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In tokamak transport barriers, the radial scale of profile variations can be comparable to a typical ion orbit
width, which makes the coupling of the distribution function across flux surfaces important in the collisional
dynamics.

We use the radially global steady-state neoclassical § f code PERFECT to calculate poloidal and toroidal
flows, and radial fluxes, in the pedestal. In particular, we have studied the changes in these quantities as the
plasma composition is changed from a deuterium bulk species with a helium impurity to a helium bulk with
a deuterium impurity, under specific profile similarity assumptions. The poloidally resolved radial fluxes are
not divergence-free in isolation in the presence of sharp radial profile variations, which leads to the appearance
of poloidal return-flows. These flows exhibit a complex radial-poloidal structure that extends several orbit
widths into the core and is sensitive to abrupt radial changes in the ion temperature gradient. We find that a
sizable neoclassical toroidal angular momentum transport can arise in the radially global theory, in contrast

to the local.
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I. INTRODUCTION

Transport barriers are regions in a magnetically con-
fined plasma with reduced cross-field turbulent transport,
which leads to steep gradients in density and tempera-
ture. Such formations have a major impact on fusion
plasmas, as they can enable fusion relevant conditions
to be reached in smaller devices. Thus, practically all
plans for future magnetic fusion experiments and reac-
tors include at least an edge transport barrier, commonly
known as the pedestal.

Since the discovery of transport barriers (the ELMy
H-model) there have been numerous studies®® indicat-
ing the crucial role plasma flows play in the transition to
improved confinement regimes. In particular, the equi-
librium flows have been experimentally observed to play
a crucial role in setting the transition threshold”. Thus
well resolved plasma flow measurements in the pedestal,
especially those of the main ion species, are highly de-
sirable for progress in the understanding of the barrier
formation.

However, the flows of fusion relevant hydrogen ions are
challenging to infer directly due to their involved emis-
sion spectrum, which complicates the use of standard
charge exchange techniques (see Ref. 8 for a recent ef-
fort to tackle these difficulties in DIII-D). Instead, flow
diagnostics often rely on measuring the flows of some im-
purity species, such as He?, BY and C*M from which
the deuterium flows are inferred. Yet another technique
is to measure the main ion flows in non-hydrogenic plas-
mas; this approach has been used with helium plasmas,
in DIII-D*2 and recently in ASDEX Upgradel.

a)Electronic mail: bstefan@chalmers.se

That being said, theoretical calculations are required
to relate these flows to deuterium flows. Specifically, it is
important to know how impurity ion flows relate to main
ion flows, and how the flows in helium and deuterium
bulk plasmas compare to each other. These questions
have previously been addressed with local neoclassical
predictions*13,  Such local calculations assume a scale
separation between the radial variations in plasma pro-
files and the orbit width, thus they are not necessarily ap-
plicable to the H-mode pedestal, where profiles can vary
significantly over an orbit width. It is in the pedestal
where flow measurements would be particularly interest-
ing in order to study the H-mode, and neoclassical effects
may be expected to contribute most strongly as a result
of the reduced turbulent transport.

To address these questions in relation to the pedestal,
we numerically investigate neoclassical flows in deu-
terium and helium plasmas, using the neoclassical global
df code PERFECT (Pedestal and Edge Radially-global
Fokker-Planck Evaluation of Collisional Transport ) 4.7,
The model profiles used here follow the approach
of Ref. 18 to capture features of experimental JET
pedestalst? in multi-species simulations, while remaining
within the validity of the § f theory.

Due to the radial coupling in the global theory, the re-
sulting fluxes are not divergence free within flux-surfaces.
Thus flows within flux surfaces should be considered to-
gether with the radial flows. This has been considered
as an explanation for poloidal impurity flow observations
in Ref. 20, although modeling of the radial-poloidal flow
structures was outside the scope of their study. In this
paper, we discuss radial transport alongside poloidal and
toroidal flows.

In we describe the radially global §f theory,
including constraints posed by our linearization about
a Maxwell-Boltzmann distribution. In we re-
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II GLOBAL §f DRIFT-KINETICS

late the assumptions presented in the previous section to
design choices in our numerical study, and present two
bulk helium scenarios based on different similarity as-
sumptions. Flows in both local and global simulations
are presented, and we find that the global poloidal flows
display notably larger poloidal and radial variations, with
odd-parity in-out structure, which is sensitive to changes
in the temperature gradient. Poloidally resolved radial
flows are then considered together with poloidal flows.
Finally, we consider the total radial transport of parti-
cles, heat and toroidal angular momentum. In global
simulations we observe order unity modifications to the
local particle and heat fluxes, both inside the pedestal
and a few orbit widths into the core. More importantly
the angular momentum flux can become significant in the
global simulations.

Il. GLOBAL ¢f DRIFT-KINETICS

Assuming that there is a sufficient scale separation be-
tween the gyroradius and the background profiles, and
excluding fast transients, collisional transport can be cal-
culated from the drift-kinetic equation (DKE)

%‘F(Uubﬁ-’vd) -Vf=C0C[f] (1)

The terms in the above equation are: f, the gyroaveraged
distribution function; v = v - b, with v the velocity,
b = B/B, with B the magnetic field and B = |B|; the
drift velocity vy — which we decompose into E x B and
magnetic drifts vq = vg + vy, U = vﬁQ*V x b+
v} (20B?)"!B x VB, vg = B2E x B; Q = ZeB/m is
the gyrofrequency, with e the elementary charge, Ze the
species charge; v, = v—wv) b is the velocity perpendicular
to b. C'is a collision operator — here the Fokker-Planck
operator. The gradients are taken with total energy W =
mv?/2+ Ze® and magnetic moment g = mv? /(2B) held
constant, where ® is the electrostatic potential.

To obtain a linear theory, we expand the distribution
function f around a flux function, stationary Maxwell-
Boltzmann distribution fas(¥), f = far + f1 + 0% fur),
f1/fa = O(9). Here 271 is the poloidal magnetic flux,
which we use as our flux-surface label; § is an expansion
parameter representing the smallness of the thermal ion
orbit width compared to the scale of the device, to be
defined more rigorously once we derive further validity
conditions for the linearization. In general, a physical
quantity X is decomposed as X = Xy + X;. From the
decomposition of the distribution function, it follows that
the zeroth order density ng and temperature Ty profiles
are flux functions; and that the total flow velocities in
the laboratory frame are much smaller than the thermal
speed of the species (i.e. “low-flow ordering”). In ad-
dition, we assume ®g = ®(¢). These assumptions are
made for the sake of convenience, and do not represent

an inherent limitation of the & f frameworK']
Defining the non-adiabatic part of f; as
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T
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we linearize to obtain

(06 +va0) - (V@ wou — Cilgl = —vm - (Vfar)wous (3)

where C is the linearized Fokker-Planck operator, Wy =
mv?/2 + Ze®y; ®; has been eliminated from the drift
velocity vgo = B~2B x V® + v,, and we have assumed
a steady state distribution, df/0t = 0.

We are now in a position to more precisely define our
expansion parameter . By construction, g/fa = O (§),
thus 6 measures the size of g. The size of g scales with
the inhomogeneous term on the right-hand side of ,
which can be approximated as™’

0 3/2  wo
o (hawon = om 96 | [(15) e ]
Wo
(4)

where Wy is a constant with respect to our derivative,
and we have introduced the pseudo-density

770(1)[}) _ nere@g/TO. (5)

(Henceforth, to streamline notation, the subscript “0”
will be dropped.) It follows from that only the tem-
perature and n gradients enter into the inhomogeneous
term in and thus set the size of g and act to make
the distribution function non-Maxwellian. To character-
ize the size of the gradients of a plasma parameter X we
introduce

I (6)

where p, = mup/(ZeB,) is the poloidal gyroradius,
with the poloidal magnetic field B,,, and thermal velocity
vp = \/2T/m; and Lx = —[d(In X)/dr]~! is the scale
length of X. Since the size of the departure from fj,
depends on the gradients in 77 and T, we can finally give
a conservative definition of our expansion parameter § as

ox () <1, (7)

= max
V; X=na,Ta

where a is a species index. In words, ¢ is the largest value
of the dx profiles corresponding to Ty, (¢) and n,(¢)) for
all species.

Note that while n and ® can vary on shorter length
scales if the corresponding 7 has a slow radial variation,

1 One possible generalization is to include order unity density vari-
ations on a flux surface, which naturally develop for impurities
in the pedestal?1H25 Such poloidal variations have been imple-
mented in the stellarator code SFINCS20%2T that shares a very
similar numerical framework to PERFECT.
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the DKE itself is based on an expansion in p/Lx =
(B,/B)¢ for all plasma parameters, so no plasma profile
may have gyroradius scale variation. We also require
B,/B <« 1 to ensure that the gyroradius and the orbit-
width expansions can be performed separately.

Equation is the global linearized drift-kinetic equa-
tion, from which the conventional local § f equation can
be recovered by dropping the vy - Vg term. The latter
is solved when we refer to “local” solutions. This corre-
sponds to ordering Vg = O (§fpr/L), meaning that the
radial variation of g — and thus the radial variation of
radial fluxes'® — appear at order (B,/B)d*nvr /L in (3).

Nevertheless, the radial variation of the fluxes is in
general not small in the presence of sharp background
profiles, and thus vy - Vg must be retained to model the
pedestal region. However, radially varying steady-state
particle fluxes are inconsistent with particle conservation,
unless they are compensated for by sources in the DKE
16.

These sources may represent real sources, due to
atomic physics processes, but could also include the ra-
dial variation of other fluxes — due to e.g. turbulence
— which are excluded from our modeling but needed to
cancel the radial variation of the modelled fluxes. We
thus add a source term S to and obtain

(vyb + va0) - (Vo) w,u—Cilgl = —vm - (Vfar)wu+S, (8)

which is the equation we solve when we refer to “global”
solutions.

The velocity and poloidal dependence of the sources
are specified to yield particle and heat sources, while the
radial dependence of these sources is solved for alongside
g by imposing that the perturbed distribution function
should have zero flux-surface averaged density and pres-
sure. This means that the zeroth-order input profiles are
flux functions, that is

Xo=(X)=(V")"'$X(B-VH)~ldo, (9)
V' = §(B-Vo)~lde, (10)

where 0 is an angle-like poloidal coordinate, and we in-
troduced the flux surface average, denoted by (-). In
this work, we assume that the sources have no poloidal
dependence, and have the same velocity structure as in
Ref. [I7.

I1l.  SIMULATIONS AND RESULTS

We consider a plasma with deuterium as bulk species
and helium as impurity, and a bulk helium plasma with
deuterium impurity, as two extreme cases of an ion con-
centration scan.

We would like to focus on differences in neoclassical
phenomena that are linked to the charge and mass of
the various ion components; our philosophy is thus to
minimize changes in the plasma profiles as the ion com-
position is changed. In reality, plasma with different ion

composition can have significantly diffrent profiles, for
reasons ranging from basic physical differences related
to mass and charge dependences of various phenomena“®
to more practical ones, such as differences in heating or
recycling?”.

Forgoing these complications, we consider two scenar-
ios, with profiles based on different similarity assump-
tions, which we refer to as constant ® and constant n..
The different names indicate which profile is kept fixed
in the quasi-neutrality condition,

ne = Zpnpe oMo 4 Zy e nec®/The - (11)

It is convenient to express this relation in terms of the
ion pseudo-densities and temperatures, as these are con-
strained by .

For the ion pseudo-density profiles we use linear pro-
files, with a slope based on the experimental JET outer
core n, profile of Figure 16 in Ref. [19; these core gradi-
ents generally satisfy the constraints posed by . Like-
wise, our ion temperature profiles were based on the
core temperature gradient of the same figure. In addi-
tion, we further reduce the ion temperature gradients in
the core to make a proxy for the local deuterium heat

flux, Qp ~ nDTS/ 28¢TD, equal at the boundaries. This
change in gradients both reduces the total heat and parti-
cle sources, when integrated over the simulation domain,
while it leads to a localization of sources around the
pedestal regionl?. We will discuss the effect of changes
in the temperature gradient in

The electron temperature profile is allowed to have
structure on the ion orbit width scale, and thus uses the
full temperature profile of Figure 16 in Ref.[19. We note
that, as a consequence, the electron flows are much larger
than the ion flows in absolute magnitude, and thus the
bootstrap current is dominated by the electron contribu-
tion. As a result, the constant n. similarity class keeps
the bootstrap current profile practically fixed. The elec-
tron density profile is calculated differently in the two
scenarios, but is in both cases allowed to vary on a scale
comparable to the experimental profiles.

In the constant ® scenario, ® is then chosen to make
np similar to the experimental ne profile. Finally, nye
is determined by ®, Ty;, and 7y,. Bulk D and He plas-
mas are obtained by rescaling the ion 7 profiles relative
to each other, which yields electron density profiles that
vary with the ion concentrations — while leaving ¢, unaf-
fected. Although n. varies, the ion profiles are re-scaled
to yield the same electron density at the pedestal top.

In the constant n. scenario, n. is instead specified from
the experimental n. profile, and ® is obtained from the
quasi-neutrality condition , and thus depends on the
helium concentration. Note that for a pure deuterium
plasma, the methods yield the same ®, and thus the
bulk deuterium simulations are approximately the same
in both similarity classes.

The pedestal usually extends outside the last closed
flux surface (LCFS), while our model is restricted to
closed field lines. We consider the region which would
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FIG. 1: Input profiles (a-d,f-1) used in the constant ®
scan (left column) and constant n. scan (right column),
and the collisionality (e,j) for the different species in the

simulations in which their density is highest. Solid:
electrons, dashed: deuterium, dash-dotted: helium.

Bulk species is deuterium (blue curves), or helium (red

curves), note that the curves overlap.

be in the open field line region as a numerical buffer re-
gion of the simulation. Such a region is introduced to
better accommodate the outer radial boundary condi-
tion imposed in the simulation: a solution to the local
drift-kinetic equation is imposed as boundary condition
where particles enter the radial domain. For the local
drift-kinetic equation to be valid, the density profiles in
the buffer region have artificially reduced, core relevant,
gradients. Since the results in the buffer region are not
necessarily physically meaningful, we do not show this
region in the figures.

The resulting input profiles are depicted in
for the constant ® and constant n. scan (left and right
columns, respectively). In both scans the blue profiles
are for bulk-deuterium plasmas (npe/np = 0.01) and red
lines are for bulk-helium plasmas (np/npg. = 0.01); solid
lines are electron profiles, dashed lines are deuterium and
dash-dotted lines helium. As a radial coordinate we use

wo — " ;{:}7 ’lpLCFS ; (12)
<BTOW> VeTpmp/e

which is the poloidal flux normalized and shifted so that
1° = 0 at the LCFS and a unit change of %° corre-
sponds to a typical trapped thermal ion orbit width at
1; € is the inverse aspect ratio (defined as in Miller

geometry??). The last subfigures in depict the

species self-collisionalities

~ Vaa QRO 6371(1 InA
Vga = = T o (13)
vp/qRo  12m3/2 €172

in the simulations that yield the highest collisionality for
the specific species: pp and 7, are given for the bulk
D plasma, and .y, is given for bulk He. Here, ¢ is
the safety factor, Ry the major radius at the magnetic
axis, and v4, the self-collision frequency of species a1,
Since 7,4, < 1, all our simulations have all species in the
banana regime — with the bulk helium plasma being an
exception, where Dgepe =~ 0.5.

In the following figures, curves are color coded as in as
in[Fig. 1] to indicate ion composition. In addition, dashed
lines indicate output from local simulations, and solid
lines are global results. The same color and line styles
are applied to the frames of 2D plots. The following nor-
malization is used throughout the paper. Quantities with
a hat are normalized to a species-independent reference
quantity X = X/X. The reference quantities used in
this work are: R = 3.8m, B = 2.9T, n = 10*m~3,
T = ed = 1keV, m = mp, where myp, is the deuterium
mass. These numbers are based on “typical” quantities
for JET, and only affect the normalization of the results.
From these, we define a reference speed as v = /27T /m,
and the dimensionless constant A = mwv/(eBR), which
corresponds to a normalized gyroradius at the refer-
ence quantities. Specifically, we have: fluid flow veloc-
ity V.= V/(A®); sources S, = EQRSG/(Aﬁmg/Z); flux
surface incremental volume V' = (B/R)d,V, particle
flux, r, = fd?’vgavma/(m_)); toroidal momentum flux
(divided by mass), II, = [ d*vg,v|[vya/(R0?RB), with
1(v)) = RBy, R the major radius and B, the toroidal mag-
netic field; heat flux, Q, = [ dPvgamav® V. (2T10);
conductive heat flux, G, = Q. — (5/2)Tf‘a. In addition,
we define the normalized scalar radial particle flux

. \d

Lo = m(ra Vi), (14)

and analogously, scalar fluxes for heat and momentum.
When comparing poloidal and radial fluxes (as in7
it is convenient to instead project the radial fluxes on
a unit vector, in which case we use T'y - ¢, with ¢ =
Vi /(RBp) being the unit vector in the Vi-direction.

A. Flows

First we study the radial and poloidal structure of the
particle flows. As we will see, the flows in global simula-
tions exhibit qualitatively different features from the lo-
cal results. In local theory the flows should be divergence-
free on each flux surface in isolation. This is broken in the
global case where radial flows play an important role in
making the total flow divergence-free. Before discussing
the flows in the constant ® and constant n. similarity
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classes, we express the toroidal and poloidal flows, V;
and V},, in terms of g,

B, 3 T [p  Zed']
=—= ——1IB, |—
Vo nB /d vUNg mBQ ' | p + T | (15)
IB, IB, 0
q)/ d3 p > d3 2
:E / VIt 5. B0 o0 / vvLy
By 3 T . [P Zed
= - ——B i
Vi nB/d vU||g 5O pR K + T | "
BgR(pl/dS BgR d3 2
T B2 Y onBaay | C U

where a prime denotes a 1 derivative and p = nT. The
above expressions are accurate to first order in 6B,/B,
and thus include corrections due to the gyrophase depen-
dent part of the distribution function f ~ —p-V f, where
p = Q7 'bx v, is the gyroradius vector. In the global
theory, f contributes with a —p - Vg term, which gives
the additional corrections to the diamagnetic and E x B
flows on the second rows of the above equations. Equa-
tion was calculated in Ref. [T6] (note that g in Ref.
is defined differently), and is calculated analogously.
We note, that while all terms are comparable in , the
global corrections to V; are small in B,,/B compared to
the usual expression (the first line of ); nevertheless,
we keep them for completeness.

Since all the terms in V), are proportional to B,/B, we
factor out this trivial poloidal dependence and define the
poloidal flow coefficient

_ Ze(B?) [(dTy\ !
W= "Tp, (@) " ()

which reduces to the conventional flux function parallel
flow coefficient in the local limitt® (assuming the lowest
order distribution to be a flux function).

1. Constant ® profile flows

Using — and the constant ® input profiles in
Fig. 1, we obtain the ion flows, k, and Vi, displayed in

1g. 2

For the toroidal flows — even though the terms in the
second line of are negligible — global effects have an
impact through the modifications to g. Comparing the
global toroidal flow results, [Fig. 2h,b,e and f, to the cor-
responding local ones, [Fig. 2¢,d,g and h, the most strik-
ing difference is that close to the LCFS the toroidal flow
changes sign at the high-field side (HFS, § = 7). As
a general trend seen at all poloidal locations the global
toroidal flows are elevated in the core plasma, and re-
duced in the pedestal.

The poloidal flow coefficients are flux functions in the
local case, as seen in[Fig. 2k,l,0 and p. However, the cor-
responding global results exhibit complex radial-poloidal

Vi,p/(kms™1)
0 10 20
—

Vi He/ (km s7h)

30 10 20 30

0
[ ==

1.0 b

FIG. 2: D and He toroidal flows (a-h) and poloidal flow
coefficients (i-p) for bulk deuterium (a-d, i-1, blue) and
bulk helium (e-h, m-p, red) plasmas, in the constant ®
scan. Dashed frames (c-d, g-h, k-1, 0-p) are local results.

features, shown in[Fig. 2},j,m and n. In particular, signif-
icant poloidal variations appear in the flows, that include
sign changes.

The high field side (HFS, 6 = 7, thick lines) and low
field side (LFS, # = 0, thin lines) toroidal and poloidal
flows are shown in [Fig. 3h-c and d-f, respectively. The
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FIG. 3: Toroidal (a-c) and poloidal (d-f) flows at the
LFS (0 = 0, thin lines) and HFS (thick, 6 = 7), in the
constant ® scan. Main species is deuterium (blue lines)
or helium (red). Solid (dashed) lines correspond to
global (local) results.

electron flows are mostly local due to their small orbit
width and our low flow ordering. However, for ions,
changing from local (dashed lines) to global (solid lines)
simulations leads to important changes. For instance,
in the global case, while the LFS toroidal flows mono-
tonically increase for both ion species throughout radial
range plotted, their HFS counterparts decrease in the
pedestal, and even change sign for deuterium. On the
other hand, for a given ion species, the effects of chang-
ing its role from bulk to impurity are rather small, and
they are similar in the global and local simulations (blue
curves: D bulk; red: He bulk). In the weakly collisional
limit of the local theory, even those flow contributions,
which are ultimately caused by collisions, become inde-
pendent of collision frequency. The observed weak vari-
ation with changing ion concentration seen here is the
result of these cases not being asymptotically collision-
less and due to inter-species coupling (as confirmed by
simulations with artificially increased collisionality, not
shown here). This feature remains valid in the global
case as well.

2. Constant n. profile flows

In contrast to the constant ® scenario, in the constant
n. scenario both ® and the ion density profiles change
with ion composition, which is expected to be reflected
in the ion flows. Since these profile changes are limited
to the pedestal region, this is where corresponding effects
are expected in the local theory. All modifications to lo-
cal flows outside the pedestal are the result of changes in
collisionality, and thus should be similar in the two simi-
larity classes. In global theory the effect of the changes in
the pedestal profiles will propagate outside the pedestal
due to the radial coupling of g. It is important that, al-
though in the pedestal ® and the ion density gradients
change in the scan, the n gradient is not changed due
to the construction of our model profiles. This means
that any differences observed are not due to changes in
Oy fur, but due to changes in the finite orbit width effects
(the magnitude of the radial electric field is reduced with
increasing He concentration).

The flows depicted in [Fig. 4] and [Fig. 5| do not reveal a
striking variation with plasma composition.

If we compare the LFS ion flows in the pedestal (thin
lines, sub-figures: a-b, d-e; at ¥° = 0) in to the
corresponding constant ® figure, we indeed see a
stronger effect of exchanging bulk and impurity species,
although the two different scans produce curves with the
same qualitative features. On the other hand, the HFS
flows are not affected as strongly. Overall, the effect of
changing the helium concentration is small in both scans.
Thus, for our low collisionality, slight variations in den-
sity profiles do not matter much. The similarities be-
tween the two scans can also be verified by looking at
the full poloidal dependence of the flows, shown in
for the bulk helium simulation.

Since we have established that the electron dynamics
is not too much affected by our low-flow ordered ions,
and the n. profile is held fixed, we expect the poloidal
electron dynamics to exhibit only a modest change in
the scan. Comparing the differences between the bulk
D (blue) and bulk He (red) curves in between
and [Fig. 3f, we find that this is indeed the case. On the
other hand, the toroidal flow of electrons changes in the
constant n, scan, as the radial electric field varies with
ion composition.

3. Interplay of the poloidal and radial dynamics

In the global simulations we found that the poloidal
flow can change sign between different poloidal locations.
This is possible because the divergence of the radial flux
can make the total radial-poloidal fluxes divergence free.
(We use the term “flux” instead of “flow”, because the
radial variation of the density is not negligible in our
simulations.) It is therefore instructive to consider the
full radial-poloidal structure of the fluxes. shows
a stream plot of the fluxes in the poloidal and radial
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FIG. 4: Toroidal (a-c) and poloidal (d-f) flows at the
LFS (6 = 0, thin lines) and HFS (thick, § = x), in the
constant n, scan. Main species is deuterium (blue lines)
or helium (red). Solid (dashed) lines correspond to
global (local) results.

directions overlaid on top of the poloidal flow coefficients,
for the same case as shown in[Fig. 2},j. To account for the
vastly different length-scales in the V6 and V1) direction,
the fluxes are normalized to typical pedestal and poloidal
lengths, specifically (T" -4 /(Ar), T - 0/(27a)), where Ar
is the pedestal width in meters, a the minor radius on
the outboard side and € and ) are unit vectors in the
VO and V4 direction, respectively.

As seen in the lower panels of the dynamics
of the local simulations is rather simple: the small ra-
dial fluxes are superimposed on weakly varying poloidal
fluxes. In contrast, in the global simulations we find a
much richer pattern of fluxes, with stagnation points and
vortices in the radial-poloidal plane. Sufficiently far from
the pedestal region the flows approach their local behav-
ior. The more complex radial flow patterns are not com-
pletely localized to the pedestal, but extend a few orbit
widths into the core region, which is more visible for the
deuterium species.

The vortices in depend on the values of radial
and poloidal fluxes, and are thus sensitive to the slight
shifts in flows observed by changing plasma composition.
To only consider the spatial variations of the fluxes, we
evaluate the vorticity, defined as
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FIG. 5: Toroidal flows(a-d) and poloidal flow
coefficients (e-h) in a bulk helium plasma similar to
Fig. 2{e-h) and (m-p), but for constant n, profiles.
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FIG. 6: A stream-plot of fluxes in the radial-poloidal
plane, overlaid on a color map of the poloidal flows, in a

bulk deuterium plasma. Deuterium (a,c) and helium
(b,d) species in global (a-b) and local (c-d) simulations.
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The vorticities corresponding to are displayed in
[Fig. 7 Just like the flows, the vorticities are largely unaf-
fected by exchanging bulk and impurity species, and both
helium and deuterium display similar structures. In par-
ticular, both species display “V”-like arms of high vortic-
ity in the pedestal. The apparent differences between the
He and D flows in may be due to constant flows
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FIG. 7: Deuterium and helium vorticity (defined in

(18)) for bulk deuterium (a-b, blue) and bulk helium

(c-d, red) plasmas, from the global simulations in the
constant ® scan.

that mask the radial and poloidal variations, which are
more sensitive to global physics. Similarly, sloped vor-
ticity structures extend from the pedestal into the core,
and reveal global effects reaching far into the core. It is
interesting to note that the slope of the arms is different
between the different species, so that the helium vortic-
ity structure extends over all poloidal angles within the
width of the pedestal. This behavior is consistent with
helium flows approaching their local values sooner due to
a smaller orbit width.

The divergence of the radial fluxes is strongly affected
by a radial variation in the diamagnetic flux, and thus
it is expected that radially global flow effects are local-
ized to regions where the density or the driving gradi-
ents abruptly change. For our model profiles, the density
drops inside the pedestal, and the ion temperature gra-
dient rapidly increases at the pedestal top (as expected
in a real pedestal). In order to demonstrate the effect
of the location of changes in diamagnetic flow strength,
we modify our ion temperature profiles. In a scan, we
increase the radial length scale over which the logarith-
mic temperature gradient transitions from its core value
to its pedestal value; see the corresponding temperature
profiles and logarithmic gradients in (transition
length scale increases from violet to yellow).

Increasing the transition region has a twofold effect:
the transition becomes less abrupt, and the effective loca-
tion where the transition happens moves further outside
the pedestal. As a result, the radially global effects in the
flow structure become weaker and start to extend further
away from the pedestal, as illustrated in We also
consider a temperature profile with no transition region
(red curve) in [Fig. 8 and [Fig. 9¢ and h. This shows
much weaker, but still visible, deviations from the local
simulation in terms of flow patterns. However we have
to interpret the “no-transition” results carefully, since in
this case the sources were non-negligible even close to
the radial boundaries. Nevertheless, it also underlines

transition length doubled; yellow, transition length
tripled; red, no transition in temperature gradients.

the importance of the changes in the ion temperature
gradient in driving unexpected poloidal flow patterns.
Finally, we consider the poloidal structure of the
poloidal flows in the middle of our pedestal region for
the various temperature profiles of The poloidal
flow coefficients at ¢° = —0.563 are shown in[Fig. 10| with
the same color coding. For the baseline case (violet line)
there are substantial poloidal variations of &, for both ion
species, being higher (or more positive) on the HFS, and
lower (more negative) on the LFS. The variation is not
sinusoidal, and the local maxima and minima (several of
them) appear at poloidal locations away from the mid-
plane. With increasing transition length (cyan and yellow
curves), the poloidal variation becomes milder, while the
minima move to the outboard mid-plane and merge, and
the maxima move towards the upper and lower parts of
the flux surface. In the no-transition case (red curve),
the poloidal variation is weak, but still present, and the
global value of &, is lower than the local one. For elec-

trons (Fig. 10c), the poloidal flows essentially remain lo-
cal (note the magnified y-axis scale).

B. Constant ¢ radial flows and fluxes

To get a clearer picture of the effects of helium concen-
tration on transport, we calculate the total radial parti-
cle, conductive heat and toroidal momentum fluxes in
the constant ® scan. These are displayed in
normalized by the core species density ng to assist the
comparison of the trace and non-trace scenarios.

From we can make a few general observations.
Firstly, the electron fluxes are practically local by virtue
of their small orbit width and large flows, so the elec-
tron global and local curves almost overlap (except for
the momentum flux [Fig. 11f, which has no physical rele-
vance as it is small in the electron-to-ion mass ratio — we
show it nevertheless for completeness). Since electrons
are often omitted from neoclassical simulations, it de-
serves mention that they can develop a substantial parti-
cle flux inside the pedestal. This is the result of the large
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FIG. 9: Foreground: stream-plot of the deuterium and

helium fluxes in the radial-poloidal plane. Background:

k,. (a-b): Baseline temperature profile in (c-d):
transition length doubled; (e-f): transition length
tripled; (g-h): no transition. D (a,c,e,g ) and He
(b,d,f,h) ion species in a deuterium bulk plasma.

FIG. 10: The k, corresponding to [Fig. 9a,c,e and g, in
the middle of the pedestal (¢° = —0.563) for local
(dashed lines) and global (solid) simulations.

electron temperature gradient, and it is also present in
local simulations.

Secondly, as seen in [Fig. 11h-b and [Fig. 11{d-e, the
global ion fluxes in the near-pedestal core tend to be re-
duced compared to the corresponding local fluxes. Mod-
ifications to the ion heat flux compared to the conven-
tional local theory have been predicted by analytical
models32 B3 retaining the vy - Vg term, however in our
simulations the radial coupling from the wv,, - Vg also

g 1.6 | _ / N\ 1He
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FIG. 11: Particle (a-c), heat (d-f) and momentum (g-i)
fluxes for bulk D (blue curves) and He (red) plasmas in
the constant ® scan. Solid (dashed) lines are global
(local) results.

plays an important role in setting the radial fluxes. Here,
the modifications are especially notable for the particle
fluxes [Fig. 11h-b, which change sign compared to the lo-
cal results in the near-pedestal core. The width of the
affected region scales with the orbit width and is thus
larger for D then He; accordingly, the fluxes reach local
values further away from the pedestal in the D plasma.
Such “overshoot” behavior is also seen in the momen-
tum fluxes [Fig. 11p-h, which instead are increased in the
near-pedestal core compared to their local value (that is
7€ero).

The flux surface average species-summed toroidal an-
gular momentum balance states that the named quan-
tity changes in time due to a divergence of the radial
momentum transport (~ dy >, mell,), a torque corre-
sponding to any radial currents (~ 3", Z,I4), or momen-
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FIG. 12: Current (a) and total heat (b) and
momentum (c) flux, for bulk D (blue curves) and He
(red) plasmas in the constant ® scan. Solid (dashed)

lines are global (local) results.
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FIG. 13: Total momentum flux in normalized
to be a proxy for the effective Prandtl number in the

pedestal (19), for the constant ® scenario.
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tum sources. In our steady state simulations these three
contributions should add up to zero. However, in the cal-
culations presented here there are no momentum sources,
thus any momentum transport requires the existence of
a radial current. This is indeed the case: and ¢
show the corresponding finite radial currents and toroidal
angular momentum transport, respectively. (Recall that
we do not enforce the ambipolarity of fluxes, and the ra-
dial electric field is not solved for in our simulations —
but is an input — while the flows are outputs.) This ex-
plains why the particle fluxes are below the local values
on one side of the pedestal, and above on the other side:
the current must integrate to zero over the entire do-
main for the momentum transport to approach its local
value (i.e. vanish) far from the pedestal. We note that
although there are non-intrinsically ambipolar processes
in the pedestal which could balance our radial currents
(due to orbit losses, ripple fields, etc.), the radial cur-
rent we observe is caused by not allowing for momentum
sources. We observe that allowing for momentum sources
can modify radial currents; a detailed analysis of which
is left for another study.

From |[Fig. 12f, we see that the total momentum flux
has roughly the same peak value in both D and He plas-
mas, although the shape of the curve is wider in the
bulk deuterium simulation, again due to the larger orbit
width. We emphasize that the finite momentum trans-
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FIG. 14: The total heat flux in [Fig. 12p divided by nZ.

port observed here is purely a radially global effect. In
local theory the momentum transport is a small, higher
order quantity. When dx is not small for all input pro-
files X, momentum transport is not small in general. To
demonstrate that the magnitude of the momentum trans-
port we observe can be experimentally relevant, we nor-
malize the momentum flux so that it becomes a proxy
for the effective Prandtl number in the pedestal®S

(19)

i = S i, { 2ideli L

a GA Mmidy <<Vt1>ﬁ1)
ped

The expression with the “ped” subscript is evaluated in
the middle of the pedestal (¥)° = —0.563), and “i” de-
notes the bulk ion specie This II* is displayed in
for the constant ® simulations. We find that the
effective Prandtl number reaches about 0.35 and 0.24 for
D and He bulk plasmas, respectively. This is compara-
ble to experimentally observed effective Prandtl numbers
in the plasma core of JET#0 and KSTAR3®. Since ex-
perimental ion heat transport can be comparable to the
neoclassical predictions in a pedestal??, assuming that
our results extrapolate to large temperature gradient, we
may expect finite orbit width effects to significantly con-
tribute to the total momentum transport in a pedestaﬂ
Next we consider bulk species effects on the total neo-
classical conductive heat flux, shown in[Fig. 12p. Its peak
value is reduced by a factor 4 when going from a deu-
terium to a helium plasma. This is consistent with the
q o< n? scaling from the local banana-regime analysis®!,
and compensating for this scaling yields where

the different simulations have similar peak values.
We also observe that the helium heat flux is lowered

compared to local predictions (Fig. 11p), whereas the
deuterium heat flux is comparable to the local values

Fig. 11d). This is due to the fact that the orderings

make the helium density pedestal sharper than the
deuterium density pedestal, which results in a lower ny,
further out in the pedestal, and thus a reduced heat flux,

2 Note that Ref. [36] defines the momentum flux in terms of muy,
with v; being the toroidal velocity, while we use toroidal angular
momentum over mass Ruvy.

3 Charge-exchanging neutrals coupled to the neoclassical ion dis-
truburion is another mechanism where collisional physics is rel-
evant to the momentum transport in the edgef®41,
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from ¢ o< 7%. Since the ion heat fluxes in the global sim-
ulations peak further out compared to the local simula-
tions —e)7 the global peak values of ¢ are also af-
fected by the reduced ny, in the buffer region, which may
be a contributing factor to the reduction of the global g,
compared to the local value.

IV. CONCLUSIONS

We have studied finite orbit width effects on the neo-
classical toroidal and poloidal flows and cross field fluxes,
in density pedestals of deuterium-helium mixture plas-
mas. In a radially global treatment we allow for ion or-
bit width scale radial density variations and strong radial
electric fields, as long as the ions are electrostatically con-
fined and are characterized by subsonic flow speeds. The
deuterium-helium ratio scans were performed keeping ei-
ther the electrostatic potential variation or the electron
density profile fixed, lead to surprisingly similar results.

The perturbed neoclassical distribution is modified
compared to the radially local treatment, since magnetic
and F x B drift contributions to the advection of the per-
turbed distribution need to be retained. In addition, non-
standard terms appear in the expressions for the flows,
corresponding to an E X B advection of poloidal den-
sity perturbations and, more importantly, to the radial
variation of diamagnetic fluxes. The resulting poloidal
flows exhibit complex radial-poloidal features which vary
on a small radial scale, including poloidal sign changes of
the poloidal flow. The main reason is that the poloidally
local radial particle fluxes are not divergence free in iso-
lation due to the sharp profile variations, which require
poloidal return flows to make the total fluxes divergence
free. Such flow structures are found to be sensitive to
abrupt radial variations in the ion temperature gradient,
and can extend quite far into the core if the ion temper-
ature gradient transitions between its core and pedestal
value on a long radial scale.

The near-pedestal core values of the global neoclassical
particle and conductive ion heat fluxes are often reduced
compared to the local results, as a result of an overshoot
of decreased fluxes away from the pedestal. Inside the
pedestal the heat fluxes are mostly reduced compared to
their local values.

We observe a finite radial current: this arises as no
momentum sources were included in these simulations.
However it can also represent a physically meaningful
charge separation process due to finite orbit width ef-
fects, which in steady state needs to be compensated by
other non-intrinsically ambipolar processes. The effects
of replacing radial current with momentum sources is the
subject of ongoing investigation.

The sizable neoclassical toroidal angular momentum
transport we observe only appears in global theory. The
momentum flux, when normalized to represent an effec-
tive Prandtl number, takes on values (0.24 — 0.35) com-
parable to experimental values of the effective Prandtl
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number observed in the plasma core. This is a poten-
tially important observation since the heat fluxes in the
pedestal can be dominated by the neoclassical ion heat
flux. This implies that if our results extrapolate to large
ion temperature gradients (where a full-f treatment is
unavoidable), radially global effects might account for a
significant fraction of the momentum transport in the
inner region of the pedestal.
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Appendix A: Model pedestal profiles and magnetic
geometry

Due to the constraints on the T and 7 profiles , we
use simple model profiles for our simulations.

Specifically, an mtanh transition between two constant
gradient regions is implemented as

Xped + XSOL + (CL - b)wPEd/2

X= 2
_ Xpea = Xsor + (@ Dwpea/2 4y (A1)
2
n a( —to)e™" 4+ b(yh — ¢po)e”
e~ +e" ’
where X is a generic profile, r = (g)ptf/‘g, Wped is the

pedestal width, a (b) the core (SOL) asymptotic profile
gradients; 1)g is the position of the middle of the pedestal.
Here “SOL” represents the numerical buffer region out-
side ¥° = 0.

The magnetic field is assumed not to vary notably over
the pedestal region, and we thus use a radially constant,
local Miller geometry2? with parameters: x = 1.58, s, =
(r/k)dk/dr = 0.479, § = 0.24, ss = (r/V/1 —62)dd/dr =
0.845, OR/0r = —0.14, ¢ = 3.5, ¢ = r/R = 0.263, where
k is the elongation, ¢ the triangularity and the corre-
sponding sx parameters measure their shear.

Appendix B: Insensitivity to boundary conditions

Based on the size of the global term in the DKE ()
— which sets the radial coupling — the radial correlations
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FIG. 15: Global outboard particle flows in a constant
® scan with Dirichlet (thick) and Neumann (thin)
boundary conditions.

are expected to decrease outside the pedestal region. As
a consequence, the flows and fluxes in the pedestal are
essentially decorrelated from the boundary conditions,
provided that the boundaries are sufficiently far away
from the pedestal.

To demonstrate this, we performed identical simula-
tions with Neumann boundary conditions (v - Vg = 0)
instead of Dirichlet (¢ = gioca1).- The resulting poloidal
flows are displayed in thin lines and largely over-
lap around the pedestal with the Dirichlet results indi-
cated with thick lines — even though the Dirichlet bound-
ary condition can introduce massive oscillations near the
boundaries.

The poloidal flows were chosen for this test as they
are particularly sensitive to numerical errors, since their
evaluation involves a derivative of simulation outputs [the
final term in ] Similar or higher degrees of agree-
ment are also found for the poloidal variation of V,, in
the middle of the pedestal, and other quantities such as
the radial fluxes and sources. Thus, we concluded that
the results indeed are largely independent of the bound-
ary conditions.
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