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Abstract 

A set of layer equations for determining the stability of semi-collisional tearing modes in an 

axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit is 

provided. These can be used as an inner layer module for inclusion in numerical codes that 

asymptotically match the layer to toroidal calculations of the tearing mode stability index,  . 

They are more complete than in earlier work and comprise equations for the perturbed 

electron density and temperature, the ion temperature, Ampère’s law and the vorticity 

equation, amounting to a tenth order set of radial differential equations. While the toroidal 

geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, 

parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of 

trapped particles is small for the banana regime contribution. This is to justify the use of a 

model collision term when acting on the localised (in velocity space) solutions that remain 

after the Spitzer solutions have been exploited to account for the bulk of the passing 

distributions. In this respect, unlike standard neoclassical transport theory, the calculation 

involves the second Spitzer solution connected with a parallel temperature gradient, because 

this stability problem involves parallel temperature gradients that cannot occur in equilibrium 

toroidal transport theory. Furthermore, a calculation of the linearized neoclassical radial 

transport of toroidal momentum for general geometry is required to complete the vorticity 

equation. The solutions of the resulting set of equations do not match properly to the ideal 

MHD equations at large distances from the layer, and a further, intermediate layer involving 

ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to 

achieve this matching and allow one to correctly calculate the layer . 

 

1. Introduction  

A number of phenomena in tokamaks, such as the saw-tooth oscillations, 

plasma disruptions and confinement degradation, appear to involve tearing 
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mode activity. Studies of the linear tearing stability for hot plasma have 

exploited the separation of scales between a narrow ‘inner’ radial region around 

a resonant surface where reconnection processes occur and the remaining 

‘external’ region where a marginal ideal MHD model is adequate. The ideal 

MHD solution, characterised by a quantity , is matched to a corresponding 

quantity  iγωˆ   calculated from the inner  solution in order to determine the 

mode frequency ω  and growth rate, γ . Whereas early studies of linear stability 

used a simple resistive MHD model for the inner layer, present day, hot, 

tokamaks require a much more complete physics model.  

In a previous paper [1] we presented layer equations for determining the 

stability of semi-collisional tearing modes in a toroidal plasma in the banana 

regime of collisionality ( jbeffj, ων  where 2

tjeffj, /fν~ν is the effective collision 

frequency and cthjtjb /Lvf~ω  the bounce frequency of a particle of species j,   tf  

<< 1 being the fraction of trapped particles, jν  the frequency for 90-degree 

Coulomb collisions and cL  the connection length around the torus), therefore 

incorporating neoclassical physics. The semi-collisional ordering involves the 

balance: e

2

the

2

|| /νvk~ω  , where  sθ|| x/Lkk  is the wavenumber parallel to the 

magnetic field ( θk  is a poloidal wavenumber, x is the distance from a rational 

surface and sL  is the magnetic shear length), thev   is the electron thermal speed 

and eν  is the electron 90-degree collision frequency, so that parallel transport 

processes compete with the mode frequency, ω .  This balance serves to define 

the semi-collisional width,  1/22

e

2

θ

2

see v/kLωνδ  .   

These equations were formulated for general axisymmetric geometry, thus in 

this respect extending the work of Fitzpatrick [2]. A consistent ordering for 

semi-collisional theory requires that, as well as the inclusion of parallel 

collisional transport processes, one should also incorporate collisional cross-

field transport. The equations in Ref 2 did indeed include both of these transport 

processes, albeit using a simplified model collision operator. While Ref. 1 

discussed the role of cross-field transport based on a Lorentz collision operator, 

thus ignoring like-particle collisions, the emphasis was on the basic semi-

collisional physics and these effects were ignored in the bulk of the paper. The 

role of the present paper is to rectify this limitation by providing a general 
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axisymmetric formulation, including cross-field transport which can be used as 

a semi-collisional tearing mode layer module for inclusion in numerical codes 

that asymptotically match the layer to toroidal calculations of the tearing mode 

stability index,   [3]. We also include some additional, relatively small, effects 

in the electron continuity and thermal equations arising from the poloidal 

magnetic drift that were ignored in Ref.1. 

The model pitch-angle scattering collision operator used in Ref. 2 provides a 

good description for distribution functions localised in velocity space around the 

trapped particle regions, but electric fields, parallel pressure gradients and 

thermal forces due to parallel temperature gradients generate distortions of the 

whole passing particle region. Nevertheless this can be circumvented by the use 

of the Spitzer functions [4, 5] to account for these drives, as demonstrated in 

Refs. 6, 7, 8; we shall also adopt this approach here. The calculation closely 

follows neoclassical transport theory but differs in one respect. In equilibrium 

the electron density and temperature are constant on a flux surface and the only 

parallel driving force is due to the toroidal electric field, resulting in a role for 

the Spitzer function related to electrical conductivity. In stability theory, 

however, parallel gradients of both density and electron temperature can persist, 

leading to the need to involve the Spitzer function describing the parallel heat 

flux. The calculation below makes one assumption, namely that the fraction of 

trapped particles is small. This can be relaxed, albeit leading to more complex 

algebra, but the distribution functions become less localised and the asymptotic 

accuracy of the approach is compromised.  The derivation of the vorticity 

equation calls for an expression for the neoclassical radial transport of toroidal 

momentum and we extend previous work [9] to cover more general geometry, 

though needing to use a model collision operator in order to determine the 

required adjoint function. 

In Section 2 we introduce the gyro-kinetic model for electrons and ions. An 

appropriate ordering scheme is used to obtain solutions for the ion and electron 

distribution functions in Section 3. To complete these solutions, equations for 

the perturbed densities and temperature of the two species are required. These 

are obtained in Section 4. Section 5 develops Ampère’s law and the vorticity 

equation to complete the set of equations needed to calculate  iγωˆ  . A 

calculation of the neoclassical radial transport of toroidal angular momentum 

for general geometry, required in the development of the vorticity equation, is 
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performed in Appendix B. Section 6 introduces a set of convenient 

normalisations for the set of equations.  In Section 7 we discuss an intermediate 

radial region needed to connect the solutions of this set of equations to the ideal 

MHD region where  is defined. Finally we draw conclusions in Section 8. 

 

2. The Gyro-kinetic Equation 

We describe the plasma species j by the gyro-kinetic equation [10] 
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where  b is a unit vector along the magnetic field, ||v  is the particle velocity 

along the magnetic field,   is the perturbed electrostatic potential, ||A  is the 

perturbed parallel component of the vector potential, ||δB  is the parallel 

component of the perturbed magnetic field and we have written the perturbed 

distribution  as          

                                 
0j
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jjj f
T

e
L iexpgfδ




 ,          (2) 

with perturbation time dependencies:  tiωexp   .  Here, jj Ω/.L bvk  , with  

k  the wavenumber and 
v  the velocity perpendicular to the magnetic field, is 

the gyro-phase factor, the operation A  is a gyro-phase average over the quantity  

A, 10,J  are Bessel functions of argument: jj /Ωvkz  ,  

       ψ/2TvmexpψT/2πmψnf j

2

j
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jjj0j   are Maxwell distributions, with ψ  the 

poloidal flux, and  
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with v the particle speed, j  the cyclotron frequency of species j, κ  the 

curvature vector,   the toroidal mode number of the perturbations and all 
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gradients are taken at constant  vμ, , with 2Bvmμ 2

j   the magnetic moment, 

or  v,  with 2

jv/m2μλ   (thus  |||| vsignσwith,λB1σvv  ).  If θ  is 

defined so that the safety factor θ./ .q  BB  , where ψI  B ,  is a 

flux function, then 
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so if we let 

     mθi

jj eθr,gθ,r,g   
              (5) 

etc., then 
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I
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                (6) 

          where dq/dψqx;qmq    with sψψx  , sψ  being the resonant surface 

where  sψqm  ; prime denotes a derivative with respect to ψ , or equivalently, 

x. 

Thus 
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Assuming both species are magnetised with 1Ω/vk j  , we expand  

 
jj iL1iLexp   and the Bessel functions for small jz . We also introduce jh : 
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where    |||| ωi/A , so that  the parallel electric field, ||E , is given by 
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θBqR

I
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Then the fundamental kinetic equations are 
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We note that relations (2) and (8) imply the perturbed density jn~  is given by 
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where jn̂  is the leading contribution to the density from jh . 

The perturbed and equilibrium quasi-neutrality conditions,  

        0ieie nnn;n~n~n~  ,                       (12) 

allow us to obtain 
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Similarly from eqns. (2) and (8) we can obtain the perturbed temperatures: 

  .
ω

ηω

T
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ω
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T
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T

T
~

T

T̂ i*e
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i

i
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e

e

e  ,            (14) 

where      jj

2

j

3

ji h3/2/2Tvmvd/32TT̂     is the contribution from  jh   etc. 
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3. The Ion and Electron Solutions 

(a)  The Ion Solution 

We consider the ‘collisional’ case: ων ii  . Introducing the proton charge, e, we 

have  
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We solve this equation by introducing an ordering scheme in terms of a small 

parameter, iε , where bi

2

iθdrbiiiidr ωε~ω~ω;ωε~ν~ω ; we also order 

ii ε~z .   Although we shall later assume a small number of trapped particles, 

1f t  , we do not order it in iε . The radial magnetic drift frequency, driω , 

exceeds the azimuthal drift frequency, θdrω , because of the narrow radial width 

of the semi-collisional layer.  

Writing ...hεhεhh 2i

2

i1ii0ii  , the lowest order solution satisfies 

                             σx,λ,v,hh0
θ

h
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                                                 (16) 

while in first order we obtain 
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where we note 
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Thus   1ih  for passing particles can be annihilated by applying the operation: 

  ||/v...B : 

,         (19)  
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since 
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For trapped particles we integrate along the bounce orbit, summing over σ  in 

the usual way, to obtain the constraint 
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  ,                                                          (21) 

where the integration is now between bounce points. This determines 0ih , 

yielding: 
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where j

2

j

2 /2Tvmu   . 

The equation for 1ih can then be integrated to give 
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where  
1iH remains to be determined. This can be rewritten as 
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where i00i Tnp  , on using eqns. (13) and (14). Note that the quantities ip~  and 

iT
~
  thus defined, depend on ω . 
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The equation for 2ih is 
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(where, for most purposes, we can ignore the small  ion – electron collisional 

term, but see Section 7 later), which provides the constraint 
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For the ions we take the model pitch-angle scattering collision operator that 

conserves momentum [11]:  
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The constraint (26) yields an expression for 
1iH  and we find: 
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where   cλλH   is the Heaviside function and 
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Using eqn. (28) and integrating over velocity space:  
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where we have defined the symbol   .....   by 
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where  tc f1f  , with   tf  the trapped particle fraction defined by 
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Solving self-consistently for *
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1A  and  (i)

2A  from eqn. (24) 

and using the values of the collisional integrals from Appendix A, we obtain:     
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Then one can calculate the ion parallel flux from eqn. (28), to give                 
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It remains to address the determination of ii T̂andn̂ ; in̂  is already given in 

terms of n~ by eqn. (13), whereas iT̂  is obtained by applying the operator 
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since it annihilates the first term on the left by means of the flux surface average 

and the collision term, )(hC 2ii
, due to its conservation properties. This will be 

elaborated in Section 4 (b). 

(b)  The Electron Solution 

For the electrons, eqn. (10) becomes  
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We employ a related ordering scheme to that of the ions in order to solve eqn. 

(38) for the electrons, introducing another small parameter, eε , where 

be

2

eθdrebieeedr ωε~ω~ω;ωε~ν~ω . However, the semi-collisional electron 
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model requires the additional ordering: cthe
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As in the case of the ions,  1eh  can be annihilated for passing particles by 

applying the operation:   ||/v...B . For trapped particles we again integrate along 

the bounce orbit, summing over σ  in the usual way. Thus we obtain the 

constraint 
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which determines 0eh , yielding: 
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where now e

2

e

2 /2Tvmu   . The energy exchange term in the electron-ion 

collision operator is neglected (see eqn. (47) below), which makes the 

perturbation in the electron temperature independent of that in the ion 

temperature. 
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where the function 1eH  remains to be determined. This result can be rewritten as 
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with e00e Tnp  , where again we have used eqns. (13) and (14). 

The next order equation is 
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leading to the constraint 
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which determines  σx,λ,v,H1e . 

The electron collision operator takes the form  
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so that the constraint equation  becomes 
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with 
(2)

es

(1)

eses hhh  . Now that the collision operator is acting on a localised (to 

the trapped and barely passing region) distribution function we can use a model 

pitch-angle scattering operator for the electron-electron collisions [11]. 
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To remove the ion flow we write 
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The functions 
2)(1,

sh are given by [4, 5] 
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          (52) 

where 0eei /4νπ3τ   and (2)(1) DandD  are related to the normalised responses 

to a parallel  electric field and thermal force, tabulated in Ref. 4 (to be precise, 

2D/BDandD/AD (2)(1)   as given in Tables I and II of Ref. 5) 

So, on defining eieee ννν  ,  the constraint equation becomes 
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where 
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Integrating eqn. (54) in λ , we find  
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Using the definition of *

e||U  in eqn. (50) and integrating over velocity space, we 

can calculate  )h(hU s1e

*

e||    self-consistently. However, as argued in Ref. 8, 

)(f0BUBU ti||

*

e||  ,  provided   eeit /νν0f  . Thus result (55) simplifies to  
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It remains to determine ee T̂andn̂ ; these are obtained in Section 4 (b) by 

applying the operators   vd... 3 and      vd/2vm... 32

e  to the next order 

equation: 
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 .        (57)

       

4. The Perturbed Density and Temperatures 

In this Section we derive equations for the perturbed electron density and 

temperature and ion temperature in terms of the perturbed potentials   and  . 

The ion density perturbation can be obtained from the leading order quasi-

neutrality condition, see eqn. (12).   

The other perturbed field that these quantities depend on, is ||δB , which is 

obtained from the perpendicular component of Ampère’s law. The 

perpendicular current can be calculated from the first order in a Larmor radius 

expansion of the distribution function (2), again recalling eqns. (8), (22) and 

(42).  Introducing this into the perpendicular component of Ampère’s law yields 

[10] 

     ie0ie2

0||
T
~

T
~

nTTn~p~;
B

p~μ

B

Bδ
 .                             (58) 

In Section 5 we will discuss the parallel component of Ampère’s law and find 

that in leading order,   is independent of the poloidal angle, θ .  Since jn̂  and 
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jT̂  are also independent of θ , it follows from eqns. (13) and (14) that jn~ , jT
~

  

and      are  also independent of  θ . 

(a) The Perturbed Electron Density and Temperature 

As mentioned earlier, the determination of  eT̂andn̂ e  is accomplished by 

applying the annihilators        vd/2vm...andvd... 32

e

3
 , which both 

eliminate 3eh , to the third order equation (57): 

The first operation results in 
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                            (59) 

Here one can recognise the first three terms on the left-hand-side as representing, 

respectively, the surface-averaged contributions to the electron continuity 

equation of the divergences of the radial flux, erΓ  (which we will see below is 

related to Pfirsch-Schlüter and neoclassical radial transport), the parallel flux,  

e||Γ , and the ‘azimuthal flux’, 
Az

eΓ , while the fourth corresponds to the 

contribution from classical radial transport [2] . 

The second, the energy moment, takes the form 
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(60) 

with a similar interpretation in terms of fluxes. 

It is helpful to separate the electron and ion distributions into a Pfirsch-Schlüter-

like, PS

eh ,  and a banana neoclassical part, Ban

eh , and express the quantities 

jj T̂andn̂  in terms of  jj T
~

andn~ . Thus for the electrons we write 
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and: 
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where we have substituted for i||U  from eqn. (36). 

Similarly it is convenient to separate 1ih  in eqn. (28) into Pfirsch-Schlüter, PS

ih , 

and banana contributions, Ban

ih ,   writing: 
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i1i hh hh  ,            (64) 

where 
Flow

ih  describes the mean flow: 
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while 
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and   
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The first term represents a drifting Maxwellian and therefore does not 

contribute to the ion-ion collision term. 

(i)  Electron Radial Fluxes 

First we consider the radial fluxes arising from classical transport. Recalling the 

definitions of  0jh  and jL  and noting the conservation of momentum in like-

particle collisions, we obtain 
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 where r represents a ‘radial-like’ co-ordinate labelling flux surfaces, rv  being 

the corresponding radial component of the velocity. We note the gyro-

correction to the scattering target ion distribution has the form 
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              (69) 

The velocity integral can be evaluated by observing that it involves the matrix 

elements of the collision operator between Laguerre polynomials given in 

Section 4.5 of Ref. 8. The resultant contribution from eqn. (68) is the familiar 

Braginskii expression: 
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A similar calculation for the classical heat flux results in  
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so that the  classical energy flux, C

er,

C

er,

C

er, Γ)2/5(qQ  , satisfies 
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Turning to the leading term in eqn. (59), we can eliminate 2eh  by integrating by 

parts in θ  and using eqn. (45) to obtain 
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            (73) 

where the first term vanishes if the  equilibrium is up-down symmetric, which 

we take to be the case here. Thus, finally, we recognise this contribution as the 

divergence of the neoclassical radial flux 
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Likewise, for the thermal equation, we find  
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To evaluate the velocity integrals in eqns. (74) and (75), we recall the result (33). 

Considering the Pfirsch-Schlüter and banana contributions separately, we 

introduce their respective distribution functions. From momentum conservation 

it is again clear that only e - i collisions contribute to eqn. (74) in both cases. 

For the Pfirsch-Schlüter contribution the calculation has the same structure as 

the classical case, with the substitution  ||r vv   in the distribution function. 

However, since we are now considering the difference  es1e hh   , the scattering 

‘ion distribution’ is effectively at rest when evaluating the collisional matrix 

elements.  Recalling eqn. (62), the result is  
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For the heat flux, we obtain 
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Finally we consider the banana contribution. For the classical and Pfirsch-

Schlüter contributions we used the exact collision operator, since the 

distributions were not localised in velocity space. However, the banana 

contribution to ss1e hh   is localised and it is sufficient to use the model collision 

operator (50), which leads to        .                 
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Substituting expression (63), using result (36) and approximating 

i||

*

e|| BUBU   as discussed below eqn. (55), we obtain 
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Introducing the numerical values of the various collisional averages given by 

the integrals in Appendix A, this becomes: 
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Similarly, we find 
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leading to 
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(ii) Parallel Electron Fluxes and Plasma Current 

The contribution to eqn. (59) from the parallel flux e||Γ  is 

        1ee||21e||

3

2
hU

BqR

xqIi
hvvd

BqR

xqIi 






             (83) 

The part arising from the Pfirsch-Schlüter-like part of 1eh  can be calculated 

directly, but for the banana contribution we take advantage of the self-

adjointness of the collision operator to circumvent the fact that 1eh  is not 

localised in pitch-angle, while still allowing us to use the model collision 

operator [8]. 

We first consider the parallel current, which is needed for Ampère’s equation, 

but also provides an expression for ||eU . 
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We can readily calculate P S

||j ,  the current arising from the Pfirsch-Schlüter-like 

contributions to the electron and ion distribution functions given in eqns. (62) 

and (66), obtaining: 
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which becomes 
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 To calculate the banana regime neoclassical contribution, we write 
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so that 
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which reduces to 
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Now, recalling eqn. (48), we can write  
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Using the self-adjointness property of  (1)

se hC , we obtain 
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where we have used the definitions (52) and the model electron-electron 

collision operator (50), since   (2)

es

(1)

es1e hhh   is now localised. Evaluating this 

expression using result (63)  
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leading to  
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Combining expressions (85), (89) and (94), we obtain 

 
 

   








 

































































e

i

e

e

0e
2

0et

t

e

ee*

e

e

e

e

e*

e0e

e

t

22
e

0e

ei2||

T

T
~

95.1
T

T
~

19.1
p

p~
67.1

B

pIBf

0.66f1
T

Ψe

ω

ηω

T

T
~

0.34
T

Ψe
η1

ω

ω

T

Ψ-Φe

p

p~
1.31f1

R

1

B

B

qm

epxqiI
τ1.97

B

B

B

1
p~Ij



       (95)         

The first term is the usual Pfirsch-Schlüter current while the second term rep-

resents the effects of the parallel electron pressure gradient, the parallel electric 

field and parallel thermal force, whereas the final term is the bootstrap current. 

We can now calculate ||eU  from  
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j
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i||||e                 (96) 
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with i||U  given by eqn. (36). The contribution to the electron continuity equation 

from the divergence of the parallel flux (83) is then: 
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The energy equation involves the parallel heat flux  
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We can decompose ||eQ  as  
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The Spitzer contribution is given as  
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resulting in 
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Introducing the Pfirsch-Schlüter part of 1eh , eqn.(62) , we can calculate  the 

corresponding Pfirsch-Schlüter contribution to  ||eQ  directly, obtaining : 
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We formulate the banana neoclassical contribution for ||eq  by analogy to the 

neoclassical current, ||ej , as in eqn. (92), so that it can also be evaluated using the 

localised distribution function  (63): 
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Using expression (63), we obtain the banana contribution to  ||eq :                 
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Inserting the results (94), (101), (102) and (104) into eqn. (99), we finally obtain          
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 (iii)  Azimuthal Electron Fluxes 

Finally we require the contributions from the azimuthal drift terms that appear 

in eqns. (59) and (60).  
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This can be expressed as   
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Similarly, we also obtain 
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       (108)                

  (b)  The Perturbed Ion Temperature 

In the case of the ions there is no need to obtain the ion density equation for   in̂  

as it is determined by quasi-neutrality and given in eqn. (13). To obtain the 

equation for iT̂  we apply the operator    vd/2vm... 32

i  to eqn. (37).  
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Integrating the first term on the left hand side by parts and substituting for 
2ih  
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from eqn. (25), it can be written as the divergence of the neoclassical ion heat 

flux  
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The second term is the ion azimuthal flux and the third is the ion classical heat 

flux: 
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This can be evaluated in a similar manner to the electron case, resulting in  
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The calculation of the Pfirsch-Schlüter heat flux proceeds similarly to the 
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while the banana regime contribution is 
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Finally, the azimuthal drift contribution is  
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(c) Summary 

Here we collect together the above results to obtain the final form of the 

equations determining the electron density and temperature perturbations in 

terms of the perturbed fields  and  . The first, eqn. (59) can be written in the 

form 
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where /qB1/RxqIk 2

0||
  , θqk θ   and we have substituted eqn. (58) for ||δB .  

From eqn. (70) we have 
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From eqn. (76) 
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From eqn. (80) 
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From eqn. (97), we have defined 
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while from eqn. (107) we  have defined 
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Similarly for eqn. (60) we obtain 
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where, from eqn. (72), 
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from eqn. (77) , 
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and from eqn. (82),  
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 while from  eqn. (105), 
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and from  eqn. (108), 
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Summarising for the ions, we can rewrite eqn.(109) as: 
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where from eqn.(112) 
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from eqn. (113) 
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from eqn. (114) 
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and, finally, from eqn. (115) 
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5. The Field Equations 

The set of equations is completed by using the quasi-neutrality condition (to 

higher order than introduced in the previous Section) and the parallel Ampère’s 

law, as in Ref.1. These will only be briefly discussed here, focussing on any 

differences from Ref.1 arising from the more complete description of the 

electron and ion continuity equations in the previous Sections and, effectively, a 

novel calculation of the neoclassical angular toroidal viscosity. 

 A convenient approach to imposing quasi-neutrality in higher order is through 

the vorticity equation, obtained by taking the charge density moment of the 
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gyro-kinetic equations for both species and adding them. Setting ie n~n~  then 

provides one relationship between   and  . The parallel Ampère’s law 

provides a second and hence these two equations lead to an eigenvalue 

condition on ω , provided the solutions  of the various continuity equations for 

ie T
~

andT
~

,n~   are expressed in terms of   and  . 

(a) The Parallel Ampère’s Law 

The parallel Ampère’s Law states that 
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dx

Ad
ψ                                (119) 

We expand eqn. (119) in the localisation, x, expressing ||A  in terms of   as 

defined above eqn. (9), which we expand in the form ...)1()0(  .    In 

leading order we have  
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while in next order 
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leading to the solubility condition 
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where,  from eqn.(95), 
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 (b) The Vorticity Equation 

The vorticity equation was obtained in a previous publication [1]. Here we list 

the key steps in its derivation and quote the final result. The procedure was to 

add the velocity moments of the gyro-kinetic equations for the electrons and 

ions, take the long wavelength limit: 1ρk 2

i

2   and exploit the lowest order 

quasi-neutrality condition: in~n~e   , to obtain 
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where the divergence of the parallel current has been expressed in terms of 

parallel gradients of  Ψ,i.e.,A ||  through Ampère’s law, eqn. (119). The 

distribution functions  jg  in the velocity space integrations over the magnetic 

drift terms are expressed in terms of the quantities jh  and we note the final term 

vanishes for up-down symmetric equilibria. The expansions 

....hhhh...; 2j1j0jj

)2()1()0(   are introduced and the equation 

for   solved order by order. 

In leading order one finds )0(  is independent of θ , while the equation for  )1(  : 
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can be integrated, introducing a constant of integration which can in turn be 

determined through a periodicity condition in θ  on )1( . Applying the same 
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periodicity condition on )2(  in second order provides the required equation for 

(x))0( :          
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                           (126) 

where we have substituted for ||δB  from eqn. (58) (which has the effect of 

replacing the B  drift by the curvature drift) and substituted for  
)1(  from the 

solution of eqn. (125).  The term )L(gCLvde
j

2

j0jj

2

j

3

j   represents the 

contribution from the classical radial transport of toroidal momentum, 

calculated in eqn. (B.2) of Appendix B. 

It remains to evaluate the term involving the jh , which we do by repeated 

application of the gyro-kinetic equations for 3j2j1j0j hand,h,h,h  with 
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integrations by parts in θ   and noting momentum conservation in ion-ion 

collisions. The result can be expressed as 

       

   











































j

j2

||

jjjj

i

||

2

||||j3

j

j

||

2

||j3

hx
BqR

Iv
qihiωhCh

v

θBqR

Iv

B

vIm
vd

ω

I
i

h
B

v

θqR

I

B

vm
vd

ω

I
i



.   (127)                

The first term can be recognised as involving the neoclassical radial transport of 

toroidal angular momentum: 
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I
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where the first non-vanishing contribution is from 3jh . The right-hand-side of 

expression (127) thus reduces to  
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Further use of the gyro-kinetic equation and integrations by parts in θ  implies  
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Assembling all the contributions to eqn. (126) and substituting for i||U  from eqn. 

(36), 
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Here we have introduced the quantity HFEDI  , in the notation of 

Glasser et al [3], and L, appearing in Ref. 12, where 
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The quantity ID  plays a role in the Mercier stability criterion: 04/1DI   

[13], while the combination  L+H  in eqn. (131)  is given by 
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An expression for 
NCΠ  has been given by Wong and Chan [9]: 

  2
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23
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i0

NC /dxT
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de/τfTmn0.19Π  , where 2/ττ iii  , but we generalise 

this in Appendix B for general geometry to obtain the total collisional toroidal 

angular viscosity: 
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where 
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    with  
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Insertion of the results (135) and (136) completes the form of the vorticity 

equation (131). Analytic evaluations of the coefficients in eqn. (136) in the large 

aspect ratio limit are presented in Appendix B and are consistent with those in 

Ref. 9. 

6. Normalised Equations  

It is convenient to introduce a new radial co-ordinate normalised to the semi-

collisional width, eδ  (but now expressed in terms of flux co-ordinates) and a set 

of normalised parameters 
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where eδ  is the semi-collisional width in flux co-ordinates. As a consequence, 

the normalised electron continuity equation (116) becomes: 
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the electron thermal equation (117):       
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the ion thermal equation (118): 
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Ampère’s Law (122), with result (123) for ||j : 
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and the vorticity equation (131): 
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where         
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                  (148)   

with  
(4)(3)(2)(1)(0) GandG, G,G,G  given in eqns. (137) - (141), respectively. 

Because the ion thermal conductivity exceeds that of the electrons by 

 ei mm0 , the ion temperature is flattened over the semi-collisional width and 

one can treat it as constant. In particular the terms involving the ion temperature 

gradients in the classical and neoclassical toroidal viscosity (148) can be 

neglected, simplifying it considerably.  It is only in the region    1/4

ei /mm~s  

that one needs to solve the ion thermal differential equation. As we shall see the 

electron equations simplify in this region of large s, thus simplifying the form of 

the ion thermal equation. 

Equations (143) - (146) simplify if we ignore the classical and Pfirsch-Schlüter 

transport relative to the larger banana contribution. Furthermore, recognising 

that the azimuthal fluxes are small and that 1B/p~2μ 2

0e0e  , we obtain the 

following  simpler set.  The electron continuity equation (143) becomes: 
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the electron thermal equation (144) becomes:   
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the ion thermal equation (145) becomes: 
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and Ampère’s Law (146) becomes: 
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These approximations do not affect the vorticity equation (147). 

7. Boundary Conditions and an Intermediate Region 

The purpose in solving the above layer equations is to match solutions of a 

given parity at s = 0 to the marginal ideal MHD solutions at large s, which 

involve the tearing mode parameter,  , in order to determine the eigenvalue 

ω̂  in terms of  .  In this limit, when 0,ω̂   0ψE ||   ,  

ψ
nTω̂

p
p

0e

0




  and we can ignore the momentum flux, the solutions of eqn. (147)  

should behave as     I

ν D
2

1
ν,s~ψ   in the limit s .  However, 

as they stand, they do not lead to   0ψ  . In fact it is necessary to consider 

an intermediate region consisting of two sub-layers: (i) a transition layer at 

 1/4

ei

1/2

t1 /mmf~ss  , where an ion contribution to the electrical conductivity 

enters;  and another  (ii), at somewhat larger values of s,  

   1/4

ei

1/2

||,ie||,1 /mm~/χχ~ss  , where parallel ion thermal transport forces 
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  ω̂ψ/ηT/Tt ieii    and ensures    0ψ  . Clearly 1s  and 2s  are not very 

different and we can treat them together.  

Let us first consider the simplification of the governing equations when 1s  .  

The electron continuity equation (143) becomes: 
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However this last equation is dominated by its second term, which requires:  
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A similar balance, but with different coefficients, appears in the electron 

thermal equation (144), so we can conclude that: 
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ψn   ,        (155) 

so that eqn. (153)  simplifies further :  
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With the results (154), the vorticity equation (147) reduces to 
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where we have neglected the viscous term, which is valid for 

   1/2

e*e

3/8

ei /νδ̂/mms  , with eδ̂  the semi-collisional width normalised to the 

plasma minor radius and *eν  the electron collisionality parameter. Ampère’s 

law (146) retains its form. 

However the simplified vorticity equation (157) does not reduce to the ideal 

form and we must consider the intermediate layer:  21 s,s ~ s .  To address 

this we first calculate the correction to the ion parallel velocity arising from the 

parallel ion pressure gradient    this is achieved by modifying eqn. (21) to give 

an equation for the correction to the ion distribution function  1iĥ  
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Using the model ion-ion collision operator (27) we can calculate the resulting 

modification to the ion velocity arising from  1iĥ  , obtaining 
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where we have used the results in eqn. (155), which are valid at large s.         

We see that in the absence of the small ion-electron collision frequency, the 

friction with trapped ions determines the bulk ion velocity. This velocity 

changes the parallel electron velocity term proportional to 
2s  appearing in the 

electron continuity equation (143). This additional contribution modifies the 

behaviour (155) at large s: 
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where, using results for the collision integrals from Appendix A, 
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In this limit, eqn. (146) reduces to 
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We can also calculate the corresponding parallel ion heat flux, finding it is 

dominated by the convective component due to the inverse dependence of the 

parallel ion flow in eqn. (159) on the trapped particle fraction: 
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This modifies eqn. (145):   
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where  
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and we have again used evaluations of collision integrals given in Appendix A . 
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The new terms proportional to 
iδ  dominate eqns. (162) and (164) when 

21 s,ss   and require  

                                     0
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ψη
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T
t,0ψ i

e

i
i                      (166) 

When all of conditions (155) and (166) are satisfied we see that eqn. (157) does 

indeed reduce to the marginal ideal MHD equation: 

                0ψ
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Dsψ
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d
s I2

2









  .          (167) 

To discuss the transition though the intermediate region we combine eqns. (157) 

and (146), modifying the latter to take account of eqn. (160). 

 Using the expressions (155) for n and et  to express  ipandp   in terms of  

itandψ, , we obtain 
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Then eqns. (157) and (168), with it  given by eqn. (164) provide a fourth order 

system of equations for ψand  to connect the semi-collisional electron 

layer solutions to the ideal MHD region through the region 21 s,s ~ s . Their 

boundary conditions at large s are to match to the correct ratio of large and 

small solutions arising from the ideal region and ensure  0ψ  . Thus the 

jump in the ratio of large to small solutions through this layer, and hence the 

layer   , can be computed. 

8. Conclusions 

We have derived a set of equations to describe the linear stability of semi-

collisional, neoclassical toroidal plasma in general geometry, albeit provided the 

fraction of trapped particles is small to justify the use of a model, pitch angle 
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scattering, collision operator and that the ions are magnetised. The assumption 

that the ions are magnetised may require low magnetic shear or ei TT  , 

otherwise a non-local model for the ion response will be needed [2].  

This set of equations comprises a pair of second order radial differential 

equations for the electron density, n~  (or pressure, ep~ ) and temperature, eT
~

 

perturbations (eqns. (116) and (117)), one for the ion temperature perturbation, 

iT
~

, eqn. (118) in terms of the perturbed electrostatic potential,  , and parallel 

vector potential, ||A
~

,  described by the potential  , with these two quantities in 

turn being determined by Ampère’s law, eqn. (122), with eqn. (123) for the 

parallel current, and the vorticity equation, eqn. (131).  The perturbed parallel 

magnetic field is given simply in eqn. (58). 

The analysis of neoclassical electron physics has utilised the Spitzer functions 

[5], where we remark that parallel gradients in perturbed electron temperature 

that have no counterpart in standard neoclassical theory [6], necessitate the 

introduction of the Spitzer function corresponding to parallel electron thermal 

conduction. The vorticity equation requires a calculation of radial collisional 

transport of toroidal angular momentum and we have needed to generalise the 

treatment of Ref. 9 to arbitrary geometry, as in Appendix B, although still 

assuming a small number of trapped particles. This calculation employed the 

model ion collision operator.  Analytical evaluations of the coefficients in the 
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large aspect ratio limit are presented there; these are consistent with the results 

of Ref.9. 

The introduction of general toroidal equilibria and the use of the Spitzer 

functions extend the treatment of electron neoclassical physics in Ref. 2, as well 

as providing a more consistent treatment of the neoclassical radial transport than 

in Ref. 1. The general geometry aspect also means we have needed to include 

classical collisional transport. 

The resultant equations, summarised in normalised form in eqns. (143) – (148), 

are equivalent to a twelfth order system of radial differential equations if all 

effects are retained – it reduces to tenth order if we neglect the radial angular 

momentum transport.  However the relatively large ion thermal diffusivity 

means one can treat the ion temperature as a constant over the semi-collisional 

layer. (This also greatly simplifies the expression for the radial transport of 

toroidal angular momentum given in eqn. (136).) The system of equations then 

reduces to tenth order and one only needs to solve a simplified version of the 

ion thermal equation in the intermediate region,  1/4

ei /mm~s , where the 

system reduces further to a fourth order set.  A simpler version of eqns. (143) – 

(146) in which we ignore the subdominant classical and Pfirsch-Schlüter fluxes 

relative to the banana contributions, the smaller azimuthal fluxes and effects 



59 

 

proportional to 1B/p~2μ 2

0e0e  , is presented in eqns. (149) – (152). The 

vorticity equation (147) is unaffected by these approximations. 

The solution of these equations in the narrow radial layer around a low-order 

resonant surface needs to be matched to ‘external’ solutions of the marginal 

ideal MHD equations. However, to achieve this matching, as pointed out in Ref. 

2, we needed to consider the intermediate layer where small corrections arising 

from the ion contribution to the electrical conductivity and the parallel ion 

thermal diffusivity enter and ensure that the perturbed parallel electric field 

vanishes.  Since this correction is determined by the friction of the passing ion 

population with the trapped ones, rather than the schematic ion sound model 

suggested in Ref. 2, we were able to provide an explicit form for it.  This 

intermediate region is described by a fourth order set of equations, eqns. (157) 

and (164) together with eqn. (168), that allow a proper matching to the ideal 

MHD region. Continuing the set of equations through this layer allows us to 

obtain a dispersion relation 

       ωˆ  ,                     (169) 

 where   is the toroidal tearing mode stability parameter [3] and  ω̂  is 

obtained from the solution of the layer equations, allowing for the effect of the 

intermediate layer. 
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Although our analysis is linear, the treatment of the semi-collisional, 

neoclassical electron physics could be generalised to describe the evolution of 

non-linear neoclassical tearing mode islands, extending the analysis of Ref. 14 

for magnetised ions to this more collisional regime or be used in conjunction 

with a numerical treatment for ions when the width of the poloidal ion Larmor 

orbit is comparable to the island width [15]. Alternatively, it could serve to 

incorporate neoclassical physics in the collisional model of Smolyakov [16]. 
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Appendix A:  Some Collisional Integrals 

Here we list numerical evaluations of the various integrals, including those 

involving the Spitzer functions 
(2)(1) DandD  using the tables in Refs 4 and 5. 

(Note  2D/BDandD/AD (2)(1)   as given in Tables I and II of Ref. 5): 
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Appendix B:  Radial Toroidal Angular Momentum Transport 

There are two contributions from the radial transport of momentum appearing in 

the vorticity equation (131): the classical one, CΠ , and the neoclassical one, 

NCΠ . We evaluate these in this appendix: 

(a)  Classical radial angular momentum transport 

The expression for 2C2 /dxΠd  involves )L(gCLvde
j

2

j0jj

2

j

3

  , where the sum is 

dominated by the ions.  Thus, substituting for 0ig  from eqns. (8) and (22) and 

recalling the definition of 
iL below eqn. (2), we obtain 
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The collision integrals in eqn. (B.1) can be evaluated using the entropy 

functional     vĝ,vf̂S   [8], with  5/2/2Tvmvĝandvf̂ i

2

i||

3

||  . The 

quantity S can be easily calculated using Cartesian co-ordinates in velocity 

space, labelling the direction parallel to the magnetic field as the x-direction, 

and introducing:     /2and/2 vvwvvu  to execute the velocity space 

integrations. The result is  
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  (b)   Neoclassical radial angular momentum transport 

Equation (128) requires the evaluation of  

                       
j

2jdrj||j

3NC hvv
B

I
mvdΠ ,                     (B.3) 

 representing the radial transport of the toroidal angular momentum arising from  

the parallel flow: /BIvRv || . Noting that it is dominated by the ion  

contribution , we express this quantity  as  
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In order to avoid the need to calculate 2ih , we follow Ref 9 in defining an 

adjoint function,  g: 
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,            (B.5) 

so that, using the self-adjointness of the collision operator, integrations by parts 

and the gyro-kinetic equation for  2ih , we obtain 
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Using the gyro-kinetic equation for 2ih  and eqn. (B.5) for g, expanding for 

weak collisions, using further integrations by parts, we finally obtain 
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where 
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Here  1ih  is given by eqn. (28) and the collision-less solution of eqn. (B.5) is  
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where G  is given by the collisional constraint that follows from eqn. (B.5): 
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Thus 
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where the final integral is small in the trapped particle fraction. 

It is helpful to re-write eqn. (B.8) as 
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The first term can be evaluated by using the model collision operator (27) acting 

on 1ih  given in eqn. (64). Since the ion-ion collision operator vanishes when 

acting on a displaced Maxwellian distribution, only the perturbed temperature 

gradient terms in expressions (66) and (67) contribute. First we consider the 

banana contribution (67). Integrating by parts in  λ ,  using the results (30), (32) 

and the evaluations in Appendix A, we obtain 
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For the Pfirsch-Schlüter contribution we apply the collision operator directly to 

eqn. (66). The result is  
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Thus the total contribution to 
A1

NCΠ  is given by the sum of results (B.14) and 

(B.16): 
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Equation (B.13) also has a contribution from the function g, which is labelled 

A2
NCΠ . The contribution to this from the banana term in  1ih , eqn. (67), can be 

evaluated using eqn. (B.12) for g. We employ the model collision operator, 

recalling the banana contribution to 0U*

i||  , and integrate by parts in λ  twice. 

Since 
Ban

1ih  is localised, we can approximate    λg/λBvλ/λg/λv 22

||   . 

The integral term in expression (B.12) for g only contributes significantly as λ  

enters the trapping region, but remains small (i.e.  δλ0  compared to the first 

term, where δλ  is the trapped width in λ ) and can be ignored. Finally, inserting 

expression (67) for 
Ban

1ih , performing the velocity space integrals recalling the 

results in Appendix A, and changing the order of  the  λ - integration and the 

 averaging operation,  we  obtain  
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The calculation of the Pfirsch-Schlüter contribution from eqn. (66) is more 

straightforward. We evaluate the collision operator acting on 
PS

1ih ,  again 

neglect the small integral tern in g and evaluate the velocity space integrals 

using the results in Appendix A. The result is: 
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Thus the total contribution to 
A2

NCΠ  from results (B.18) and (B.20) is 
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Combining the results from eqns. (B.17) and (B.21), we finally obtain             
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Turning to the quantity 
B

NCΠ , we first observe that the periodicity constraint 

(B.11) allows us to rewrite eqn. (B.9) as 
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We introduce the three contributions to i1h  from eqn. (64), use the model ion-

ion collision operator (27), substitute 
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as follows from eqn. (B.12), and integrate by parts in λ . The contribution from   

Flow

1h  is: 
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where  
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 that from PS

1h   is:    
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                (B.27)                             

where   
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and from Ban

1h  is: 
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Consequently, combining results (B.25), (B.27) and (B.29), we obtain the result  
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                    (B.31)                                                                                                                                                                                                                                                  

Finally, combining results (B.22) and (B.31), we obtain the expression for the 

neoclassical toroidal angular viscosity:  
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(B.32)

This is the expression appearing in eqn. (136).  It is interesting to consider the 

large aspect ratio limit with   1r/Rε,θcosε1BB 00  . Analytical 

evaluation of the coefficients in eqn. (B.32) in this limit yields  
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in agreement with Ref. 9.         
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