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Abstract

A set of layer equations for determining the stability of semi-collisional tearing modes in an
axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit is
provided. These can be used as an inner layer module for inclusion in numerical codes that
asymptotically match the layer to toroidal calculations of the tearing mode stability index, A'.
They are more complete than in earlier work and comprise equations for the perturbed
electron density and temperature, the ion temperature, Ampére’s law and the vorticity
equation, amounting to a tenth order set of radial differential equations. While the toroidal
geometry is kept quite general when treating the classical and Pfirsch-Schliter transport,
parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of
trapped particles is small for the banana regime contribution. This is to justify the use of a
model collision term when acting on the localised (in velocity space) solutions that remain
after the Spitzer solutions have been exploited to account for the bulk of the passing
distributions. In this respect, unlike standard neoclassical transport theory, the calculation
involves the second Spitzer solution connected with a parallel temperature gradient, because
this stability problem involves parallel temperature gradients that cannot occur in equilibrium
toroidal transport theory. Furthermore, a calculation of the linearized neoclassical radial
transport of toroidal momentum for general geometry is required to complete the vorticity
equation. The solutions of the resulting set of equations do not match properly to the ideal
MHD equations at large distances from the layer, and a further, intermediate layer involving
ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to
achieve this matching and allow one to correctly calculate the layerA’.

1. Introduction

A number of phenomena in tokamaks, such as the saw-tooth oscillations,
plasma disruptions and confinement degradation, appear to involve tearing
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mode activity. Studies of the linear tearing stability for hot plasma have
exploited the separation of scales between a narrow ‘inner’ radial region around
a resonant surface where reconnection processes occur and the remaining
‘external’ region where a marginal ideal MHD model is adequate. The ideal

MHD solution, characterised by a quantity A’, is matched to a corresponding

quantity A((D + iy) calculated from the inner solution in order to determine the
mode frequency ® and growth rate, ¥ . Whereas early studies of linear stability

used a simple resistive MHD model for the inner layer, present day, hot,
tokamaks require a much more complete physics model.

In a previous paper [1] we presented layer equations for determining the
stability of semi-collisional tearing modes in a toroidal plasma in the banana
regime of collisionality (v, <o,; where v, ~ v /f?is the effective collision

frequency and o,, ~f,v,/L. the bounce frequency of a particle of species j, f,
<< 1 being the fraction of trapped particles, v, the frequency for 90-degree
Coulomb collisions and L_ the connection length around the torus), therefore

incorporating neoclassical physics. The semi-collisional ordering involves the
balance: o~ k{vg/v, , where Kk, =k,X/L,is the wavenumber parallel to the

magnetic field (K, is a poloidal wavenumber, x is the distance from a rational
surface and L is the magnetic shear length), v,,. is the electron thermal speed

and v, is the electron 90-degree collision frequency, so that parallel transport
processes compete with the mode frequency, ®. This balance serves to define

the semi-collisional width, 5, = (ev L2/k2v? |,

These equations were formulated for general axisymmetric geometry, thus in
this respect extending the work of Fitzpatrick [2]. A consistent ordering for
semi-collisional theory requires that, as well as the inclusion of parallel
collisional transport processes, one should also incorporate collisional cross-
field transport. The equations in Ref 2 did indeed include both of these transport
processes, albeit using a simplified model collision operator. While Ref. 1
discussed the role of cross-field transport based on a Lorentz collision operator,
thus ignoring like-particle collisions, the emphasis was on the basic semi-
collisional physics and these effects were ignored in the bulk of the paper. The
role of the present paper is to rectify this limitation by providing a general
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axisymmetric formulation, including cross-field transport which can be used as
a semi-collisional tearing mode layer module for inclusion in numerical codes
that asymptotically match the layer to toroidal calculations of the tearing mode
stability index, A" [3]. We also include some additional, relatively small, effects
in the electron continuity and thermal equations arising from the poloidal
magnetic drift that were ignored in Ref.1.

The model pitch-angle scattering collision operator used in Ref. 2 provides a
good description for distribution functions localised in velocity space around the
trapped particle regions, but electric fields, parallel pressure gradients and
thermal forces due to parallel temperature gradients generate distortions of the
whole passing particle region. Nevertheless this can be circumvented by the use
of the Spitzer functions [4, 5] to account for these drives, as demonstrated in
Refs. 6, 7, 8; we shall also adopt this approach here. The calculation closely
follows neoclassical transport theory but differs in one respect. In equilibrium
the electron density and temperature are constant on a flux surface and the only
parallel driving force is due to the toroidal electric field, resulting in a role for
the Spitzer function related to electrical conductivity. In stability theory,
however, parallel gradients of both density and electron temperature can persist,
leading to the need to involve the Spitzer function describing the parallel heat
flux. The calculation below makes one assumption, namely that the fraction of
trapped particles is small. This can be relaxed, albeit leading to more complex
algebra, but the distribution functions become less localised and the asymptotic
accuracy of the approach is compromised. The derivation of the vorticity
equation calls for an expression for the neoclassical radial transport of toroidal
momentum and we extend previous work [9] to cover more general geometry,
though needing to use a model collision operator in order to determine the
required adjoint function.

In Section 2 we introduce the gyro-kinetic model for electrons and ions. An
appropriate ordering scheme is used to obtain solutions for the ion and electron
distribution functions in Section 3. To complete these solutions, equations for
the perturbed densities and temperature of the two species are required. These
are obtained in Section 4. Section 5 develops Ampere’s law and the vorticity

equation to complete the set of equations needed to calculate A(o)+iy), A

calculation of the neoclassical radial transport of toroidal angular momentum
for general geometry, required in the development of the vorticity equation, is
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performed in Appendix B. Section 6 introduces a set of convenient
normalisations for the set of equations. In Section 7 we discuss an intermediate
radial region needed to connect the solutions of this set of equations to the ideal

MHD region where A'is defined. Finally we draw conclusions in Section 8.

2. The Gyro-kinetic Equation

We describe the plasma species j by the gyro-kinetic equation [10]

i+ v,b.V + vdj.V)gj —expl-iL;)C;(@;expliL;)

£, v 1
—_j ei:oj (m_wfj)(((p_VIA”)JO(ZJ.)Jrk—l%Jl(Zj)j_ (1)

i 1

where b is a unit vector along the magnetic field, v, is the particle velocity
along the magnetic field, @ is the perturbed electrostatic potential, A is the
perturbed parallel component of the vector potential, 5B, is the parallel

component of the perturbed magnetic field and we have written the perturbed
distribution as

: e d
6f; = gjexp(l Lj)_%foj , (2)
]
with perturbation time dependencies: exp(—icot) . Here, L, =kxv, b/Q;, with
k the wavenumber and v, the velocity perpendicular to the magnetic field, is

the gyro-phase factor, the operation A is a gyro-phase average over the quantity
A, J,, are Bessel functions of argument: z,=kv,/Q;

fo, =N, (w)(m, /2 T, (w)exp(~ m,v?/2T () are Maxwell distributions, with v the
poloidal flux, and

; mv? 3 T, 0(nn, omT,
0. = 0.1+ | oy =0— My ==
2T, 2 e. oy olmn;

]

2 e B
Vdj:%bx(%+vﬁkj, Qj:'—, k=b.Vb (3)
. m.
J

]

with v the particle speed, Q; the cyclotron frequency of species j, « the
curvature vector, ¢ the toroidal mode number of the perturbations and all
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gradients are taken at constant (w, v), with p=m v 2B the magnetic moment,
or (4, v) with A=2u/myv? (thus v, =ovv1-2AB, with c=sign (v”)). If 0 is
defined so that the safety factor q=B.Ve/B.V0, where B=1Vp+VpxVy, IS a
flux function, then

v, ~b0-> 4bvp — ! (Lzﬁj (4)
00 dp R?Blap qo0
so if we let
gj(l’,e,(p)—)gj(l‘,G)eiW_me) (5)
etc., then
vV.g— L{i(fq —-m)g, +ig}ei(/””m") (6)
Il Rqu i 00 i

where /q—-m=/q'x; q =dg/dy with x=y-vy_ , y, being the resonant surface
where m = /q(y, ); prime denotes a derivative with respect to v, or equivalently,
X.

Thus

Iv o .. . - :
—”[—Hﬁq ngj +Vy.Vg, —iog, —exp(-iL;)C,(gexpliL;)

R*Bq\ 60
ef,. oB
- (@_@;)((@_VHA”)JO(Z,.)+Z_i?u(zj)j.

(7)

Assuming both species are magnetised with kv, /Q,<<1, we expand
exp(iL ;)= 1+iL, and the Bessel functions for small z,. We also introduce h;:

eV o
g, :'Jr_jfo{l_j]+hj (8)
where A, =-(/o)v,¥, so that the parallel electric field, E,, is given by
- (£+i€q'xj(d)—‘11) | )
I R2Bgl o0

Then the fundamental kinetic equations are



(10)

( wqxjh +Vy.Vh; —ioh;-C;(h;)-L,C (g i)

Vy (8 .
R?Bq 60 .

ef,. v? _efy, oM

— iU (o-0l)| 0-¥+—8B, |-—LL|1-—T |y, VW
i 2Q), T, ®

We note that relations (2) and (8) imply the perturbed density ﬁj IS given by

- ¥ O e.d R

n, = T (1— m] J.—’—jnj+nj (11)

where N is the leading contribution to the density from h

The perturbed and equilibrium quasi-neutrality conditions
(12)

S
Il

=t
I
1

allow us to obtain
i, _ N _ed ﬂ[l_“)*ej; i _ N ed e¥ PRLINC (13)
ng n, T, T, ® ng no, T, T, T, o
Similarly from egns. (2) and (8) we can obtain the perturbed temperatures
(14)

T Yo
u

T, T, e?om, . T
B T, o

where T, =12T /3_[d vim,v?/2T, —3/2)hj is the contribution from h; etc



3. The lon and Electron Solutions
(a) The lon Solution

We consider the ‘collisional’ case: v, >w. Introducing the proton charge, e, we
have

IV” [a wqxjh +VgVh, —ioh, =C,(h) -L,C,(g L)

R*Bg\ 00
ef, v? ef T
— i (o0l )| ®— ¥+ 0B, |- 1-21 |y, v
T 20, T ®

(15)

We solve this equation by introducing an ordering scheme in terms of a small
parameter, €, , where ®g; ~ V; ~ &0y, O ~ Oy, ~ e’o, . we also order
Z; ~¢,;. Although we shall later assume a small number of trapped particles,
f. <1, we do not order it in € . The radial magnetic drift frequency, o, ,

exceeds the azimuthal drift frequency, o,,,, because of the narrow radial width
of the semi-collisional layer.

Writing h, =h,, +¢;h,, +€’h,, +..., the lowest order solution satisfies

ohy

89 =0 =hy =hy (VA X 0) (16)

while in first order we obtain

Iv T
a 1 = Vdn a +C, (hm)_e‘l:OI 1_0)*I Vdi'ilp (17)
R? Bq EY) ax T, ® OX
where we note

v, o (lv

I I
Vij = Vdrj-V\V = Rqu %[Q_] (18)

]

Thus h,, for passing particles can be annihilated by applying the operation:

(B(.)v,):
<--->=§('")—de/§d—e=§(...)R2de/§ R2d0 : (19)

B.vo ' B.V6



since

1 q _@r?
BVO BvVep |

(20)

For trapped particles we integrate along the bounce orbit, summing over o in
the usual way, to obtain the constraint

<Eci(hm>>=o , (21)

Vv

where the integration is now between bounce points. This determines hy, ,

ny {ﬁi +(u2 —%ﬂfm (22)
N, 2)T,

where u? =mv?/2T; .

yielding:

The equation for h,; can then be integrated to give

IV e II ' '
h,, =_Eﬂ[?(1—%j‘1’ fo +h0i}rH1i(v,x,x,c) (23)

where H,;remains to be determined. This can be rewritten as

v i 5 i
1i :Q_”{Ai) +(u2 _EJA(Z)i|fOi + Hli(v’ A X, G)’

A(i):_e_\P' 1_m*i 1 _]_ f; ﬂ =_ ﬂ iq)’, 24
e R e (22)

AD | @am eV T T
o T T, T

h

where p,; =n,T;, on using egns. (13) and (14). Note that the quantities P, and

T, thus defined, depend on ©.



The equation for h,, is

VHI 0 V”| 0 IV|| oh,,
R?Bqd0 ~ R?Bqad| Q, ) ox i(hs)+Ci () (25)

(where, for most purposes, we can ignore the small ion — electron collisional

term, but see Section 7 later), which provides the constraint
<Ecii(hli)> =0 (26)

For the ions we take the model pitch-angle scattering collision operator that

conserves momentum [11]:

c“(h)=v”(u)(L(h)+%vnuﬁi(h)fm} Ly = o @ [xv ‘ h}

i vZBanl o
Uﬁi () = jdsw”(u)v||h/.[d3Vf0iVii(u)miVI:IZ/ZTi’Vii(u) = Vi (p(l;)v (27)
u
nee'nA (m, | 1 n'(u) 24
.= _ , = 1_ -~ __< d _t
ot )+ o[ b )= o

The constraint (26) yields an expression for H,, and we find:

I ~ B i 5 i mi B * A
hli = E(V” - H\/” B_OJ(A](-) + (uz _ EJA(Z)ijI + ?I<B— U||i >H\/”f0i y (28)

i 0

where H(L-2,) is the Heaviside function and

2 Ae '
v _ﬂfﬂ, A = Bo (29)




Using eqn. (28) and integrating over velocity space:

J‘ d V= ZJ‘ BTCT‘CVd‘VdX ’ (30)
Il

we can calculate U;; self-consistently. Thus

Uy, =Qii;—'i(1fc <22>}{A§" +({u{\2}:'}'}gJAS)}+fCB<<B;;> , (31)

where we have defined the symbol {...} by

v ™)™ 8 T
w}—jd vw( oT ] - —3\/;£duw(u)u eV, (32)
and
mv2 Y mv,V, B B’

where . =1-f, with f, the trapped particle fraction defined by

| —1—%<Bz>l D (34)

Solving self-consistently for (BU},), substituting for A{ and AY from eqn. (24)

and using the values of the collisional integrals from Appendix A, we obtain:

<Buﬁi>=—ﬂ[p—{+g—1 17 T'} (35)
e [Py T T
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Then one can calculate the ion parallel flux from egn. (28), to give

IT. [ P! ' 2 T
i &+£_1_17fCB__'

" eB Poi T <Bz> T 59

It remains to address the determination of fi, and T,; A, is already given in

terms of n by egn. (13), whereas 'i'i is obtained by applying the operator

j(...)(mivzlz)d3v to the next order equation,

Vlll 0 VHI 0 IV|| ahZi i -
—hgi + =24y, Vh, -ioh, —C.(h,.)-L.C.(g,L.
R2Bqo0 ° R2BqaoolQ, ) ox o oo i(05) = LiCi(Qali) n

- 2 )
- —'T—efm(m—mli {@—\hz\%&}sl]

since it annihilates the first term on the left by means of the flux surface average

and the collision term, C,(h,), due to its conservation properties. This will be

elaborated in Section 4 (b).

(b) The Electron Solution

For the electrons, eqn. (10) becomes

v Pl .
[ - .
—+ig'x |h, +v,..Vh —ioh.-C _(h,))-L.C L
Rqu(ae q j e de e e e( e) e e(ge e)
(38)

ef v? f I
SiS e (g—ol )| 0- W+ 0B, [+2l1- 2y vy
T 20 T o

e e

We employ a related ordering scheme to that of the ions in order to solve egn.
(38) for the electrons, introducing another small parameter, €, , where

Wyge ~ Ve~ €0 O~ Wy ~ 8§mbe. However, the semi-collisional electron
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model requires the additional ordering: kv, ~&’v, /L., where k, =/q'x/Rq .

With h,=h, +eh, +e2h, +..,
the lowest order equation is
aheoe =0 =hy, =hy, (v, %0) (39)
while in first order we obtain
v, & o ef o 0
Il Oe e
—h, =-v, .—h,_+C_(h,)+—5[1- v, .—Y¥ 40
Rqu 86 le dre aX Oe e( Oe) Te ( (DJ de 6X ( )

As in the case of the ions, h,, can be annihilated for passing particles by
applying the operation:(B(...)/v,). For trapped particles we again integrate along

the bounce orbit, summing over o in the usual way. Thus we obtain the
constraint

<Ece(h08>>=o, (41)

which determines h,,, yielding:

A 3\ T
h, :L: +(u2 —E)T—e}f% (42)

e

where now u?=m,v?/2T, . The energy exchange term in the electron-ion

collision operator is neglected (see eqn. (47) below), which makes the
perturbation in the electron temperature independent of that in the ion
temperature.

The equation for N, can then be integrated to give

QT 0

e e

| T
h, = ﬂ{i[l_ Ore J\P’fOe - hée} +H, (VA% 0) (43)

where the function H,, remains to be determined. This result can be rewritten as
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Iv
=g AP+ (w3 A ko)

' . ﬁr -'I\-! ~ '
Af*’:g 1= 2 (Lm, ) || =+ = |=- P _e® : (44)
T, Y n, T, Poe Te
Ao o T T
2 o T, T, T,’

with p,, =n,T,, where again we have used eqgns. (13) and (14).

The next order equation is

vl o vil g (lv,\oh, IvIgx
< 2 h,, =C.(h,), 45
R?Bqo0 ' R’Bq 00 Q. ) ox TTRB o(h,) (49)
leading to the constraint
B ileg'x [/ 1
<V_Ce (hle )> = C? <F>h06 ) (46)
Il
which determines H,, (v, %, c).
The electron collision operator takes the form
me
C.(h)=C, (h)"' Vei (U)(L(h) +T_V||U||if0ej (47)

where Cee(h) is the electron-electron collision operator, U, is the ion bulk
parallel velocity, v, (u)=v,/u® with vy, =nge*lA(m, /2T, )"/(4me?m?).

At this point we introduce the two Spitzer functions [5]:h$) and h® | where

ileg’x (A, T,). il £'x 5T,
R IR (0 LA
so that the constraint equation becomes
B
<_Ce(hle - hes )> = 0’ (49)
Vv
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with h, =h® +h@  Now that the collision operator is acting on a localised (to

the trapped and barely passing region) distribution function we can use a model
pitch-angle scattering operator for the electron-electron collisions [11].

Cerlh)=vee (u)(L(h) +2y,

e

U |Te (h)f Oe J

Uy (h) = [d*w, (v [ d*vEoev

Vee (U) = Ve @’ (P(u): (1_

(um,v;/2T,, (50)

Oe ee

Ilzjn(uﬁ#, n(u \/_J.dtetz

To remove the ion flow we write

m_v
hg) = hgl) +TL” U,ifoe hg) = hgz)- (51)

e

The functions h{"?are given by [4, 5]

hgl) V| g® D¢ )(U) f, h® — M 5@ D® )(U)f

R’B u ¢ *  R’B u
qo _ 4t lax (A, T} _ 4itg lig'x P, e(@-¥) o.e¥ (52)
3\/_ q nO Te 3\/— q pOe Te Y Te

S® _ dit,, IKqXT _ it lg'x Z_m*eneg
ar a T. 3 al|T. o T

e e

where 1, =3n/4v,, and D® and D® are related to the normalised responses

to a parallel electric field and thermal force, tabulated in Ref. 4 (to be precise,

D® =-D/A and D® =2D/B as given in Tables I and Il of Ref. 5)

So, on defining v, = v, +V,, the constraint equation becomes

<_|:Ve|—(hle - hs )+ g(\/eeuﬁe (hle - hs) + Vg U||i )fOe:|> =0 (53)
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where h, =h® +h® Thus

0 0 IB,V’ © 5) @
a[uv”)ame]_ 20, (A ( E]Az f,

m. v’ / B (S(l) D®(u) +S?D®(u) )v2 1 (4)
>\ (v U||e +Vy U”,)foe — 20 <?>f0e
Integrating eqn. (54) in ., we find
hie :QLLV” HVY, ; J(Aie) +( sz(e)jf
e m 0 B (S“D® () +SPDP (W) / 1 %)
+|: e < (v UIIe +v. U|||)> < >}H\/”fOe
T, oVe Byu R?

Using the definition of U;, in egn. (50) and integrating over velocity space, we

can calculate Ul’[e(hle—hs) self-consistently. However, as argued in Ref. 8,

Ile ei’ Ve

M=o Vi ‘H\A/nE AP J{Uz —§}A(ze) foe
Q, B, 2

me<BU”i> . (S(l)D(l) (u) +S®D® (u))<i>] HV, ;
Rz Oe

(BU;.)=(BU, ) +0(f,), provided f, <<0(v/,). Thus result (55) simplifies to

(56)

T u B,

e

A

It remains to determine A, and T,: these are obtained in Section 4 (b) by
applying the operators ([(.)d*v) and  [(.)(m?/2)d° to the next order

equation:
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vl o4 v, a(lg\zl”]ah%“lfq'x H

R2Bq a0 * RZ2Bq o0 ox  gR2B

4. The Perturbed Density and Temperatures

In this Section we derive equations for the perturbed electron density and
temperature and ion temperature in terms of the perturbed potentials ® and ¥ .
The ion density perturbation can be obtained from the leading order quasi-

neutrality condition, see eqn. (12).

The other perturbed field that these quantities depend on, is 3B, which is

obtained from the perpendicular component of Ampere’s law. The
perpendicular current can be calculated from the first order in a Larmor radius
expansion of the distribution function (2), again recalling egns. (8), (22) and
(42). Introducing this into the perpendicular component of Ampére’s law yields

[10]

O BB BT, e T) (T, 4 ) (58)

In Section 5 we will discuss the parallel component of Ampére’s law and find

that in leading order, ¥ is independent of the poloidal angle, 6. Since fi; and
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A ~

T, are also independent of o, it follows from egns. (13) and (14) that n;, T,

and @ are also independent of 9.

(a) The Perturbed Electron Density and Temperature

As mentioned earlier, the determination of A, and T, is accomplished by
applying the annihilators <j()d3v> and j(---)(meVZ/Z)d3V , which both

eliminate h,,, to the third order equation (57):

The first operation results in

I o(1 i01q
<jd3vR\£—'Bq%(Qle'J 62;e > +<'Ffz"é;‘ jd3vv”hle> +{[d*Wo Vo, )~ {[d*VL,C, (@0cL,))

:imﬁe+ino<;<@_w*e><®_T>—L}j<w—w*e<1+ne>>>

e

(59)

Here one can recognise the first three terms on the left-hand-side as representing,
respectively, the surface-averaged contributions to the electron continuity

equation of the divergences of the radial flux, I',, (which we will see below is
related to Pfirsch-Schliter and neoclassical radial transport), the parallel flux,
I'e, and the ‘azimuthal flux’, I'2*  while the fourth corresponds to the

contribution from classical radial transport [2] .

The second, the energy moment, takes the form
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Idav vl o 'Vn m,v* oh,, “qxjd3 m,v
R?Bq 00 2 0ox R?Bq
m,v? m.v
+<Id3VeTVdee'Vh0e>_<J‘d3VeTLeCe(90eLe)> (60)
T B
:gim[ﬁe+”;LJ+ino<gTi(m_m*e(me))(cp_\y)_g?'(m_m*e(uzne))>

e e

with a similar interpretation in terms of fluxes.

It is helpful to separate the electron and ion distributions into a Pfirsch-Schliter-

like, h!*, and a banana neoclassical part, h®", and express the quantities

ﬁj and fj in terms of ﬁj and 'T'j . Thus for the electrons we write
hle_hes:heps_'_heBan (61)

where:

I 2 g T lv,m 2 | '
h"s = MLLLTE P P +(u2—§jL fo, +——|1- B™ | P ¥ fo.
CATavligx| 1 B <i>
3= q (R’B (B’)\R’

) {D‘”(u) P_ e(0-¥) o.,(+n,) g} D®(u) F o, g}}f
Te Oe

u Poe T, ) T, u o T,

(62)

and:
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HY, | B T T dit, 10q’ HV,
heBan _ Ime B V” _ I p +(U2 —SJTe—].]jTI fOe . ITEI IEq X B VH _ I <12>
e <BZ> By |l Poe 2)T, T, NCE <BZ> B, \R

JDPW[ P, _e@-¥) o.l+n)er| DUW|T. _o.n e? ||
u pOe Te ®© T .

e

where we have substituted for U, from eqn. (36).

Similarly it is convenient to separate hy; in egn. (28) into Pfirsch-Schliter, h?s,

and banana contributions, h®", writing:

h,, =h{"*" +h{®+h7", (64)
where h™®" describes the mean flow:
lvm. B[ 5’ ed’ T
prow __ T2 P 8O g g e
i e<BZ> pOi -l-i -I-i 0i , (65)
while
lvm, [ B2 | p! ed’ 5\ T
hFS:_ I 1- i o ( 2——)—'1:.
| ¢B [ <82>JL)0| i T, e 2)T, 3 (66)
and
Im. [ Bv, HV T
hBan:_ i [I _ [I 2_1.33 —If
| ¢ [<BZ> By ](U )Ti N (67)
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The first term represents a drifting Maxwellian and therefore does not

contribute to the ion-ion collision term.
(i) Electron Radial Fluxes

First we consider the radial fluxes arising from classical transport. Recalling the
definitions of Ny and L; and noting the conservation of momentum in like-

particle collisions, we obtain

where r represents a ‘radial-like’ co-ordinate labelling flux surfaces, V, being

the corresponding radial component of the velocity. We note the gyro-
correction to the scattering target ion distribution has the form

v ﬂ(ﬂ +£+(uz j}i}cm (69)

eB\py T, 2)T,

The velocity integral can be evaluated by observing that it involves the matrix
elements of the collision operator between Laguerre polynomials given in
Section 4.5 of Ref. 8. The resultant contribution from eqgn. (68) is the familiar

Braginskii expression:
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d,cy mT/ W\ d(p 3T
—(r¢,)=-—£= P 70
dr< r’e> ezrei< B2 /dx?|p, 2T, o (70)

A similar calculation for the classical heat flux results in

, -
d ;. m.T. /[Vy| \ d> [ 3 p T
a4 —_ele ~2F 1466-=|n,T /1
e e &

so that the classical energy flux, (Q%,)=(qf,)+(5/2)(I'%, ), satisfies

d/c m,T, [V \ d? [ P T
— =——r2° —+0.91-—= |n,T 72
dr<Qr‘e> e’t, < B2 /dx?| p,, " T, )¢ (72)

Turning to the leading term in eqgn. (59), we can eliminate h,, by integrating by

parts in 6 and using eqn. (45) to obtain

I o(1
<J-d3V R\:”Bq %[Qllljh%> = <r:\]lec>

VZI . '
= Lj.da‘v +£ L m_m+wvﬁh0e_v||ce(hle)
Q, R?Bqa8| Q, ) dx  R’Bg

where the first term vanishes if the equilibrium is up-down symmetric, which

(73)

we take to be the case here. Thus, finally, we recognise this contribution as the

divergence of the neoclassical radial flux

%<Flr\,lec> = _%<Qiej.dswce(hle - h((ei) - hz(ei) )> (74)

Likewise, for the thermal equation, we find
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2
|

§<Q§§>=—dix<g— Jaw, T Ce(hle—hé?—hé?)> (75)

To evaluate the velocity integrals in egns. (74) and (75), we recall the result (33).

Considering the Pfirsch-Schliiter and banana contributions separately, we
introduce their respective distribution functions. From momentum conservation
it is again clear that only e - i collisions contribute to eqn. (74) in both cases.

For the Pfirsch-Schluter contribution the calculation has the same structure as
the classical case, with the substitution Vv, — Vv, in the distribution function.
However, since we are now considering the difference h,, —h, , the scattering

‘ion distribution’ is effectively at rest when evaluating the collisional matrix

elements. Recalling eqn. (62), the result is

L ey MeTe e <i>_ 1 |d* (P 3T,
n,dr\ "/ e2r, B’ <BZ> dx’\p,, 2T,

(76)
il%eq'T 1 1 /1\]|d p. ed e¥(, o.
_ e _ =) =X - 121
e (<RZBZ> <BZ><R2>}dx{X[pOQ Te+Te( @(”e)m
For the heat flux, we obtain
1 d /e, mTI <1> 1 |d?(p T,
— = (=) — 0.91—%
noTedr<Q“e> e’ [ B*/ (B?))dx’ pOe+ T,
(77)

SR N

&—@+L+g(l— Dre (14 Zne)j
pOe Te Te Te Y
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Finally we consider the banana contribution. For the classical and Pfirsch-
Schluter contributions we used the exact collision operator, since the
distributions were not localised in velocity space. However, the banana

contribution to h,, —h,, is localised and it is sufficient to use the model collision

operator (50), which leads to

Ban
an I/ m, m.v, .
<1“ffe .V\p>—€< B jd3vV||Ve[h1e—h§1> —h® _ﬁ(\;eeune +VeiU||i)f0ej > (78)

Substituting  expression (63), wusing result (36) and approximating

(BU;.) = (BU,) as discussed below eqn. (55), we obtain

= _ ® T @
« &_e(d) ‘I’)_oa*e (l_l_ne)ﬁ v,.D N E_co*ene e¥|jv.D
Poe T, ® T, u T, o T, u

(79)

Introducing the numerical values of the various collisional averages given by

the integrals in Appendix A, this becomes:

I’m,T. d2| p T T
ii<r?:">=—1.53f Mele 0" )P L qg9fe 9970
dr' " T

Mo te2<BZ>1:ei dXZ Poe Te e (80)
2\ ipq! = T
1671 r Yot dfy —E—M-%(lu.ozne)ﬁmozL
(B*)\R*/ eq dx( [pe T, ® T, T,

Similarly, we find
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P 2 (3 3

n,T, dr e2<BZ> dx?|pp \iv,f 2JT, | {vi} 2JT.
do,itg' fo [1P\T, d| |(P. e(@-¥) o ey ol [T, ©.n, e¥ "
- e A ) (1, ) |uv, DY | == — D
3Jnq <BZ><R >e dx[xl[pOe T. o (H]E)Te v+ T o T, b v.D®)
(81)
leading to
2 2 ~ ¥ T
ii(Qfﬁ“):-L?Oftﬁd— P _oapte 1710
n,T,dr' ™" e2<Bz>rei dx? | Poe T, T,
N (82)
207 T (1 \1AT. d o Do @) g o 18P g Te
<|32> R eq dx| | Py T, o) T, T,
(if) Parallel Electron Fluxes and Plasma Current
The contribution to egn. (59) from the parallel flux T, is
21qg'x 3y 21g'x
<R Bq J‘d I le> < Bq U||e(hle)> (83)

The part arising from the Pfirsch-Schliter-like part of h,, can be calculated

directly, but for the banana contribution we take advantage of the self-

adjointness of the collision operator to circumvent the fact that h,, is not

localised in pitch-angle, while still allowing us to use the model collision

operator [8].

We first consider the parallel current, which is needed for Ampére’s equation,

but also provides an expression for U

lle -
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We can readily calculate j°, the current arising from the Pfirsch-Schluter-like

contributions to the electron and ion distribution functions given in egns. (62)

and (66), obtaining:

B (&)

s -1 B 4t il0g'xp,.e
o=l +
3Vm m.q

which becomes

s =[1 B il £q'xp 0
P =—Ip] = - — | ~1.977, e
B <B > m.d (85)

| 1 B <i> pe_e(d)-\}l)+o.34Te_m*e(1+1_34ne)§
R’B <BZ> R%/ |\ Po. T, T, ® T,

To calculate the banana regime neoclassical contribution, we write

j|| = j||S + (jll o jlls): j||s _ejd3vv||(hle - hes) ) (86)
where
. 3
Jis =neU —ejd vv”hes, (87)

so that
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J My 0 iZlg'x T,
* 3J/x " R’Bgm, (58)
DOW)( B, e(@-¥) o e?) [DP)](T. w.n, e¥
x| {—— e A T e (g ) |+ £ __ele
u Poe T, ® T, u T, o T,
which reduces to
. iflgx T.| p - T o
j, =1.97n,e 7, aX T &—Mw.m—e—me(l 134, ) (89)
R Bq me pOe Te Te Y Te
Now, recalling egn. (48), we can write
iy~ = ejd vv h, —h® - <2) eR(l)Bjdg hgg_hgg)). (90)
Using the self-adjointness property of C,(h®), we obtain
. eR B 3y h(l) @ @
J Hs = S(l) J-d _hes _hes ) (91)
so that
(1) u
(J|| J||s): mirh ejd v u( )V Ce(hle_hg)_hg))
(92)

(1) m.yv
jd v—— v”ve[hle—hgl)—h‘z)—Te—”UlifOe]

S

where we have used the definitions (52) and the model electron-electron
collision operator (50), since (h1e —h® —hg?) is now localised. Evaluating this

expression using result (63)
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-« \Ban 4'Teino ft BITe ﬁ' VeD(l) 5 2 VeD(l) :I;e, 5 {uzvii} VeD(l) :I:i’
(JII_JHS) = 7| - =-u e i
3Wn o (B?) |Pe | U 2 u T, (2 v )| v T

_[4rei jz fBil /g’xn, <1> eT, (93)
3n) (B%)g \R*/m

p. e(®-¥) m*e(1+ )g v,D®’ +L_m*eneﬁ v,D®D®
P T o © T u’ T, o T, u’

e

leading to

HE Ban_ft BIpOe _ 5, 1 i
(Jn Jus) - <BZ> {1.67 - +1.l9Te +1.95Te]

_258 fiBilfg’x py.e 1, <1> &_LCD-‘P)_CO*G (1+1.17ne)§-l—0.17L
<32>qme R?/Ip,e T, ® T T

(94)

e €

Combining expressions (85), (89) and (94), we obtain

. |1 B il/g'xp,e B /1
[ <>] e )

«| (1-131f, Pe _e((I)-‘P)_(D*e (1+ne)e‘l’ +0.34 T 0. e¥ (1-0.66f ) (95)
T ® T ®
Oe e e e e
f BI 5 T’ T’
0P P |y 67 P 19t g5t
<BZ> pOe Te Te

The first term is the usual Pfirsch-Schluter current while the second term rep-
resents the effects of the parallel electron pressure gradient, the parallel electric

field and parallel thermal force, whereas the final term is the bootstrap current.

We can now calculate U, from

lle

=U, _rjl_é (96)

U

lle
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with U; given by eqn. (36). The contribution to the electron continuity equation

from the divergence of the parallel flux (83) is then:

i¢1g'x
”0<—zq U||e>
R°Bq

2% .|/ 1 1/ 1\ 1200, P T T
- 5 < : 2>— : <—2> e P B R
eq R’B*/ (B*)\R e(B’)g \R Poe . .

_ 2 2 (97)
g%, < 1 > pi e _£<L>L’ 197 7,(q'%)" s, <L>
eq RB*/\pe T.) (B?)\R?/T, me<BZ>q2 R?
NIRRT TS B Uk d R N 4 NP YR (L ACES ML ) Y R
pOe Te ® Te Te ® Te
The energy equation involves the parallel heat flux
m,v? 5 m,v> 5
o =J'd"*v v, h, =0, +En0TeU”e; Ay :Id%( 5 —ETe]vlhle (98)
We can decompose Q,, as
m, v?
Qlle = Q||se + (qlle _qllse) (JII JHS )T Ql\se J.d3 V|| hse (99)

The Spitzer contribution is given as

4t i/1g'x T,
re,n_l_lﬁqu .

3Jn ° ° R?Bq m,

x{{u D(l)(“){g‘w‘&(lme)f

Qe :_ TU) +

}{u D(Z(U))(i_%ﬂﬂ (100)

T o T

e e
resulting in
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e

5 IT.|( p ed') 1.17B? T
=—n T —|| X - 1—f )—
Q||se 2 no e eB [(poe + Te J <BZ> ( t)-l- ]

) (101)
_6.24n,T, [19XTs T &—M+0.583—%(1”.58119)6\P
R Bq me pOe Te Te Y e

Introducing the Pfirsch-Schliter part of h,., eqn.(62) , we can calculate the

corresponding Pfirsch-Schluter contribution to Q,, directly, obtaining :

PS = = H 2

Qe _5IT. |1 B |[p T so247, MOXT| 1 B <i>

pOe 2 € B <Bz> pOe Te meq RZB <BZ> RZ
Xl:{&_e(CD-‘P)+O.58Te —&(1“-58119)?}}}

p Oe Te Te ®

. (102)

e

We formulate the banana neoclassical contribution for q,, by analogy to the

neoclassical current, j., as in eqn. (92), so that it can also be evaluated using the

localised distribution function (63):

4ty D®(u) MV,
(O )= —mTeIdgVTV||Ve h,,—h” —h e Uyifoe (103)

Using expression (63), we obtain the banana contribution to e :

f.BIT,p D’ T T
Ban t e M0e e i
(qu _q||se) :—{0.04—-%0.64——0.05 —}

e<Bz> pOe Te Te
f il/g'xT D T (104)
1046 m 1 ePocta B <i2>&_e(q)"l’)_&(1+1.94ne)§+0.94L
meq <Bz> R pOe Te @ Te Te
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Inserting the results (94), (101), (102) and (104) into egn. (99), we finally obtain

1 [iflg'x 5i0%gxT, [/ 1 1 1 P
Q||e 2p?2 2 T
n,T, \R?Bq 2 eq R’B <B R/ [ pee T

012! = T -
A <i2>'£I OXTe] 418 P 2361 78501
<Bz> R eq T T

.0, ' oy )2
_5il%gxT, < 1 > P e®) 117 <L>l +6.24(£Iqx) <1> TeTa
2 eq RB*/lp,, T. <|32> R?/T, <82>q2 R?/ m,

XK&__G(‘D ) _%QJ(l—uonﬁ 0.58 (%—wi—ﬂ(l—l-loﬂ)}

pOe e e

® e

(105)

(iii) Azimuthal Electron Fluxes

Finally we require the contributions from the azimuthal drift terms that appear

in eqns. (59) and (60).

(Jd*Wie Vo, ) = =i([d* W, (VO - Vo), )
/n T, (N
:—|<—><(WnB+K).(mV9—W¢)> e[ : Jr—eJn0
Qe m, \ Ny Te (106)

2 o
:—i<LxM2+B).(mV6—£V¢))> Te (ne +Ljno.
Q, B m,\n, T,

This can be expressed as
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T /(1 0 , 1) 0 B?

i == B Vy.V

i <(BZ 8\|1(u0p0+ )+(RBZJ VA Res }> (107)
p. e(®-¥) o.
e _\F ") Tre(1 Al
(poe Te ® ( + e) eJnO

Similarly, we also obtain

2
<Id3v mezv VgV h0e>

5 T./[1 0 ) 1) 0 B?
=S| == B Vy.Vo 108
d e<£82w(uopo+ HESERE ]> (108)
x[pe To_el@¥) 0w o) lPJnOTe
pOe Te Te ® e

(b) The Perturbed lon Temperature

In the case of the ions there is no need to obtain the ion density equation for A,

as it is determined by quasi-neutrality and given in egn. (13). To obtain the

equation for T, we apply the operator [(.)(m,v*/2)d’v to eqn. (37).

v, | v V2 _ V2
Id3v—2” O [ My | maVv” ohy + _[d3v—m'v Vi -Vh,
RBqa8lQ, | 2 ox 2
2

Y 3 (B e e[ Too.
_<Id v 5 LiCii(gOiLi)>_2|(D( +T T ( +T o (1+ni)JJ (109)

0i i i

e tonfeon o o)

i e

Integrating the first term on the left hand side by parts and substituting for h,,
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from egn. (25), it can be written as the divergence of the neoclassical ion heat

flux
i<Qi“6>;i<jo|3vmi—"2"’_“c:(hli)>. (110)

The second term is the ion azimuthal flux and the third is the ion classical heat

flux:

2@ = ([evLC.(gaL ) (111)

This can be evaluated in a similar manner to the electron case, resulting in

d <Q$i>:_2 m,T, <|V\|’|2>n d? T (112)

dx e’r, \ B2 [ "ax? '’
where T, :(3\/E/4)4n8(2,mi1/2Ti3’2/noe“ﬁnA_

The calculation of the Pfirsch-Schliter heat flux proceeds similarly to the

electron one and yields

dr e’r, B? <BZ> “ax?

1<Q5is>zm.z[<L>LJn o 5 (113)

while the banana regime contribution is

2 2 12 2 TI2 2 _
%<@ﬁm>=—”;§;l$ [{U"v“}_{u V“}J”O S Teoe e T (114)
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Finally, the azimuthal drift contribution is

% 5. T/[1 0 A 1Y 0B’
<jd Vv 5 vdi.Vh0i>_ 2|£ - <[BZ aW(uopo+B )J{RBZJ Vy.Vo P J>
. (115)

(c) Summary

Here we collect together the above results to obtain the final form of the
equations determining the electron density and temperature perturbations in

terms of the perturbed fields @ and ¥ . The first, egn. (59) can be written in the

form

%(<Ffe>+ <Fff> + <TrB,Zn>)+ ik o (Tye )+ ik9<reAZ>

|~ 0. ed 1op O
=l N - —n, + 1- 1+ n

e

(116)

where k;, = 2Ig'x(R*B)/q,, k, = ¢q(v6])and we have substituted eqn. (58) for 3B,.

From eqgn. (70) we have

2 2 = T
2 re)=-Tete <|V"’| >[ P _§L]no, (70a)

dr e’t, dx*\ B® /lp, 2T,

e

From eqgn. (76)
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L dypesy_ M o[ /1) 1 |d*(p 3T,
Eﬁrfﬁ% PO |2[<Bz> <82>de2(% ZTJ

e el ]

From egn. (80)

(76a)

2 2 [ = T
—i<r?:”>=—1.53f 'm. T d | P L yg9te 19700
n,dr' ~ , T T

~167 ft><R2>'€q'T d[(&—w-—a +1021,)5 + oozieﬂ

<|32 eq dx| (po, T o T,

From egn. (97), we have defined

Ip,.f ' T!
Ly <%>—i<%> + '00“<1>167'°——119T 3120
e [ \R*B?/ (B?)\R e(B*) \R’ Poe T, T,

! 1 | ed 117>1 T/ | 1977, (10g'x)pg, [ 1 \° (®73)
e ) e
) ©

X (1+ne)?—lyj+0.34 [E— velle eTlPJ(l 066f)}

e Te ® e

while from eqgn. (107) we have defined

o T 10 1) 0B?
s >‘eq<|ve|><( vl &1 v J> . (073)
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Similarly for eqn. (60) we obtain

%(<Qfe>+ (QFS)+(QE ) )ik 1o Q)+ ik (Q2)

3 (t+n.) . : (117)
.|~ 0., \L+7M, Wi
= Em{pe —Tnabo +§<“8Lf>[1——m 1+ Zne)jp%}
where, from eqgn. (72),
d m,T, d® /[Vy]"\( B T
—(Qre)=——— ——+0.91-% |n,T 72a
dr <Qr‘e> e’t, dx2< B2 /| po. i T, Mole (122)

from eqn. (77) ,

1 d s m,T,I? <1> 1 |d®(p T,
- == — ) - — +0.91+=
n,T, dr<Q“e> e’t, ( B? <BZ> dx? | py, T

HEA ’ ~ —
_5il%gT, < 1 >_ 1 <i>ix&_e@'qj)_w*e(1+zne)§+l
2 eq R?B? <|32> R?/ |dx| | pg, T ® T, T

(77a)
and from eqn. (82),
2 2 ~ T =
L 9 qeny—agor, L Mele 1P g0l 1q7 T
NeTe dr' " e’(B? )t dX* | P T, ]
(82a)

2 H r ~ ~ 1
-2.97 ftz <|_2>Iquei X &_(&(@_—‘I’)_&(1+1.25ne)e‘11+0'25£
(B2)\R*/ eq dx| \p, T ® T T

e e e

while from eqn. (105),
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1 /1 5IT |/ 1\ 1N T
n{&<ﬁﬁﬁ>«%”>_2 e(<Rsz> <B$<R2>J(p%+”n]
+ft<R B>< ! >'Te {4.18 P’ —2.361—7.861}

(%) 1R T

RZ pOe Te e
5 i012q'xT, < 1 > P ed 1.17<1 >i’
—_ _J’__ —_ [ — Y

2 eq R?B?/(p,, T. <BZ> R?/T,

_goa 1A% <
(B%)a

y KF’_ _e(@-¥) -ﬁgj(l—l.loftp 0.58(L —wﬁJ(l—l.loft)}
o T T T

2
i TeTei
R?2/ m

e

e @ e

pOe Te e
(105a)

5 T 1 0 1) 0B’
<Q':Z>:_ e <[—2—(p0p0 + BZ)+( 2) Vy.VO J>
2 ge(|ve|) 8\1/ RB o0 (1082)
T

Summarising for the ions, we can rewrite eqn.(109) as:

Az

9 (1Q2 )+ (Qrs) + (@) ik, (@)

dr
3 o..(1+7,) T, 5  /up T o ’ (118)
= —ia){pi _TT_;e(D N, +§p0i<#>(l+ T—;j(lJr Zni)ﬂ
where from eqn.(112)
d mT, /[Vu*\ ¢ =
a<QfC'> =2 e’t, < B2 >no X2 T (112a)

from eqgn. (113)
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%<ins>=m.z[<i> L Jn L (113a)

from eqgn. (114)

d e\ g, MiTF - d? =
() =0 i Mg (1142
and, finally, from eqgn. (115)
5 T, 10 1Y 0 B?
) E il s ) hwome
2 eq(|ve]) \| B oy RB 20 (1152)

Poi T, T, ®

I e

X(&+1+ e(CD-‘P)_&(H 2ni)(_9r—lP]noTi

5. The Field Equations

The set of equations is completed by using the quasi-neutrality condition (to
higher order than introduced in the previous Section) and the parallel Ampeére’s
law, as in Ref.1. These will only be briefly discussed here, focussing on any
differences from Ref.1 arising from the more complete description of the
electron and ion continuity equations in the previous Sections and, effectively, a

novel calculation of the neoclassical angular toroidal viscosity.

A convenient approach to imposing quasi-neutrality in higher order is through

the vorticity equation, obtained by taking the charge density moment of the
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gyro-kinetic equations for both species and adding them. Setting N, = n,then

provides one relationship between ® and ¥ . The parallel Ampére’s law
provides a second and hence these two equations lead to an eigenvalue

condition on w, provided the solutions of the various continuity equations for

A, T, and T, areexpressed in terms of ® and ¥ .

(a) The Parallel Ampeére’s Law

The parallel Ampére’s Law states that

= ol (119)

We expand eqn. (119) in the localisation, X, expressing A, in terms of ¥ as

defined above eqn. (9), which we expand in the form ¥ =¥© +¥® +.... In

leading order we have

2
Yyl I d? ¢
|ico| RB oo S0 =00, (120)

while in next order

w1 d? (o -, :
- | i0)| Rqu dx 2 (%\Pm +1(q X (X)j = Mol (121)

leading to the solubility condition
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fqll 1 d2 0) J||B
— v )=— , 122
oq <R2>dX2 (X ) Ho |V\|1|2 (122)

where, from eqgn.(95),

<|vij>"5{<|v\lvr><|vB;|2><;2>]”'9“ﬂ e °ee<|v8uj|2><812><%>

x{(l—l.Slft)(i—e(q)—-lll)—&(l+ne)equ+0.34 (E—%ﬂj(l—o.%ft):l . (123)

Poe T, o T, ®

e e

f . 2 4 -T—r :Il»,
DB [ B Va7 P 119l g510
T T

pOe e e

(b) The Vorticity Equation

The vorticity equation was obtained in a previous publication [1]. Here we list
the key steps in its derivation and quote the final result. The procedure was to

add the velocity moments of the gyro-kinetic equations for the electrons and

ions, take the long wavelength limit: k?p? <<1 and exploit the lowest order

quasi-neutrality condition: N, =N, , to obtain
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vil ""2 BVY |=
n,B* dx?
e? o, ol | m2v2|vy|® g2 m v’
Z_J e 2e’B* d 7t e g OB
()] () ; X .
i J J ! , (124)
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where the divergence of the parallel current has been expressed in terms of

parallel gradients of A, ie. ¥, through Ampere’s law, eqn. (119). The
distribution functions 9; in the velocity space integrations over the magnetic

drift terms are expressed in terms of the quantities h,— and we note the final term

vanishes  for  up-down  symmetric  equilibria.  The  expansions
Y=v?+¥O+w® ; h =hy+h;+h,... are introduced and the equation

for ¥ solved order by order.

In leading order one finds ¥ is independent of 6, while the equation for ¥® :

w’R?*q* 00| u,R’B* ox R ?q 00\ B

2 V4 2 2 2 =
' i[ [V az(a—%\lf‘lqu’x‘lﬁmﬂ—i : i(pzj (125)

can be integrated, introducing a constant of integration which can in turn be

determined through a periodicity condition in 6 on ¥®. Applying the same
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periodicity condition on ¥® in second order provides the required equation for

POX):

2 _ 2 2 ?

ol I S B ) et e

o \[Vy[" /A5 B R'qob\ B o P\ B \IVy[T [\ [V

2 N1 A! ]2 ' 2
LA <L>< 1>< 1>< B >

©°d REAIVYT/ ABTRY[vy

1 B?
+E<W><;eJd3VLZ‘C’(g°‘LZ‘)> |

(126)

where we have substituted for 8B, from eqn. (58) (which has the effect of

replacing the VB drift by the curvature drift) and substituted for ¥ from the
solution of egn. (125). The term <Zejjd3vLZjCj(gojLZj)> represents the
i

contribution from the classical radial transport of toroidal momentum,

calculated in eqgn. (B.2) of Appendix B.

It remains to evaluate the term involving the h;, which we do by repeated

application of the gyro-kinetic equations for hy;, hy;, h,, and hgy with

41



integrations by parts in 6 and noting momentum conservation in ion-ion

collisions. The result can be expressed as

ozt aaleh)

Im.v v, o(V
_ 3 il I I " ' . Y™,
_|—<2 J.d { RZBq%(Q_ith+Cj(hj)+lmhj_wq R

(127)

- (xh;)}>'

The first term can be recognised as involving the neoclassical radial transport of

toroidal angular momentum:
<HNC> <2Id vm, v”vd”hj>, (128)

where the first non-vanishing contribution is from h3j. The right-hand-side of
expression (127) thus reduces to

!

(o] o

Further use of the gyro-kinetic equation and integrations by parts in 6 implies

) 3Q

by =L e o) ). (130

Assembling all the contributions to eqn. (126) and substituting for U;; from eqn.

(36),
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(131)

Here we have introduced the quantity D, =E+F+H, in the notation of

Glasser et al [3], and L, appearing in Ref. 12, where

_ HoPod B?
L_[Q'<1/R2><BZ>}<|VW|2> (132)

The quantity D, plays a role in the Mercier stability criterion: D, +1/4>0

[13], while the combination L+H inegn. (131) is given by

+H= lvlopz)q 1
L+H [Q'<1/RZ>}<IVWIZ> (133)

An expression for <HNC> has been given by Wong and Chan [9]:

<HNC> = 0.19(n0mi2Tift3/T“eS)dZi/dXZ, where T, = 7, //2, but we generalise

this in Appendix B for general geometry to obtain the total collisional toroidal

angular viscosity:
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where
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and

o 15(B%)" VB 1 1 /JioB\/1-aB\ /1-2B
= (j) dM<\/1xB>{<\/1xB>< B >< B >_< B’ >} (141)

Insertion of the results (135) and (136) completes the form of the vorticity
equation (131). Analytic evaluations of the coefficients in eqn. (136) in the large
aspect ratio limit are presented in Appendix B and are consistent with those in

Ref. 9.
6. Normalised Equations

It is convenient to introduce a new radial co-ordinate normalised to the semi-

collisional width, s, (but now expressed in terms of flux co-ordinates) and a set

of normalised parameters

1/2
' 2 2
se'ﬂ’4ﬂ[1.97lﬁ<i> I ] xsi_
q m, o \R

. en, ed eV n T, T,
0= , ¢ I \V:_y n:_)tez_!tiz_a
gTen;) Te Te nO e e
pJ:&! p: p ' qu_n_?a (142)
Poe Poe g ng

Bz 2 2

c- 4 izd(lvlopo"' )+[ 12 V\vaaB

q\B dy RB 00
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where 5, is the semi-collisional width in flux co-ordinates. As a consequence,

the normalised electron continuity equation (116) becomes:

L)
+s{(1—1-31ft{pe—(qo—w)—“afe\u}o.szt(l—o.ee ft)( —“wﬂ

32l s o
i) gl el
”'6”‘2<Blz><'22>sz"&‘“/"W*“lﬁzm“’+°'°2teﬂ”'97(2]2 Bz><:z>

E [ N e -

the electron thermal equation (117):

(143)

3 l1+nm, 5 . 1+2n, 5« 1+2n,
|:pe_ 6)‘1 €0+3<H0p0 >p£1—An H—Ac[pe +t, ~(p-v)- An \V]

2 B?

n
+3.16 32[(1—1.10fl)(pe —((p—w)—“&”e \yj+0.58 (1—1.10ft)[te —FWH

()
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135 (et e ot 22 v ]
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(144)
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the ion thermal equation (118):

3 pi_ﬂl¢+§ lvlopZOe 1+Ll+?ni
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Ampeére’s Law (122), with result (123) for j|| :

sl a2
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(146)

and the vorticity equation (131):
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(147)
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where

iﬁ—0.8<|v;|4><i>2d—l(pi +¢)+0.80 <£>T< ! >+(G(3)_G(2))_ d’ (p, + o)

ds? R?/ ds R?/ |\B* <BZ>2 ds*
12\° 1 /1\ /1\/1 1 v\ a*t,
+(—) 037 V(== [+ 054 =) 2.4 | ,
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d‘t,

+(03769-0.62G6" +0.94G® -02G® -0.74G“ )—d :
S

(148)
with G?, GP, G®, G® and G® given in eqgns. (137) - (141), respectively.

Because the ion thermal conductivity exceeds that of the electrons by

0(,/mi/me), the ion temperature is flattened over the semi-collisional width and

one can treat it as constant. In particular the terms involving the ion temperature

gradients in the classical and neoclassical toroidal viscosity (148) can be
neglected, simplifying it considerably. It is only in the region S~ (mi/me)l/4
that one needs to solve the ion thermal differential equation. As we shall see the

electron equations simplify in this region of large s, thus simplifying the form of

the ion thermal equation.

Equations (143) - (146) simplify if we ignore the classical and Pfirsch-Schlter
transport relative to the larger banana contribution. Furthermore, recognising

that the azimuthal fluxes are small and that g, = 2u,p,,/B? <<1, we obtain the

following simpler set. The electron continuity equation (143) becomes:
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the electron thermal equation (144) becomes:
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the ion thermal equation (145) becomes:

e
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and Ampeére’s Law (146) becomes:

1 1 n
S{pe ~ +Ane (p}+3.16 5{(1_1.10 ft)(pe —(¢—W)—Jﬂmwj+0.58 (1-1.10 ft)[te -
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(150)

(151)
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These approximations do not affect the vorticity equation (147).
7. Boundary Conditions and an Intermediate Region

The purpose in solving the above layer equations is to match solutions of a

given parity at s = 0 to the marginal ideal MHD solutions at large s, which

involve the tearing mode parameter, A", in order to determine the eigenvalue

® in terms of A’ . In this limit, when ® =0, E,oc ((0—\|/)—>0 :
p— &).?On, Vv and we can ignore the momentum flux, the solutions of eqn. (147)
e '0
v 1 : -
should behave as v ~S', v= _Ei —D, in the limit S— 0. However,

as they stand, they do not lead to (p—y)—0. In fact it is necessary to consider

an intermediate region consisting of two sub-layers: (i) a transition layer at
S=S§, ~ ff’z(mi/me)m, where an ion contribution to the electrical conductivity
enters; and another (i), at somewhat larger values of s,

s=s, ~ (i) ~ (MM, )J" | where parallel ion thermal transport forces
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t, > (T, /T, n,wod) and ensures (p—y)—0. Clearly s, and s, are not very

different and we can treat them together.

Let us first consider the simplification of the governing equations when S >>1.

The electron continuity equation (143) becomes:

+s{(1—1.31ft)(pe —((p—w)—l*a)”e \yj+0.34(1—0.67 ft{te —gjwﬂ
_‘siH<FQ'Z;Z> - <|312> <F':2>]p + <;2> <:2>(l.67p ~1.19t, -3.12t,)- <R|2;2>(pi +0)+ <1|3127> (1—ft)<:2>ti]

R )

+1.67f, g <Blz> <:2>55Hpe —(go—w)—“é;‘ewﬂ -0 .

(153)

However this last equation is dominated by its second term, which requires:
(1—1.31ft)(pe —(go—w)—ﬂwj +0.34 (1—0.67ft)(te —n%wj ~0, (154)
® ®

A similar balance, but with different coefficients, appears in the electron

thermal equation (144), so we can conclude that:
(m—(w—w)—ﬂw}zo, (te—”%wj;o = nzco—w%, (155)
Q)
so that egn. (153) simplifies further :
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With the results (154), the vorticity equation (147) reduces to
2 R e
s—(s )+6)(D +1] v, Ll L
o - 4)e 1+ T 1.+ T
f MNe fni
. (157)

1
<v 2> T
_ HoPoe Vv &SE(H%]((P—\I’)JF[H—%n'wJﬂ)

K 1 ds ®
R?

where we have neglected the viscous term, which is wvalid for

A

3/8(4& 12 TN . . . . .
s>(m,/m,) (86/\/*6)1 , with 0, the semi-collisional width normalised to the

plasma minor radius and V.. the electron collisionality parameter. Ampeére’s

law (146) retains its form.

However the simplified vorticity equation (157) does not reduce to the ideal
form and we must consider the intermediate layer: S~S, , S,. To address
this we first calculate the correction to the ion parallel velocity arising from the

parallel ion pressure gradient — this is achieved by modifying eqgn. (21) to give

an equation for the correction to the ion distribution function h;,
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<V_”Cii(hli)> - <?>h0i . (158)

Using the model ion-ion collision operator (27) we can calculate the resulting

A

modification to the ion velocity arising from hy; , obtaining

B, om

where we have used the results in egn. (155), which are valid at large s.

We see that in the absence of the small ion-electron collision frequency, the

friction with trapped ions determines the bulk ion velocity. This velocity

changes the parallel electron velocity term proportional to s* appearing in the
electron continuity equation (143). This additional contribution modifies the

behaviour (155) at large s:

(1—1.31ft)(pe ()0 ]+034(1 0.66 f )(
()

2

. T°° , (160)
_ e LI T )
8{(1+ TJ(@ v) 017( T mﬂ 0
where, using results for the collision integrals from Appendix A,
5/2 1/2
5, =0.95 (1;ft)[%J [mej <«<1. (161)

In this limit, egn. (146) reduces to
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We can also calculate the corresponding parallel ion heat flux, finding it is
dominated by the convective component due to the inverse dependence of the

parallel ion flow in eqgn. (159) on the trapped particle fraction:

119'x 3
R2Bq "
q
q

Q
5f7 (1
2 f,

*J o) (el g

This modifies eqgn. (145):

) wel

<>( 1@ >( :—
)

where

D =142 (HoPoe 1+l(1+?"i)+2l§c +0.27 8,57 (165)
3\ B T, o T, ®

and we have again used evaluations of collision integrals given in Appendix A .
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The new terms proportional to & dominate eqgns. (162) and (164) when

S >>S,, S, and require

p-y—0, t-—M¥ g (166)

A
&>

When all of conditions (155) and (166) are satisfied we see that eqn. (157) does

indeed reduce to the marginal ideal MHD equation:
s—(sw)+(D, +—jw:0 : (167)

To discuss the transition though the intermediate region we combine egns. (157)

and (146), modifying the latter to take account of egn. (160).

Using the expressions (155) for n and t, to express p and P, in terms of

@, v and t. we obtain
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(168)

+0.17

(p-v)

Then egns. (157) and (168), with t; given by eqn. (164) provide a fourth order
system of equations for ¢ and y to connect the semi-collisional electron

layer solutions to the ideal MHD region through the region S~S, , S,. Their
boundary conditions at large s are to match to the correct ratio of large and
small solutions arising from the ideal region and ensure ¢-w—0 . Thus the
jump in the ratio of large to small solutions through this layer, and hence the

layer A’ , can be computed.
8. Conclusions

We have derived a set of equations to describe the linear stability of semi-
collisional, neoclassical toroidal plasma in general geometry, albeit provided the

fraction of trapped particles is small to justify the use of a model, pitch angle
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scattering, collision operator and that the ions are magnetised. The assumption

that the ions are magnetised may require low magnetic shear or T, <«<T,,

otherwise a non-local model for the ion response will be needed [2].

This set of equations comprises a pair of second order radial differential

equations for the electron density, N (or pressure, P, ) and temperature, 'T'e

perturbations (egns. (116) and (117)), one for the ion temperature perturbation,

~

T., egn. (118) in terms of the perturbed electrostatic potential, ® , and parallel
vector potential, f&”, described by the potential ¥, with these two quantities in

turn being determined by Ampere’s law, eqn. (122), with eqgn. (123) for the
parallel current, and the vorticity equation, eqn. (131). The perturbed parallel

magnetic field is given simply in eqgn. (58).

The analysis of neoclassical electron physics has utilised the Spitzer functions
[5], where we remark that parallel gradients in perturbed electron temperature
that have no counterpart in standard neoclassical theory [6], necessitate the
introduction of the Spitzer function corresponding to parallel electron thermal
conduction. The vorticity equation requires a calculation of radial collisional
transport of toroidal angular momentum and we have needed to generalise the
treatment of Ref. 9 to arbitrary geometry, as in Appendix B, although still
assuming a small number of trapped particles. This calculation employed the

model ion collision operator. Analytical evaluations of the coefficients in the

57



large aspect ratio limit are presented there; these are consistent with the results

of Ref.9.

The introduction of general toroidal equilibria and the use of the Spitzer
functions extend the treatment of electron neoclassical physics in Ref. 2, as well
as providing a more consistent treatment of the neoclassical radial transport than
in Ref. 1. The general geometry aspect also means we have needed to include

classical collisional transport.

The resultant equations, summarised in normalised form in eqns. (143) — (148),
are equivalent to a twelfth order system of radial differential equations if all
effects are retained — it reduces to tenth order if we neglect the radial angular
momentum transport. However the relatively large ion thermal diffusivity
means one can treat the ion temperature as a constant over the semi-collisional
layer. (This also greatly simplifies the expression for the radial transport of
toroidal angular momentum given in eqgn. (136).) The system of equations then

reduces to tenth order and one only needs to solve a simplified version of the
jon thermal equation in the intermediate region, s~ (m,/m,)"*, where the

system reduces further to a fourth order set. A simpler version of egns. (143) —
(146) in which we ignore the subdominant classical and Pfirsch-Schliter fluxes

relative to the banana contributions, the smaller azimuthal fluxes and effects

58



proportional to B, =2u,p, /B> <<1, is presented in eqns. (149) — (152). The

vorticity equation (147) is unaffected by these approximations.

The solution of these equations in the narrow radial layer around a low-order
resonant surface needs to be matched to ‘external’ solutions of the marginal
ideal MHD equations. However, to achieve this matching, as pointed out in Ref.
2, we needed to consider the intermediate layer where small corrections arising
from the ion contribution to the electrical conductivity and the parallel ion
thermal diffusivity enter and ensure that the perturbed parallel electric field
vanishes. Since this correction is determined by the friction of the passing ion
population with the trapped ones, rather than the schematic ion sound model
suggested in Ref. 2, we were able to provide an explicit form for it. This
intermediate region is described by a fourth order set of equations, eqns. (157)
and (164) together with eqgn. (168), that allow a proper matching to the ideal
MHD region. Continuing the set of equations through this layer allows us to

obtain a dispersion relation

~

Ao)=A" (169)

where A’ is the toroidal tearing mode stability parameter [3] and A((D) IS

obtained from the solution of the layer equations, allowing for the effect of the

intermediate layer.
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Although our analysis is linear, the treatment of the semi-collisional,
neoclassical electron physics could be generalised to describe the evolution of
non-linear neoclassical tearing mode islands, extending the analysis of Ref. 14
for magnetised ions to this more collisional regime or be used in conjunction
with a numerical treatment for ions when the width of the poloidal ion Larmor
orbit is comparable to the island width [15]. Alternatively, it could serve to

incorporate neoclassical physics in the collisional model of Smolyakov [16].
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Appendix A: Some Collisional Integrals

Here we list numerical evaluations of the various integrals, including those

involving the Spitzer functions DY and D¥ using the tables in Refs 4 and 5.

(Note D® =-D/A and D® =2D/B as given in Tables | and Il of Ref. 5):

v, =1.153 v, {u?v,}=1.284 vy, {u*v,}=2701 v,,,

{D“) (U)} _ 2616, {D(Z)(“)} ~-0.898, {uD®(u)}=-8.207, uD?(u)}=-4.782,

u

{v.uD®(u)f= -2.972 vy, {v,uD?(u)}=-0.738v,,,

{v,}=0401 v,, {uzv”}=0.532 Vois {u4v“}=1.197 Vois

U2k, | =20.62 I vy, {u*iv,}=100.37 /vy
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Appendix B: Radial Toroidal Angular Momentum Transport

There are two contributions from the radial transport of momentum appearing in

the vorticity equation (131): the classical one,<nc>, and the neoclassical one,

("¢} We evaluate these in this appendix:

(a) Classical radial angular momentum transport

The expression for d*(11° )/ax* involves<2ejd3vLZjCj(ngLZj)>, where the sum is

J
dominated by the ions. Thus, substituting for 9, from eqgns. (8) and (22) and

recalling the definition of L, below eqgn. (2), we obtain

<nc>-e(%]4<|VB"j|4>dd; {jd3wfc{vf(f_§l+$+(”¥ SJ;H} (B

The collision integrals in egn. (B.1) can be evaluated using the entropy

functional S(f(V'),Q(V)) [8], with f =v;> and @|=v||(miv2/2Ti —5/2) . The
quantity S can be easily calculated using Cartesian co-ordinates in velocity
space, labelling the direction parallel to the magnetic field as the x-direction,
and introducing: u=(v'—v)2 and w=(v'+ V)2 to execute the velocity space
integrations. The result is

<HC>:_n0e(2miTij2 |V\V|4 d’ E+£+3i (B.2)
5t, | e’ B* /dx*|py T, T.| '
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(b) Neoclassical radial angular momentum transport

Equation (128) requires the evaluation of
I
<HNc> = <ZJ‘d3vmj Ev“vdrjhzj> , (B.3)
J

representing the radial transport of the toroidal angular momentum arising from

the parallel flow: Rv, = Iv/B. Noting that it is dominated by the ion

contribution , we express this quantity as

Iv Im?v?
ot 5[ ) @

In order to avoid the need to calculate h,;, we follow Ref 9 in defining an

adjoint function, g:

Iv lv Im?v?
2 : @‘Fcii(g):_ 2 I I ZH foi s (B.5)
R“Bq 00 R“Bqg 00| 2eB

so that, using the self-adjointness of the collision operator, integrations by parts

and the gyro-kinetic equation for h.;, we obtain

m? ) I [ ,
<HNC>:'E_2.<jd v%(%&q%(%}hb (B.6)

Using the gyro-kinetic equation for h,, and eqgn. (B.5) for g, expanding for

weak collisions, using further integrations by parts, we finally obtain

() = (1*)" + (1), (B.7)
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where

<HNC>A - %<Id3v%['é(%jz +%}Cii(hii)> (B.8)

and

11ve)? =_'%<jdsv'ih_i_ic”(g)>. (B.9)

B f,

Here hZ; is given by egn. (28) and the collision-less solution of eqn. (B.5) is

Im?v,
9= 57 o +G(\,v) (B.10)

where G is given by the collisional constraint that follows from egn. (B.5):

B Im?v;

—C.| = f . =0. .

<V”c,,( 2ois? w+G(LV)|)=0 (B.11)
Thus

g M[L} i <V’B>]fm _Imv? [;{ 1 _<£>}_}dx <V’B“’<“B>>}fo,, (B.12)

2 |B 3 (v 2e B \B/) 3 (v)

where the final integral is small in the trapped particle fraction.

It is helpful to re-write eqn. (B.8) as

(e - '%<Idsv%[é(m‘?"]2 +%Jc”(h;,)>. (B.13)
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The first term can be evaluated by using the model collision operator (27) acting

on h;; given in eqn. (64). Since the ion-ion collision operator vanishes when
acting on a displaced Maxwellian distribution, only the perturbed temperature
gradient terms in expressions (66) and (67) contribute. First we consider the
banana contribution (67). Integrating by parts in A, using the results (30), (32)

and the evaluations in Appendix A, we obtain

(=)™ = 0.37 <E;'2°>eti ('z?fi ﬂe ©_ <é>}£(—zz(;j (B.14)

where

GO - 15(8°)° <i1/BIMaX . ML= 28) > . (B.15)

4 B? 0 < 1—7»B>

For the Pfirsch-Schliter contribution we apply the collision operator directly to

eqgn. (66). The result is

o)) e

Thus the total contribution to (T1"*)™ is given by the sum of results (B.14) and

(B.16):

()™ = 0.37 ”TOie ('Zr:;Ti Jz{éf;z + <§> 2 <Blz> <§>}£{—Z(i—] (B.17)
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Equation (B.13) also has a contribution from the function g, which is labelled
<HNC>A2. The contribution to this from the banana term in h,;, eqn. (67), can be
evaluated using egn. (B.12) for g. We employ the model collision operator,

recalling the banana contribution to Uﬁi =0, and integrate by parts in A twice.

Since h2™ is localised, we can approximate 5(7»V|T 59/57»)/57» ~ —Bv*Log/oN .
The integral term in expression (B.12) for g only contributes significantly as A
enters the trapping region, but remains small (i.e.O(SX) compared to the first
term, where OA is the trapped width in A ) and can be ignored. Finally, inserting
expression (67) for hlBia”, performing the velocity space integrals recalling the

results in Appendix A, and changing the order of the A - integration and the

( > averaging operation, we obtain

() 037 Ti?OBi)(Izr:;Ti j2{4<é><%>2 %}%G_j (B.18)

c® 15YBun  (BVI-IB) [ i5B\ 15, ,/1\YBus  gia?

o] a | d“<1_m>< 5 >+5<B ><E> ! B8] e
_E<Bz>1/BMaXdM 1 <x/1—kB>1/BIMaX dr’
8 0 (Vi-1B)\ B v (Vi-uB)
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The calculation of the Pfirsch-Schluter contribution from egn. (66) is more

straightforward. We evaluate the collision operator acting on hlpis, again

neglect the small integral tern in g and evaluate the velocity space integrals

using the results in Appendix A. The result is:

Combining the results from eqns. (B.17) and (B.21), we finally obtain
RN A LA AR <A>+<G“”—G<”> @ (1)
r (e B/ \B*/\B/ (B*)\B"/ (B?)" |&x*(T,

(B.22)

Turning to the quantity <HN°>B, we first observe that the periodicity constraint

(B.11) allows us to rewrite egn. (B.9) as

<HNC>B =—ImTi<jd3V é\;!i {hiév” _<hili3v” >JCH(9)> | (B.23)
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We introduce the three contributions to h,; from eqn. (64), use the model ion-

ion collision operator (27), substitute

og  Im2v?[ 1 (v,/B)
P (5‘ v Jf 50

as follows from eqgn. (B.12), and integrate by parts in A . The contribution from

hi'*" is:

i 200 T )2 ® | 42 (B T
<HF|OW> :O.Sonoe 1 (I mlelj {< 1 >_ G ] d (&4_@_1173} , (825)

T, <BZ> e B? <BZ> dx? P T, T,

where
o 158" [ 1 VB (A7) | 70)
¢ =" <§ é M <«/1x13>< B > (B.26)

that fromh;® is:

o _ggonee(PmT Y /1) 1 /1) 6% |d® (B ed T
1) -oro (1 j[@_ <Bz><§>+<Bz>z]dx—z[p—o.+?,-°-25f}

(B.27)

where
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6O= (82" | dia .

4 0 (Vi-2B)

15, 2B 1 <M>{<Bm> <m>} (B.28)

and from h* is:

gl [3) g2l e

where

o 15(B%) VBy, 1 1 /Ji-3B\/1-aB\ /1-2B
ST ch d“<\/1x13>[<\/1m>< B >< B >_< B >] - (B:30)

Consequently, combining results (B.25), (B.27) and (B.29), we obtain the result

<HNC>B _ O8OE[|2m2ITI}2|:<i4>+ (G(S) _cz;(Z)):| dZ2 [ﬂ—i_@]
T, | e B <Bz> ax“(po T

oe(lzmiTiﬂo 2< 1 >+(0.74(G(1)/3+G‘4))0.94G(2’+O.ZG(3))] d2 [i}
. (T

()

(B.31)
Finally, combining results (B.22) and (B.31), we obtain the expression for the

neoclassical toroidal angular viscosity:
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e [l G o) e

2 2 =~
J (037G6© -0.62G® +0.94G® —0.2G® -0.74G® )d—(lJ .

+
dx? | T.

n,e (1°mT,
1:i<Bz>2 e’

This is the expression appearing in egn. (136). It is interesting to consider the

large aspect ratio limit with B=BO(1—scose),s=r/R0<<1. Analytical

evaluation of the coefficients in egn. (B.32) in this limit yields

()

2 ) o , /= ) (3 (B.33)
_ N ! Ti} 0-882d_2 &+£ —0.7483/2d_2 L +O(€2)d_2 1
7, | e°B; dx“\py T, "\ T, ST,

in agreement with Ref. 9.

June 21, 2017
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