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Oscillations of reflection high-energy electron diffraction (RHEED) intensities

are computed using dynamical diffraction theory. The phase of the oscillations is

determined using two different approaches. In the first, direct, approach, the

phase is determined by identifying the time needed to reach the second

oscillation minimum. In the second approach, the phase is found using harmonic

analysis. The two approaches are tested by applying them to oscillations

simulated using dynamical diffraction theory. The phase of RHEED oscillations

observed experimentally is also analysed. Experimental data on the variation of

the phase as a function of the glancing angle of incidence, derived using the

direct method, are compared with the values computed using both the direct and

harmonic methods. For incident-beam azimuths corresponding to low-symmetry

directions, both approaches produce similar results.

1. Introduction

Reflection high-energy electron diffraction (RHEED) is a

robust and convenient technique for monitoring the growth of

nanostructures at surfaces (Zdyb et al., 2001; Sadowski et al.,

2007; Ohtake et al., 2009; Krishnan et al., 2010). Recently, it has

been shown that RHEED measurements combined with the

use of ultrafast lasers can be applied to the investigation of

surface dynamics on femto- and picosecond time scales

(Janzen et al., 2006; Liang et al., 2012). Quantitatively accurate

methods for computing RHEED intensities, based on dyna-

mical diffraction theory, were developed primarily for static

singular flat surfaces (Ichimiya & Cohen, 2004; Peng et al.,

2004). Theoretical treatments were also generalized to include

electron absorption and diffuse scattering by random config-

urations of atoms on a growing surface (Dudarev et al., 1992,

1994; Dudarev, 1997).

RHEED became a broadly accepted practical tool for

monitoring evolving surface structures after the discovery of

the periodic intensity variation of electron beams reflected

from a surface during crystal growth [Harris et al., 1981; Wood,

1981; see also Herman & Sitter (1996) for more detail]. The

period of such intensity variations, termed RHEED oscilla-

tions, corresponds to the deposition of one new monolayer

onto a surface during growth. In the 1980s many experimental

observations of RHEED oscillations were reported,

describing conditions occurring during molecular beam

epitaxial (MBE) growth of crystals, where experiments were

performed in ultra-high vacuum. More recently, RHEED

intensity oscillations were discovered at gas pressures

considerably higher than the pressure characterizing mol-

ecular beam epitaxy conditions. For example, oscillations were

observed during pulsed laser deposition (Rijnders et al., 1997;
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Li et al., 2012). Several theoretical models for RHEED

oscillations (Pukite et al., 1988; Holmes et al., 1997; Peng &

Whelan, 1990) have been developed since the discovery of the

effect, although the range of validity of these models remains

limited. The subject has again attracted attention recently

(Vasudevan et al., 2014; Sullivan et al., 2015).

In this paper we focus on algorithms for processing

RHEED intensity oscillation data, and specifically on the

determination of generic parameters characterizing the oscil-

lations. For example, if we assume the availability of data

describing some statistically representative oscillation data

sets, we can characterize them by introducing parameters like

the amplitude of the oscillations, their phase, the decay time

constant etc. The values of such parameters can be determined

by examining the oscillating intensity curves and matching the

data to a chosen functional form. An alternative approach

would be to use Fourier analysis, as this enables one to filter

out fluctuations in the intensity oscillations. In general, inter-

preting intensity oscillations and analysing data proves quite

complex. We focus here on the specific question of how to

compare the phase of experimentally observed oscillations

with that of oscillations predicted theoretically, assuming

perfect layer-by-layer growth. RHEED oscillations observed

experimentally are usually relatively smooth, as shown in

Fig. 1, and their phase can be readily determined by identi-

fying the interval of time to the intensity minimum during the

second period of oscillations. However, curves computed using

models based on dynamical diffraction theory often have a

fairly complex shape, as illustrated in Fig. 2, and this is why it

would be illuminating to compare the outcomes of analyses

performed using a direct approach and a Fourier deconvolu-

tion method.

This work extends studies described by Mitura et al. (1998,

2002). In our earlier work, the phase of oscillations derived

directly from experimental data was compared with the phase

computed using dynamical diffraction theory and then

analysed using the Fourier transform. In this study, we extract

phase information from curves computed using dynamical

diffraction theory, by applying two complementary approa-

ches: first we identify the interval of time to the second

minimum of oscillations, and then we perform harmonic

analysis of the oscillations. Before proceeding to the inter-

pretation of experimental data, we assess the advantages and

disadvantages of both approaches. We also use a different

model for crystal growth. Previously (Mitura et al., 1998, 2002),
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Figure 1
A typical example of the variation in RHEED intensity observed
experimentally. Vertical lines are drawn for t = T and t = 2T to help
identify the intensity variation over the second period of oscillations.

Figure 2
Examples of intensity oscillations used as input for the phase
determination algorithms. (a) Oscillations resembling a cosine-like
function. (b) Oscillations exhibiting double minima and maxima over a
period. (c) Intensity changes that are strongly asymmetric over a period.
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we assumed that the growing surface was reconstructed, but

the positions of atoms at the surface were taken to be identical

to those in the crystal bulk. Now, we start from a structural

model ignoring surface reconstruction, but then, for the

interpretation of experimental data, we use a model taking

reconstruction into account, with the positions of Ga and As

atoms at the surface being different from those in the bulk of

the crystal. We also use a slightly different definition of the

oscillation phase. In our earlier papers we assumed that the

phase varied in the interval from �� to �. Here, the values are

in the range from 1 to 2, in agreement with the definition by

Zhang et al. (1987) and Joyce et al. (1988).

The paper is organized as follows. In x2 we describe the two

approaches to phase determination and apply them to the

analysis of intensity oscillations predicted using dynamical

diffraction theory. In x3 we analyse experimental observations,

and in x4 we present our conclusions.

2. Two ways of determining the RHEED oscillation
phase

We assume that, for any glancing angle of incidence, we can

find the intensity of specular reflection by performing a

dynamical diffraction calculation, as shown for example by

Mitura et al. (1998, 2002) or Dudarev (1997). We are interested

in analysing RHEED intensities for the azimuthal orientations

of the incident beam that are off high-symmetry crystal-

lographic directions. For such orientations, the intensity of the

specular beam is almost insensitive to the lateral periodicity of

the crystal surface. Hence, the effective potential describing

the interaction between high-energy electrons and the crystal

can be assumed to depend only on the coordinate in the

direction normal to the surface (Dudarev et al., 1992). This

diffraction geometry is often referred to as the one-beam

RHEED condition.

We assume that the electron–atom interaction potential in

the growing layer is given by the potential of a complete

atomic layer multiplied by the surface coverage �, where 0 <

� < 1. For each glancing angle, the surface coverage varies on

a mesh of values defined by the number of points Ncov for

which, over one oscillation period, RHEED intensities are

going to be computed. Over one oscillation period, the values

of surface coverage for which we compute RHEED intensities

are � = 0, 1/Ncov, 2/Ncov, . . . , (Ncov � 1)/Ncov. Assuming

perfect layer-by-layer growth, for each glancing angle we vary

� and compute individual RHEED intensity versus time (i.e.

intensity versus surface coverage) oscillation curves.

We investigated the growth of atomically thin GaAs layers

on the (001) GaAs surface. The energy of the electrons was

10 keV. In this section, no surface reconstruction is assumed.

Furthermore, the results described below refer to dynamical

diffraction calculations, where the potential of interaction

between the incident electrons and the atoms is evaluated

ignoring thermal atomic vibrations. However, in x3 we use a

detailed model of the (2 � 4) reconstruction, which takes

thermal vibrations into account.

2.1. Direct determination of the phase

According to Zhang et al. (1987) and Joyce et al. (1988), the

phase of oscillations can be defined as ‘the time taken to reach

the second oscillation minimum normalized by the time of a

complete period’. The authors of the above papers introduced

a symbol t3/2/T to denote the phase of oscillations defined in

this way. For the cases illustrated in Figs. 1 and 2(a), this

definition can be readily applied, and one expects that the

phase would span the interval from 1 to 2. However, if

multiple intensity minima occur over the second period of

oscillations, as shown in Fig. 2(b), then the definition proposed

by Zhang et al. (1987) becomes ambiguous. To make sure that

the condition 1 � t3/2/T < 2 is satisfied even if the RHEED

oscillations exhibit multiple minima over each oscillation

period, we modify the definition given by Zhang et al. (1987).

We define t3/2 as the time corresponding to the lowest value of

intensity over the second period of oscillations, and then

define the oscillation phase by dividing the resulting value by

the period of oscillations T. The phase computed in this way is

denoted by (t3/2/T)dir.

The use of the above definition for (t3/2/T)dir when inter-

preting experimentally observed oscillations does not cause

any difficulty, as an oscillating intensity can be recorded as a

continuous function of time. However, curves computed

theoretically are somewhat more difficult to interpret, since

they are computed on a discrete set of points where each point

corresponds to a certain value of �.

The phase computed using the definition for (t3/2/T)dir given

above is shown in Fig. 3. The plots were generated using

several different values of Ncov. Although in principle we are

interested in the limit Ncov ! 1, the curve computed

assuming Ncov = 20 already provides a reasonably accurate

approximation.

The phase of oscillations determined using the direct

method is not a smooth function of the glancing angle, because

the number of data points spanning the range of surface

coverages � for which RHEED intensities are computed is

finite, i.e. it equals Ncov. Hence plots of the phase are

discontinuous (Fig. 3). Still, in the limit of large Ncov the plot of
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Figure 3
Plots of oscillation phase derived directly from the theoretical intensity
oscillation curves computed for two values of Ncov.
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the phase becomes a smooth function. However, there is a

reason why Ncov should not be taken as too large. The total

calculation time required to determine the phase is propor-

tional to Ncov, simply because Ncov different rocking curves,

each corresponding to its own value of �, must be computed.

In this paper, dynamical diffraction calculations are performed

for the one-beam condition, and hence they are relatively fast.

Under general many-beam RHEED diffraction conditions, a

significantly longer computation time would be required,

especially if diffuse scattering calculations were attempted

using a supercell method. This is why, in practice, it is desirable

to use a relatively modest number of points Ncov when

performing dynamical diffraction simulations.

2.2. Determination of the phase using harmonic analysis

Whereas the algorithm for determining the phase directly

from RHEED intensity curves described above may be

successfully applied to simple cases, it would be desirable to

introduce a more general definition of the oscillation phase,

especially given that any experimentally observed curve

involves small intensity fluctuations that need filtering out.

This can be achieved using Fourier analysis. Any periodic

function f(t), where f(t) = f(t + T) and T is the period, can be

represented by a Fourier series as follows (Mitura et al., 1998,

2002):

f ðtÞ ¼ A0

2
þ A1 cos

2�t

T
� ’1

� �
þ

X1
n¼2

An cos
2�nt

T
� ’n

� �" #
;

ð1Þ
where we assume that An � 0 for n � 1. The terms corre-

sponding to n � 2 can be filtered out and ignored. Since A0 is a

constant, we see that the general shape of the oscillations can

be described by only two parameters, A1 and ’1. Appendix A

shows how these two parameters can be found in practice.

We now compare values of phases derived from a direct

examination of oscillations with those deduced using

harmonic Fourier analysis. For oscillations with a simple

cosine-like function shape, the values computed using the two

approaches should be expected to agree well. To ensure this,

we need to introduce a normalization convention. For

example, we may compare values of ’dir , defined as ’dir �
2�[(t3/2/T)dir � 1.5], and ’harm, defined as ’harm � ’1 (Mitura et

al., 1998, 2002). In this study, we adopt a convention that

matches the range of variation of the phase given by Zhang et

al. (1987) and Joyce et al. (1988).

In what follows we assume that the phase (t3/2/T)dir defined

in x2.1 is equivalent to (t3/2/T)harm defined as follows:

ðt3=2=TÞharm � ’1

2�
þ 1:5; ð2Þ

where ’1 is the phase entering equation (1).

It is illuminating to see how the phase defined using Fourier

analysis depends on the number of mesh points Ncov used in

RHEED intensity calculations. Three plots of phase (t3/2/

T)harm computed using various values of Ncov are shown in

Fig. 4. All of them are smooth and it appears that the plot

computed for Ncov = 8 already approximates the limit

Ncov ! 1 fairly well.

2.3. Analysis of oscillations

In this section we compare phases of oscillations deter-

mined using the two methods described above. As a test, we

apply the phase determination algorithms to the intensity

oscillation curves computed theoretically using dynamical

diffraction theory. To produce the curves shown in Fig. 5, we

first compute RHEED intensity oscillation curves assuming an

off-symmetry azimuth and using dynamical diffraction theory,

as explained at the beginning of x2. Then, the phases of the

oscillations are determined as described in xx2.1 and 2.2. In

both cases, the number of mesh points Ncov used in the

calculations when approximating surface coverage during

growth is assumed to be 20. The incident angle step used in the

calculations is 0.01�, although for clarity the plots in Fig. 5 only

show points 0.05� apart.

Fig. 5 shows that the two plots are fairly similar, and they

differ only over relatively narrow intervals of variation of the

angle of incidence: from 1.9� to 2.5�, from 4.6� to 5.0�, and

from 7.2� to 7.4�. We note that, despite the fact that over the
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Figure 4
Plots of RHEED oscillation phase determined using harmonic analysis.
The plots correspond to several different values of Ncov.

Figure 5
Plots of the oscillation phase determined using the two different
approaches developed in this study (direct and employing a Fourier
series) for identical intensity oscillation curves computed for Ncov = 20.
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above intervals the values of the phase appear different, this

difference is not materially significant since the phase only

enters an expression for the observed intensity of the specular

beam through an argument of a periodic function.

To clarify the point, we consider two sets of cosine-like

oscillations that have the same period T, but are characterized

by slightly different positions of the intensity minima. If we

assume that the first set of oscillations has an intensity

minimum at t = 1.02T, whereas the minimum of the second set

is at t = 0.99T, we can say that the two sets are nearly identical.

If we apply the direct method of phase determination to the

two sets we discover that, for the first set, the value of the

phase predicted by the direct method is 1.02, whereas the

value of the phase derived from the second set is 1.99. The

reason for the somewhat unexpectedly large value of the

phase in the latter case is that the intensity minimum occurring

during the first period of oscillations t = 0.99T is not taken into

account in the analysis. Physically there is no difference

between the values of 0.99 or 1.99, and this example simply

illustrates the point that a direct approach may produce

discontinuous values if the phase is close to one of the

boundaries of the interval [1, 2]. Furthermore, it can be shown

that the phase determined using Fourier analysis exhibits the

same characteristic behaviour.

From the examination of Fig. 5 we conclude that the plot of

the phase derived using Fourier analysis is similar to the plot

derived from a direct examination of the oscillations. In this

study we focus on the development of algorithms for the

determination of the phase and assume that RHEED oscil-

lations can be described by a periodic function. In future it

would be desirable to extend the treatment by taking the

decay of the oscillations into account. For example, currently

there is interest in developing a numerical treatment for

analysing damped oscillations observed in mechanical spec-

troscopy measurements (Magalas & Majewski, 2009; Duda et

al., 2011; Tweten et al., 2014). Developing models similar to

those described above, but taking the decay of the oscillations

into account, appears promising.

3. Interpretation of experimental data

In this section we focus on the interpretation of experimental

data. The experimentally observed values of the phase of

RHEED oscillations shown in Fig. 6 are taken from the

literature (Crook et al., 1989), where the values were deter-

mined by directly examining intensity oscillation data. The

theoretical plots shown in Fig. 6 illustrate the dependence of

the phases defined in xx2.1 and 2.2 on the angle of incidence.

It is appropriate to add a clarifying statement here. Ideally,

it would be desirable to apply the two alternative methods of

phase determination to both experimental and theoretical

oscillation data, producing two plots of phase derived from

experimental data, and two plots derived from simulations.

Unfortunately, there is no detailed information available on

the experimentally observed intensity oscillation curves

described by Crook et al. (1989), so we are not able to apply

the Fourier analysis method to experimentally observed

oscillations. Still, we believe that it is useful to compare the

two theoretical plots (obtained using the direct method and

harmonic analysis) to identify the similarities and differences

between the two methods.

The theoretical results displayed in Fig. 6 were produced

assuming that the surface of the crystal was reconstructed as in

the �2(2 � 4) model. For a review of models for reconstruction

of the (001) GaAs surface, see Ohtake (2008). In our RHEED

intensity simulations we used the two-As dimer model, where

Ga atoms were absent in the missing dimer trenches (Chadi,

1987). We also assumed that, in the topmost layer, all the As

atoms were displaced upwards (i.e. towards vacuum), that in

the second layer the Ga atoms near the trenches were

displaced downwards and, finally, that in the third layer two

out of eight As atoms were displaced towards the crystal. The

respective values of the atomic displacements were 0.05, �0.30

and �0.40 Å. In effect, we use here a simplified version of a

more detailed model developed, using RHEED data, by

Ohtake et al. (2002). Next, the Debye–Waller factors for both

the As and Ga atoms were set to 2.0 Å2. We also assumed a

small delay associated with the start of MBE growth, similar to

that used in the analysis by Osaka et al. (1995). Therefore, a

constant value of 0.15 was added to all the initial values of the

theoretically determined phases, i.e. to the phases found

computationally using a perfect layer-by-layer model of MBE

growth.

The examination of Fig. 6 shows that both theoretical plots

agree well with the experimental observations. This suggests

that our results are consistent with the detailed model for the

structure of the GaAs(001)-(2 � 4) surface proposed by

Ohtake et al. (2002). We also conclude that both methods for

the determination of the phase of RHEED oscillations

discussed above appear to be suitable for the interpretation of

experimental data if the direction of incidence used for the

RHEED observations satisfies the one-beam diffraction

condition.
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Figure 6
Comparison of experimental and theoretical phases of oscillations.
Experimental data from Crook et al. (1989) are shown by crosses. The
dashed line represents the theoretical results derived by direct
examination of the oscillations, while the dotted line shows data derived
using harmonic analysis of RHEED oscillations simulated using
dynamical diffraction theory.
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How does the analysis performed in this study relate to our

earlier work (Mitura et al., 1998, 2002)? When investigating

RHEED oscillations, Mitura et al. (1998, 2002) assumed that

the growing surface was reconstructed as in the �2(2 � 4)

model, but all the atom positions were assumed to be the same

as in a perfect crystal. The Debye–Waller factors were

previously taken to be 2.05 and 1.90 Å2 for the As and Ga

atoms, respectively. Further, an additional imaginary part of

the scattering potential was included in the treatment of

RHEED to account for the loss of electrons resulting from

scattering by step edges in the growing layer or by the atomic

disorder on the growing surface (Dudarev et al., 1992, 1994;

Dudarev, 1997). In this study, to keep the treatment simple, we

have omitted the imaginary part of the potential associated

with atomic disorder (Dudarev et al., 1992) and instead used a

model where the imaginary part of the potential was propor-

tional to its real part [see, for example, Dudarev et al. (1995)].

Next, we used the same values for the Debye–Waller factors of

the As and Ga atoms. In a well known paper by Reid (1983),

the values given for As are larger than those for Ga, but in a

recent paper by Schowalter et al. (2009) an inverse ratio of the

Debye–Waller factors was proposed. Both Reid (1983) and

Schowalter et al. (2009) only considered the thermal vibrations

of atoms in bulk crystals. Near a surface, the thermal dis-

placements of atoms may be different from those in the crystal

bulk. Again, to keep the treatment simple, we have assigned

identical values of 2.0 Å2 to the Debye–Waller factors of both

As and Ga atoms.

Now we discuss the effect of surface reconstruction of the

GaAs(001) surface. Present knowledge of this issue is more

extensive than in the late 1990s. Then it was known that, under

As-rich conditions, depending on the temperature of the

sample, three different types of the (2 � 4) reconstruction may

be observed, which were named, respectively, �, � and �
phases [see, for example, Hashizume et al. (1995)]. A number

of surface atomic structure models were proposed to explain

the experimental observations. An important question was

raised about whether the three-As dimer model (called the �
model) or the two-As dimer model (called the �2 model) gave

the correct description of atomic positions in the � phase. In

our previous work we used the �2 reconstruction model,

where the positions of the atoms were assumed to be the same

as in the crystal bulk (Mitura et al., 1998, 2002). This is because

the specific positions proposed by different authors were

considered somewhat speculative at that time. At the moment

the case appears a great deal clearer. Although research work,

both experimental and theoretical, on the structure of the

GaAs(001)-(2 � 4) surface is still ongoing (Debiossac et al.,

2014; Lin & Fichthorn, 2012), many fundamental questions

have already been answered [see, for example, a recent review

by Ohtake (2008)]. In brief, scanning tunnelling microscopy

observations of well prepared surfaces have led to the

conclusion that the three-As dimer model is not compatible

with experimental data. Additionally, it was found that the �
and � phases of the (2 � 4) reconstruction can be regarded as

disordered forms of the � phase. Altogether, it appears that

the �2 model provides a fairly accurate representation of the

fundamental structure of the GaAs(001)-(2 � 4) surface. If

one ignores relatively minor points, it is possible to assume

that, for each surface unit cell, two-As dimers are present in

the topmost layer, and additionally, Ga atoms are absent from

the atomic trenches. However, in general, the specific posi-

tions of the atoms should not be assumed to be identical to

those in the bulk crystal structure. Hence, in this study we

considered vertical displacements of some of the atoms (since

in our RHEED calculations we use a one-dimensional scat-

tering potential model not sensitive to displacements of the

atoms parallel to the surface). The results (see Fig. 6) appear

to be in better agreement with the experimental data than

calculations performed previously.

There are further points that deserve mentioning. In the

model adopted here we use only three adjustable parameters.

This is appropriate, since the amount of information that can

be derived from experimental observations is relatively

limited. Also, we investigated the sensitivity of simulated

RHEED intensities to the specific positions of atoms

suggested by various authors. We found that the use of atomic

positions derived from RHEED rocking curves by Ohtake et

al. (2002) produced results similar to those where the atomic

positions were derived from first-principles calculations

(Schmidt & Bechstedt, 1996a,b; Ohtake et al., 2002). The same

can be said about the atomic positions derived from the

analysis of X-ray scattering data (Garreau et al., 1996; Ohtake

et al., 2002). In all the above cases, the theoretical calculations

matched the experimental data fairly well. We also note that

the directions of the atomic vertical displacements were the

same in all the calculations, although the amplitudes of the

displacements were different. If we used atom positions

suggested by other authors, namely by Hashizume et al. (1995)

or McCoy et al. (1998), the plots of the phase of RHEED

oscillations derived from calculations did not agree well with

experimental observations. According to Hashizume et al.

(1995), the As atoms in the first layer are displaced down-

wards, whereas according to McCoy et al. (1998) the Ga atoms

in the second layer are displaced upwards. Such atomic

displacements do not agree with surface structure predictions

derived by Schmidt & Bechstedt (1996a) from density func-

tional theory. It appears that using a surface structure model

consistent with the first-principles density functional calcula-

tions performed by Schmidt & Bechstedt (1996a) represents

an important aspect of the theoretical treatment of RHEED

oscillations essential for achieving agreement with experi-

mental observations.

4. Conclusions

In this study we have compared phases of RHEED intensity

oscillations derived from experimental observations using two

alternative approaches to the determination of the phase of

oscillations. We find that the phases determined using the two

methods are in agreement with each other, although the

results are not identical.

Determining the phase of oscillations directly is a good

practical way of addressing the question if only a limited
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amount of experimental information is available. However,

the direct method becomes less efficient if a significant amount

of data is available. Harmonic Fourier analysis may offer

certain advantages in the latter case, particularly given that

such analysis makes it possible to filter out fluctuations. In this

paper, we have shown how to apply Fourier analysis to

perfectly periodic oscillations, and have also shown that there

is room for improving and generalizing the method, for

example to the case of damped oscillations.

APPENDIX A
Determination of the phase using harmonic analysis

Here we explain how to find the values of A1 and ’1 used in

equation (1). Let us assume that f(t) is a periodic function of t,

i.e. that f(t) = f(t + T), where T is the period. Such a function

can be represented by a Fourier series,

f ðtÞ ¼ C0

2
þ
X1
n¼1

Cn cos
n2�t

T

� �
þ Sn sin

n2�t

T

� �� �
; ð3Þ

where

C0 ¼
2

T

ZT

0

f ðtÞ dt; ð4Þ

and, for n � 1,

Cn ¼ 2

T

ZT

0

f ðtÞ cos
n2�t

T

� �
dt; ð5Þ

Sn ¼ 2

T

ZT

0

f ðtÞ sin
n2�t

T

� �
dt: ð6Þ

Using the trigonometric relation cos(� � �) = cos�cos� +

sin�sin�, where � and � are real, we transform equation (1) as

follows:

f ðtÞ ¼ A0

2
þ
X1
n¼1

�
An cos ’n cos

n2�t

T

� �

þ An sin ’n sin
n2�t

T

� ��
: ð7Þ

Comparing terms in equations (3) and (7), we find that

A0 ¼ C0; ð8Þ
and, for n � 1,

An cos’n ¼ Cn; ð9Þ

An sin ’n ¼ Sn: ð10Þ
Using equations (9) and (10), we now derive formulae that

enable us to compute A1 and ’1. In equation (1) it was

assumed that A1 � 0. Accordingly, A1 satisfies the following

condition

A1 ¼ C2
1 þ S2

1

� �1=2
: ð11Þ

Furthermore, since A1 > 0, ’1 can now be evaluated using the

relation

’1 ¼ arccosðC1=A1Þ if S1 > 0,

� arccosðC1=A1Þ if S1 � 0:

�
ð12Þ

It should be mentioned that, in the limit where A1 = 0, the

value of ’1 is not defined, but encountering such a case in a

practical calculation is not likely.

Equations (11) and (12) can be used to find A1 and ’1 if the

values of C1 and S1 are known. The two latter quantities can be

found using the following formulae:

C1 ’
2

Ncov

XNcov�1

l¼0

f
lT

Ncov

� �
cos

2�l

Ncov

� �
; ð13Þ

S1 ’
2

Ncov

XNcov�1

l¼0

f
lT

Ncov

� �
sin

2�l

Ncov

� �
: ð14Þ

Equations (13) and (14) are the approximate versions of

equations (5) and (6). Specifically, equations (13) and (14)

were derived assuming that f(t) was defined on Ncov discrete

points corresponding to a set of discrete time points t.

Subsequently, l is an integer that varies from 0 up to Ncov � 1.

This parameter is also used when ordering the discrete time

points.

The procedure described in this appendix applies to both

theoretical and experimental oscillation data sets. We have

shown how to apply it to oscillations computed theoretically.

How does one apply the procedure to the analysis of experi-

mental data? Further practical work is required to find an

answer. However, it is already clear that data on regular

oscillations spanning at least 20 periods are needed. One can

then explore the second period, as in the direct method of

phase determination. Consider the observed variation in

intensity as a function of time I(t), where t varies between T

and 2T, T being the period. In practice, the observed value of

I(T) may be slightly different from I(2T). To comply with the

mathematical definition of oscillations as a periodic function

of time, the data may be corrected to ensure that the intensity

curve has the same values at T and 2T. The normalized

intensity Inorm(t) can be defined as

InormðtÞ ¼ IðtÞ � ½Ið2TÞ � IðTÞ	 t � T

T

� �
: ð15Þ

For Inorm(t), we have

Inormð2TÞ ¼ InormðTÞ: ð16Þ
Subsequently, the discrete values in equations (13) and (14)

can be defined as

f
lT

Ncov

� �
¼ Inorm

T þ lT

Ncov

� �
; ð17Þ

where l is again an integer that varies from 0 up to Ncov � 1.
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