBM  +  RMP fields.
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been achieved before the application of the 3D fields. This 
allows us to avoid direct modelling of the momentum source 
term in the momentum evolution equation [18]. On the other 
hand, the JINTRAC code [19] does allow the direct model-
ling of both the plasma equilibrium evolution and the (time-
varying) momentum source terms such as the NBI torque. 

But JINTRAC does not compute the toroidal torques due 
to the 3D fields. Therefore, we wish to couple the MARS-F 
and the JINTRAC codes in the following sense. We first run 
MARS-F to compute the linear-plasma-response-induced 
toroidal torques, using the equilibrium and the flow speed as 
predicted by JINTRAC before the application of the 3D fields. 
The magnetic surface averaged torque densities due to the 3D 
fields then enter the JINTRAC transport simulation as addi-
tional momentum sink terms, and iteration between the two 
codes can be envisaged if necessary.

Figure 19 reports the final JINTRAC simulation results, 
with and without these additional torques. The predicted 
steady state flow profile, shown in figure  19(c), is almost 
not affected by the 3D-field-induced torques, confirming the 
MARS-Q findings from the previous section. There is only 
a slight change to the flow profile near the pedestal top. The 
results are probably not surprising if we compare the 3D-field-
induced torque with that produced by the NBI, as shown by 
figure 19(b). The NBI torque is much greater than the MARS-
F-computed torque due to 3D fields.

Due to the very weak effect of the 3D fields on the plasma 
equilibrium and toroidal momentum evolution, there is no 
need to carry out an iterative procedure between MARS-F and 
JINTRAC for the specific case considered in this work. Such 
an iteration may indeed be necessary for other cases where the 
3D-field- induced torque leads to significant modification of 
the plasma momentum confinement.

7.  Summary

We have carried out computations in toroidal geometry for 
the ITER plasma response to 3D magnetic fields for four sce-
narios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA 
steady state, and finally the 7.5 MA half-field helium plasma. 
For the baseline and hybrid scenarios, we also separately con-
sidered an equilibrium at the current ramp-up phase and an 
equilibrium during the flat-top phase.

The 3D external fields are generated by the toroidal field 
ripples, the ferritic inserts, the test blanket modules, the ITER 
error field correction coils, and in some cases also by the ELM 
control coils. Due to the broad toroidal spectrum of the FI 
and the TBM fields, we have computed the plasma response 
to various n-components of the applied fields. Since we find 
that the plasma response is very weak for high-n field comp
onents, this allows us to limit the plasma response compu-
tations mainly for lower-n components, namely n  =  1–6. We 
have established a rigorous procedure for computing the total 
response field which is valid in the whole space.

A sensitivity study of the plasma response computations 
against the toroidal flow variation shows that the plasma 
response is not sensitive to the toroidal flow, as long as the 
latter does not change by an order of magnitude. Based on 
the computed plasma response, we have also evaluated the 
magnetic island width and the associated Chirikov para
meter. In most cases, the resistive plasma response reduces 
the island width compared to that of the vacuum island, 
and consequently, reduces the Chirikov parameter as well. 

Figure 19.  The JINTRAC-modelled steady state radial profiles for 
(a) the thermal ion temperature, (b) the torque densities, and (c) 
the toroidal flow speed for the 15 MA baseline scenario during the 
current flat-top phase. Three torque densities are compared in (b): 
the NBI torque (red), the sum (blue) of all three torques due to the 
plasma response to 3D fields from ripple and FI, and the sum (pink) 
of all three torques due to the plasma response to 3D fields from 
ripple, FI and TBM. Three simulated steady state flow profiles are 
compared in (c): without the 3D-field-induced torque (red), with the 
torque induced by ripple and FI fields (blue), and with the torque 
induced by ripple, FI and TBM (pink).

Figure 18.  Time evolution of all three torque components 
computed by MARS-Q for three sets of 15MA baseline equilibria 
with =q 0.95min  (thin lines), =q 1.02min  (medium-thick lines) 
=q 1.03min  (thick lines), as a result of the quasi-linear plasma 

response to the n  =  1 ripple  +  FI  +  TBM  +  RMP fields.
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Despite the fact that each individual n-component results in 
a Chirikov parameter below 1, a combination of all ns can 
result in a Chirikov parameter locally exceeding this figure. 
The Chirikov criterion, though it may still be useful as an 
indicator for plasma edge field line stochastisation, may be 
quantitatively less useful when islands with different ns 
overlap. A better and more direct way to judge stochasticity 
is still the Poincare map. For a given n (n  =  3 and n  =  4 for 
ITER), the largest field perturbation, with an amplitude on the 
order of 100 Gauss, comes from the ELM control coils (the 
RMP fields). On the other hand, the symmetry of the ELM 
coils at ITER normally generates a narrow-band toroidal 
spectrum of the 3D field perturbation compared to the rather 
broad spectrum (for n up to 20) generated by the ripple, FI, 
and particularly the ITER TBM. However, the corresponding 
n  =  3 and n  =  4 components of these 3D broadband fields are 
about ten times smaller than the ELM fields. The amplitude 
of the TBM field is typically several times larger than that 
of the FI field. Therefore, most of the broadband 3D fields at 
ITER are produced by TBM components. On the other hand, 
the toroidal and poloidal spectra of the fields are different 
between these two components.

Based on the plasma response computations, we also per-
formed a study on optimal error field correction using the 
ITER EFCC, where the error field is assumed to be the n  =  1 
component of the ripple field, the FI and the TBM field. The 
study is made based on the 15 MA baseline case during the cur
rent flat-top phase. The EFC optimisations have been carried 
out using various optimisation criteria designed for an early 
study on the EFC in MAST [21]. The optimising parameters 
are both the amplitude and the toroidal phase of the EFCC 
currents flowing in the top, middle, and the bottom rows. The 
key finding is that the middle row of the EFCC plays the dom-
inant role in correcting the EF due to ripple  +  FI  +  TBM. At a 
fixed coil current amplitude, it turns out that about 300° is the 
optimal phase for the middle row of the EFCC current in order 
to correct all the 3D fields, including that of the (dominant) 
TBM contribution. This is robustly predicted by all but the 
vacuum-field-based optimisation criteria considered in this 
work, as well as by various choices of coil current amplitude.

Both the MARS-Q modelling and the JINTRAC model-
ling—to which the 3D-field-induced torques are provided by 
the MARS-F computation—show negligible flow damping by 
the n  =  1 component of all the 3D fields considered in this 
work for the 15 MA baseline plasma. In addition, MARS-Q 
modelling also shows that in the absence of an n  =  1 internal 
kink instability, the non-linear time evolution fully saturates 
after about 100 ms. The dominant torque is provided by the 
resonant electromagnetic torque. The JINTRAC modelling 
shows that the total torque due to all the n  =  1 3D fields—
even in the presence of the TBM field—is still at least one 
order of magnitude smaller than the NBI torque for the 15 MA 
baseline scenario.

Although not included in this work, we mention that sim-
ilar MARS-Q and JINTRAC runs have also been performed 
for the 9 MA steady state plasma, with very similar findings 
for the flow damping. The n  =  1 fields from FIs and TBMs do 
not provide appreciable change to the toroidal flow.
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Appendix.  Magnetic island width and Chirikov 
parameter

A.1.  Evaluation of island width in MARS-F coordinates

In MARS-F, PEST-like coordinates ( )χ φs, , , defining 
χ χ≡ +m nqmn  and δs as the variation of s of the 3D field line 
along the helical angle χmn, we have

δ
χ χ
∂
∂

=
⋅ ∇
⋅ ∇

s sB
B

,
mn mn

� (A.1)

where = +B B beq  is the total 3D magnetic field, and we 
shall only consider one resonant harmonic for the perturbed 
field b. In the MARS-F formulation, we have

⋅ ∇ = ⋅ ∇ = ≡χ−
−s s J Q Q bB b e , mn1 i

MARS F
1mn� (A.2)

( )χ χ χ φ⋅ ∇ ⋅ ∇ = ⋅ ∇ + ∇� m nB B Bmn mneq eq� (A.3)
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where ˆ ˆ/ψ ψ≡′ sd d , and we have used the fact that in the PEST-
like straight field line coordinate system,

/
ˆ /ψ

δ= +
′

′�q
F R

J
q q s.s

2

� (A.5)

Thus we have
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Finally we define the island width in terms of the normal-
ised minor radius s to be

ˆ ˆ

ˆ

δ
ψ ψ
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= | | = =
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w s

Q

n q

sQ

n qS

Q
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2 4 4

4
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2
,

max

0

�

(A.9)

where / /≡S s q s qd d  as calculated at the rational surface, and 
we have used the fact that ˆ ˆψ ψ=′ s2 0 .

A.2.  An equivalent approach for the evaluation of island 
width

Following [36], the island width, in toroidal geometry and in 
terms of the normalised poloidal flux ψ, is calculated as

δψ
ψ

ψ
ψ ψ

= = = =
−

Ψ′
′ψw

b

nq
q

q
4 ,

d

d
, ,mn p axis

0
� (A.10)

δ
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= − ⋅b
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B A m n B S
2
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mn

mn
0
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where ˆψ ψ πψΨ ≡ − = 20 sep axis 0. Note the factor of π2  here 
due to the special definition of the poloidal flux in MARS-F.

In terms of MARS-F variables, ˆ χ φ χ φ≡ = ∇J J sS nd d d d ds , 
we obtain

δ δ χ φ π= ⋅ ∇ =χ φ− +B A J s QBe d d 2 ,mn
m ni i 2∮ ( )( )� (A.12)

where as before, ≡ −Q b mn
MARS F
1 . Note that the factor of 2 in 

the definition of δB Amn  disappears due to the different Fourier 
representations for the perturbed field. We thus obtain

ψ̂
=b

Q
.mn

0
� (A.13)

Since ψ = s2, we have
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Substituting all the above factors into (A.10), we obtain the 
island width in terms of ψ
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Since ψ = s2, we have δψ δ= s s2 . Therefore, the island width 
in terms of s is

ψ̂
=w

Q
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2
,
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� (A.16)

which is exactly the same as that calculated in equation (A.9).
In case the island is generated by a combination of both the 

(m, n) and (−m,−n) resonant harmonics, the factor Q should 
be redefined as

[ ] [ ]= + =− −
− −
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A.3.  Chirikov parameter

The Chirikov parameter between two adjacent islands located 
at rational surfaces s1 and s2 is defined as

σ =
+
| − |

w w

s s2
.1 2

2 1
� (A.18)

This parameter can also be approximately defined for a single 
island, assuming a single n field perturbation. In this case, the 
distance ∆s between two adjacent rational surfaces is approxi-
mately calculated via

( ) ( )− = ∆′+q s q s q s.m m1� (A.19)
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A.4.  An asymptotic scaling of the Chirikov parameter at  
large n

Consider a large-aspect-ratio model for the perturbed vacuum 
field ψ̃= ∇b , satisfying
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Assuming ˜ ( )ψ ψ= θ+r e m kzi i , with k  =  n/R0, we obtain the 
modified Bessel’s equation
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where /≡x nr R0. The physically interesting solution is the 
modified Bessel function Im(x)
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At the small argument < +�x m0 1, we have
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At the large argument, we have

( )
π

�I x
x

e

2
.m

x

� (A.25)

We shall consider the large argument asymptote, assuming 
n is large. Assuming that the vacuum magnetic field amplitude 
scales as 1/n at the plasma boundary, i.e. Q(r  =  a)  =  1/n, 
where
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=Q r C
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The boundary condition gives / //= −C a R ne na R
0 0

0 , thus

( ) ( )= − −εQ r
n s

1 1
e ,n s10� (A.27)

where / /≡ ≡ε a R s r a,0 0 . Inserting the above equation  into 
(A.20), we obtain the large-n scaling for the Chirikov parameter

/ ( )/σ∼ − − −εs e ,n s5 4 1 20� (A.28)

showing that the Chirikov parameter decays exponentially at 
large n, basically due to the fact that the vacuum field ampl
itude decays exponentially with n.
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