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Constrained density functional for noncollinear magnetism
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Energies of arbitrary small- and large-angle noncollinear excited magnetic configurations are computed using
a highly accurate constrained density functional theory approach. Numerical convergence and accuracy are
controlled by the choice of Lagrange multipliers λI entering the constraining conditions. The penalty part Ep

of the constrained energy functional at its minimum is shown to be inversely proportional to λI , enabling a
simple, robust, and accurate iterative procedure to be followed to find a convergent solution. The method is
implemented as a part of ab initio VASP package, and applied to the investigation of noncollinear B2-like and
〈001〉 double-layer antiferromagnetic configurations of bcc iron, Fe2 dimer, and amorphous iron. Forces acting
on atoms depend on the orientations of magnetic moments, and the proposed approach enables constrained
self-consistent noncollinear magnetic and structural relaxation of large atomic systems to be carried out.
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I. INTRODUCTION

Many materials have noncollinear magnetic ground
states, including geometrically frustrated magnets [1–3], spin
glasses [4–6] or spin spirals that form, for example, in face-
centered cubic Fe [7–13]. Excited magnetic states are almost
always noncollinear [14–16]. For example, ferromagnetic met-
als often have collinear magnetic ground states but at elevated
temperatures magnetic moment vectors are noncollinear and
disordered. If temperature exceeds the Curie temperature of the
material, magnetic long-range order vanishes, and the material
undergoes a transition into a paramagnetic state [17–19].

Although ab initio calculations often assume collinear mag-
netic configurations, spin-polarized density functional theory
(DFT) [20] does not impose any constraints on the directions of
atomic magnetic moments. Theoretical foundations of uncon-
strained noncollinear DFT are well established [2,3,8,11,21–
28] and are widely adopted in ab initio programs [29–31].

Magnetic DFT calculations are often performed in the
atomic sphere approximation [3,8,11,21,22,28] (ASA) where
the local spin quantization axis (SQA) is associated with a
sphere centered at a particular atom. Noncollinear magnetism
in the ASA is an interatomic phenomenon, where magnetic
moments of neighboring atomic spheres have different orien-
tations. On the other hand, spin density matrix is a continuous
spatially varying field [23–27] enabling the treatment of both
inter- and intraatomic noncollinear magnetism. Spin density
matrix-based methods also have the advantage that atomic and
magnetic relaxations can be performed simultaneously and
self-consistently.

Magnetic excitations influence the stability of phases,
defect structures, and elastic constants in magnetic iron-based
alloys [32–46]. They also affect self-diffusion in magnetic
materials, especially near the Curie temperature [47,48].
Within the DFT framework, the effect of magnetic excitations
on atomic positions can be investigated by requiring that
atoms adopt a particular magnetic configuration, and compare
forces acting on atoms assuming different magnetic structures;
ab initio spin dynamics simulations [49–52] can be performed
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through a series of magnetic configurations generated in a
sequential order [53,54].

A noncollinear magnetic configuration does not in general
correspond to an energy minimum. Still it can be investigated
using a minimization principle by imposing constraints on
magnetic moments [27,28,53–57]. A scheme [57] that requires
fixing the direction of a local SQA works only in the limit
of small canting [28]. A more reliable way of generating
noncollinear configurations involves using Lagrange multi-
pliers [27,28,53–56]. A set of Lagrange multipliers and a
penalty term in the total energy functional are introduced,
resulting in a penalty potential in the Kohn-Sham equations.
This nudges the (local) charges and (local) magnetic moments
towards a particular desired configuration. Using the method,
interatomic exchange parameters [57–59] can be elucidated,
for example, by comparing energies of collinear and spin spiral
configurations.

There are several constrained DFT algorithms for generat-
ing noncollinear magnetic configurations. They use different
penalty energy terms. In some cases [27,28,53–55], vector
fields are used as Lagrange multipliers, requiring a separate
procedure for computing the fields at each iteration step. In
VASP [31], two constrained methods are implemented, both
involving scalar Lagrange multipliers. One of the methods
is invariant with respect to the reversal of local magnetic
moments, resulting in degenerate energy minima. The other
method constrains all the components of magnetic moment
vectors, and not just their directions.

None of the above approaches guarantees that the penalty
energy and penalty potential vanish for a chosen set of
Lagrange multipliers, whereas controlling accuracy is crucial
to an application of a constrained method. In what follows,
we describe a method that guarantees accuracy through
a suitable choice of control parameters. The convergence
conditions are established and proven analytically. In Sec. II,
we describe the method and show that the penalty energy
term at the minimum of the constrained energy functional
is inversely proportional to the magnitude of Lagrange
multipliers. In Sec. III, we discuss numerical convergence.
Section IV describes applications of the method to several
atomic and magnetic structures of iron. They are (i) B2-like
and double-layer antiferromagnetic configurations realized on
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bcc lattice, (ii) a Fe2 dimer with atomic magnetic moment
vectors pointing in prescribed directions, and (iii) amorphous
iron with random directions of magnetic moments.

II. THEORY

Hobbs et al. [25] proposed an algorithm for computing un-
constrained noncollinear magnetic configurations and imple-
mented it in VASP (Vienna ab initio simulation package) [31],
using a projector augmented-wave (PAW) method [60]. In our
work, we follow a similar methodology.

The advantage of the Hobbs et al. [25] method is that it
assumes no pre-defined SQA and enables relaxation of both
atomic and magnetic degrees of freedom. However, it contains
an element of ambiguity associated with the definition of local
atomic magnetic moments. Local magnetic moments vary as
functions of integration volumes, and their values depend
on the choice of the Wigner-Seitz cell or the radius of the
corresponding atomic sphere.

For example, the magnetic moment of an atom can be
defined as

MI =
∫

�I

m(r)d3r, (1)

where m(r) is a spatially varying magnetization density vector,
and �I is a sphere centered at atom I .

In what follows, instead of using MI directly, we use an
alternative definition of magnetic moment, namely

MF
I =

∫
�I

m(r)FI (|r − rI |)d3r, (2)

where FI (|r − rI |) = sin(x)/x and x = π (|r − rI |)/RI . FI

decreases monotonically to zero towards the boundary of the
atomic sphere. A similar definition of MF

I was adopted in VASP

in relation to other constrained methods.
The integration volume involved in a calculation of a

local magnetic moments can be defined in various ways. For
example, we may adopt the Bader charge analysis [61,62]. It
divides atoms by zero flux surfaces, which are the surfaces
corresponding to minimum charge density. An alternative
approach would be to equate the integration volume to the
volume of the Wigner-Seitz cell. However, these methods
require using the functional form of FI more complicated than
the current one, which depends only on a single parameter RI .

The constrained total energy functional now has the form,

E = E0 + Ep (3)

= E0 +
∑

I

λI

(∣∣MF
I

∣∣ − eI · MF
I

)
, (4)

where E0 is the DFT energy of the material, Ep is the penalty
energy term, eI is a unit vector in the desired direction of
the local magnetic moment, and λI is a Lagrange multiplier
associated with site I . The dimensionality of λI is the same as
of external magnetic field.

The penalty energy term in (4) introduces an effective extra
potential inside each sphere �I centered at atom I , which is
given by

VI (r) = −bp(r) · σ , (5)

where σ is the vector of Pauli matrices, and

bp(r) = − δEp

δm(r)
(6)

= −λI

(
MF

I∣∣MF
I

∣∣ − eI

)
FI (|r − rI |) (7)

is an additional penalty “field” in the Kohn-Sham equations.
Equations (4) and (7) show that both Ep and VI (r) terms vanish
only if vector MF

I points in the same direction as eI .
From Eq. (6) we find that function FI (|r − rI |) eliminates

the discontinuity of the effective potential at the boundary of
atomic sphere �I . Separating the core and interstitial regions,
like in the approach by Kurz et al. [27] or in the ASA, is not
necessary. The part played by the penalty term appears similar
to the action of the local spatially varying external magnetic
field.

We now prove that in the limit λI → ∞, Ep → 0 and is
inversely proportional to λI . We rewrite the constrained total
energy (4) as

E = E0 +
∑

I

λI

∣∣MF
I

∣∣(1 − cos θI ), (8)

where θI is the angle between MF
I and eI . At an extremum

of the energy functional the first derivative of the total energy
with respect to θI must vanish, namely

0 = δE

δθ

∣∣∣∣
θI

= δE0

δθ

∣∣∣∣
θI

+ λI

∣∣MF
I

∣∣ sin θI . (9)

From this equation it follows that

sin θI = − 1

λI

∣∣MF
I

∣∣
δE0

δθ

∣∣∣∣
θI

. (10)

If θI is small, we approximate the left-hand side by sin θI ≈
θI + O(θ3

I ), and extend the Taylor expansion to the first order
in the right-hand side of the equation, namely

θI = − 1

λI

∣∣MF
I

∣∣
(

δE0

δθ

∣∣∣∣
0

+ δ2E0

δθ2

∣∣∣∣
0

θI

)
. (11)

We now introduce notations K1 = δE0/δθ |0 and K2 =
δ2E0/δθ

2|0. These quantities are the first and second deriva-
tives of energy with respect to θ at θ = 0. K1 and K2 do not
depend on θI , and we can write

θI = − K1

λI

∣∣MF
I

∣∣ + K2
. (12)

Similarly, if θI is small, we approximate the penalty energy
Ep as (1 − cos θI ) ≈ θ2

I /2 + O(θ4
I ),

Ep ≈
∑

I

λI

∣∣MF
I

∣∣θ2
I

2
. (13)

Inserting Eq. (12) into Eq. (13), we arrive at

Ep = 1

2

∑
I

λI

∣∣MF
I

∣∣( K1

λI

∣∣MF
I

∣∣ + K2

)2

. (14)

From the above analysis we conclude that in the limit where
λI is large,

Ep ∝ 1/λI . (15)
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This proves that Ep → 0 if λI → ∞.
Our method is not constrained by either the geometry of the

system or the choice of magnetic structure, since functional (4)
can be computed for any system described by a spin density
matrix. The direction of MI may not be exactly the same as
MF

I , due to intraatomic noncollinearity, but they are fairly
close if electrons are well localized, which is indeed the case
for d and f electrons. We discuss this in detail in the context
of applications of the method described below.

III. NUMERICAL CONVERGENCE

In this section, we first examine numerical convergence
and the choice of Lagrange multipliers λI . Then, we discuss
the choice of radius RI in Eq. (1) above. In the analysis
given below, if the values of λ and R are not referred to a
particular atom, they are assumed to apply to all the atoms in
the simulation cell.

A. Choice of λI

A B2-like magnetic configuration can be constructed in
bcc Fe using a cubic unit cell with two atoms, where the
orientation of the magnetic moment of the central atom is
different from the orientation of the magnetic moment of the
atom in the corner of the cell. Figure 1 shows a magnetic
structure where the angle between the two magnetic moments
is 90◦. Our calculations are performed in generalized gradient
approximation (GGA) using the Perdew-Burke-Ernzerhof
(PBE) [63] exchange-correlation functional, which is known
to predict the correct bcc ferromagnetic ground state [36]. We
include relativistic corrections, but neglect spin-orbit coupling.
We use a pseudopotential with 14 valence electrons and a
24 × 24 × 24 k-point mesh. Energy cutoff for plane wave
expansion is set at 400 eV, periodic boundary conditions are
applied, and the lattice constant is assumed to be 2.83 Å, which

FIG. 1. (Color online) A realization of B2-like magnetic config-
uration in bcc iron. The angle between magnetic moments of atoms
forming the two magnetic sublattices is 90◦.

FIG. 2. Total energy E of a bcc Fe unit cell with two atoms per
cell, corresponding to the magnetic configuration shown in Fig. 1.
Parameter λ varies from 1 to 300.

is the GGA-PBE equilibrium lattice constant. The results agree
well with literature data [36,64].

Figure 2 shows the total energy E of a unit cell as a function
of λ, where λ varies in the interval from 1 to 300. In the limit of
large λ, the total energy asymptotically approaches a constant
value. Figure 3 shows that the penalty energy Ep is inversely
proportional to λ, in agreement with Eqs. (14) and (15). At λ =
200 the value of Ep does not exceed 1 × 10−3 eV. This shows
that the convergence of the method with respect to the total
energy can be improved by simply increasing the magnitude
of Lagrange multipliers λI . Since Lagrange multipliers are
input parameters, they do not require tuning during the self-
consistent iteration procedure. A moderate value of λ should
be used initially, to avoid causing numerical instabilities in the
iterative procedure due to the large initial value of the penalty
potential [Eqs. (5)–(7)]. This does not present a problem in
applications, since the value of λ can be adjusted during the
search for a minimum.

FIG. 3. Penalty energy Ep of a bcc Fe unit cell containing two
atoms per cell, corresponding to the magnetic configuration shown
in Fig. 1. Parameter λ varies from 1 to 300. In accord with Eqs. (14)
and (15), Ep is inversely proportional to λ.
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FIG. 4. (Color online) The magnitude of atomic magnetic mo-
ment of Fe in ferromagnetic bcc structure. The moment is evaluated
as (i) a sum of projections onto s, p, d orbitals within a sphere of a
given radius RI , or (ii) a projection of the total magnetization density
onto a sphere of radius RI , and (iii) an integral of the magnetization
density over the entire unit cell. For RI = 1.393 Å, �I equals the
volume of the unit cell.

B. Choice of RI

Since the magnetic moment density m(r) is a spatially
varying quantity, the magnitude of MI depends on the choice of
radius RI of sphere �I . Figure 4 shows how atomic magnetic
moment |MI | of ferromagnetic bcc Fe varies as a function of
RI . A primitive unit cell is used for this calculation, and the
moment is evaluated as (i) a sum of projections onto s, p, and
d orbitals within a sphere of radius RI , (ii) a projection of the
total charge density within a sphere of particular radius RI ,
and (iii) an integral of the total magnetization density over the
entire unit cell. For R = 1.393 Å, � equals the volume of the
unit cell. Similarly, in Fig. 5, we show average values of |MI |
calculated as a sum of orbital projection and magnetization

FIG. 5. (Color online) Magnitude of atomic magnetic moment in
antiferromagnetic bcc structure of Fe computed using a two-atom
cubic unit cell. The moment is calculated as (i) a sum of projections
onto s, p, d orbitals within a sphere of radius RI , (ii) a projection of
the total magnetization density onto a sphere of radius RI . The total
magnetic moment of the cell is zero.

density projection onto a sphere in an antiferromagnetic Fe
bcc structure, where the unit cell contains two atoms.

Both figures show that |MI | increases as a function of R,
and is maximum at 1.2 Å in Fig. 4, and 1.3 Å in Fig. 5. There
is no unambiguously defined asymptotic value of magnetic
moment. From Fig. 4 we can define the magnetic moment of
a single Fe atom as 2.2μB by integrating the magnetization
density over the entire unit cell. However, this definition
does not apply to antiferromagnetic configurations since the
total magnetic moment of a cell is zero. Choosing R is only
necessary when calculating MI or Ep, since in the limit of
large λ this parameter does not affect the computed values of
DFT energy E0, or the forces acting on atoms. Using the data
shown in Figs. 4 and 5, we choose R in the range from 1.0 to
1.6 Å.

IV. APPLICATIONS

In what follows we apply the method described above to
several noncollinear atomic magnetic configurations. First,
we explore B2-like and 〈100〉 double layer antiferromagnetic
configurations in bcc iron. Then we analyze a simple magnetic
molecule, a Fe2 dimer. Finally, we apply our method to the
magnetic structure of amorphous Fe. Unless stated otherwise,
all the calculations described below were performed for
λ = 200.

A. BCC Fe: B2-like and 〈100〉 double layer
antiferromagnetic configurations

A B2-like magnetic configuration on the bcc lattice (cf.
Fig. 1) can also be realized for an arbitrary angle between
magnetic moments of atoms forming the two sublattices.
Figure 6 shows the magnitude of magnetic moment vectors
|MI | of both atoms, and the energy E of a unit cell as a
function of angle between the moments, assuming that the
moment vectors are co-planar. Vectors MI are calculated as
projections of the total magnetization density onto spheres �,
where the volume of the spheres equals the volume of an atom.
We see that |MI | = 2.22μB in the ferromagnetic state and
|MI | = 1.52μB in the antiferromagnetic state. The difference
between the energies of antiferromagnetic and ferromagnetic
configurations is 0.45 eV per atom.

Similarly, Herper et al. [36] found, using WIEN95 code
and full-potential linearized augmented plane-wave (FLAPW)
calculations, that the atomic magnetic moment in the ferro-
magnetic state is 2.17μB and in the antiferromagnetic state
it is 1.25μB . The difference between the energies of the two
states is 0.44 eV per atom. Soulairol et al. [37] also found
0.44 eV per atom energy difference using the PWSCF code
and the PAW method. They found that the atomic magnetic
moment varied from 2.19μB to 2.25μB in the ferromagnetic
state, and from 1.3μB to 1.9μB in the antiferromagnetic state,
depending on DFT approximations used in the calculations.
Recently, Wróbel et al. [65] used an unconstrained collinear
method in VASP and found that the energy difference between
FM and AFM configurations was 0.444 eV per atom, whereas
the magnitude of atomic magnetic moments was |MI | =
2.199μB in the ferromagnetic and |MI | = 1.290μB in the
antiferromagnetic states.
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FIG. 6. (Color online) (a) Magnitudes of magnetic moments and
(b) the total energy of a cell shown as a function of the angle between
magnetic moments of the two atoms forming a B2-like magnetic
structure similar to that shown in Fig. 1. Calculations were performed
for the bcc lattice constant of 2.83 Å.

Kurz et al. [27] used a constrained method with FLAPW to
investigate the above magnetic structures. Variation of energy
and magnetic moment as functions of the angle between the
moments were very similar to our results. The atomic magnetic
moment was found to be 2.1μB in the ferromagnetic and 1μB

in the antiferromagnetic states, and the energy difference was
0.35 eV per atom. Our analysis shows that the magnitude of
atomic magnetic moments |MI | is maximum when the angle
between the moments is close to 50◦.

We now consider a 〈100〉 double layer antiferromagnetic
(DLAFM) configuration of bcc Fe. We use this example to
perform self-consistent relaxation of both magnetic moments
and atomic positions using the constrained method described
above. We also investigate the effect of magnetic excitations
on atomic configurations. Such analysis cannot be performed
using any other means but a constrained density functional.
Indeed, since DLAFM is a metastable magnetic state, conven-
tional magnetic relaxations would drive the system towards
ferromagnetic ground state regardless of the choice of the
initial magnetic configuration.

A unit cell now contains four atoms, and we use a 24 ×
24 × 12 k-point mesh. The c/a aspect ratio of the simulation

FIG. 7. (Color online) 〈100〉 double layer antiferromagnetic
(DLAFM) configuration of bcc iron, before ionic relaxation. The
lattice constant is 2.83 Å. (a) Directions of magnetic moments. The
magnitude of each magnetic moment is 2.08μB . (b) Forces induced
in the structure by the imposed magnetic order. The magnitude of
force on each atom is 0.25 eV/Å. Forces are attractive (repulsive) if
the magnetic moments of atoms in the two adjacent layers are parallel
(antiparallel).

cell is kept fixed to ensure that changes in atomic positions do
not interfere with magnetic relaxation. Figure 7(a) shows the
directions of magnetic moments in the unrelaxed DLAFM
configuration computed for the lattice constant of 2.83 Å.
Magnetic moments are calculated as projections of the total
magnetization density onto spheres with radii RI = 1.0 Å.
Figure 7(b) shows directions of forces induced as a result of
the imposed magnetic order. The magnitude of forces is close
to 0.25 eV/Å.

Figure 8 shows the energy and magnetic moment per
atom in the DLAFM configuration computed for relaxed
and unrelaxed atomic structures. Energy per atom in the
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FIG. 8. (Color online) (a) Energy per atom plotted as a function
of lattice constant for relaxed and unrelaxed 〈100〉 double layer
antiferromagnetic and ferromagnetic configurations realized on bcc
lattice. (b) Magnitude of atomic magnetic moments plotted as a
function of lattice constant for relaxed and unrelaxed configurations.
(c) Distance between atomic layers in the 〈100〉 direction in relaxed
atomic configurations computed for the parallel and antiparallel
orientations of magnetic moments.

ferromagnetic state, also computed as a function of the lattice
constant, is shown for comparison. Figure 8 also shows the
distance between magnetically ordered relaxed atomic layers.

The difference between the energies of relaxed and un-
relaxed configurations is relatively small, for example, for
the equilibrium lattice constant of 2.85 Å it is approximately
0.015 eV/atom. Magnetic moments of relaxed and unrelaxed

FIG. 9. (a) Binding energy EB , (b) relaxed bond length Rb, and
(c) average magnitude of atomic magnetic moment |MI | in a Fe2

dimer. All the values are plotted as functions of the angle between
magnetic moments of the two atoms forming the dimer.

configurations differ by only a small amount, too. Our results
are in agreement with those by Wróbel et al. [65], who carried
out calculations in the collinear approximation, finding the
equilibrium volume of 11.34 Å3/atom, |MI | = 2.104μB and
the energy difference between the DLAFM and ferromagnetic
configurations of 0.163 eV/atom.

At the same time, by examining the relaxed configurations,
we find non-negligible variation of spacing between the atomic
layers. Atomic layers with parallel orientations of magnetic
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moments relax towards each other. Separation between the
layers decreases from exactly half of lattice constant a to
0.49a, for a = 2.76 Å. The two layers move even closer to
0.475a if a = 2.95 Å. On the other hand, if magnetic moments
of the adjacent layers are antiparallel, the interlayers spacing
increases accordingly.

The above example illustrates the significance of taking into
account directions of local magnetic moments in the context
of discussion of forces acting on atoms. It also shows that
magnetic excitations induce additional interatomic forces and
modify the geometry of atomic configurations. Our conclu-
sions agree with the recent analysis by Körmann et al. [18,19]
who find the occurrence of strong phonon-magnon coupling
in iron at high temperatures. Körmann et al. [18,19] note the
limitations of the collinear approximation in the treatment
of temperature-induced interatomic forces. The constrained
method offers a way forward in the ab initio treatment
of noncollinear magnetic excitations essential for the first-
principles analysis of finite temperature effects in magnetic
materials.

B. Fe2 dimer

In this section we investigate a Fe2 dimer. Calculations
are performed for two Fe atoms placed in a rectangular
box with dimensions 10 Å × 10 Å × 10 Å, with k-point
sampling reduced to a single � point. While constraining
the angle between magnetic moments of the two atoms, we
allow full relaxation of the bond length Rb. The results are
compared with energies computed for collinear ferromagnetic
and antiferromagnetic configurations. The difference between
the energies found using a nonconstrained conventional DFT
functional, and the new constrained functional, is found to be
less than 0.1 meV.

Figure 9(a) shows the binding energy EB plotted as a func-
tion of the angle between magnetic moments. EB is maximum
for the ferromagnetic state, where EB = 3.02 eV. EB then
decreases as a function of the angle and reaches minimum
at 180◦. The antiferromagnetic state of a Fe2 molecule is
metastable. The binding energy in the antiferromagnetic state

is EB = 1.59 eV. The difference between the energies of
ferromagnetic and antiferromagnetic states is 1.43 eV, and
the energy landscape is fairly flat in the vicinity of 0 and 180
degree points.

Figure 9(b) shows the calculated equilibrium bond length
Rb plotted as a function of the angle between the two moments.
In the ferromagnetic state the value of Rb is the lowest, and is
equal to 2.03 Å. It is maximum at approximately 160◦, where
it approaches 2.29 Å, and then it decreases to 2.25 Å in the
antiferromagnetic configuration where the angle between the
moments equals 180◦.

Figure 9(c) shows atomic magnetic moment |MI | calcu-
lated by projecting the magnetization density onto a sphere
with radius R = 1.0 Å. At the point where magnetic moments
are ferromagnetically ordered (this corresponds to 0◦) |MI | =
2.796μB . The moments then decrease gradually, reaching
maximum at approximately 160◦, and then decrease again.
In the antiferromagnetic state, |MI | = 2.753μB . The scale
of variation of moments is relatively small, of the order of
0.1μB . Far more substantial variation is observed in bulk bcc
iron, as shown in Fig. 6. Since the bond length decreases
when the angle exceeds 160◦, whereas the binding energy
remains almost constant, this appears to be the result of
interplay between bonding and charge density distributions.
This interpretation agrees with the fact that magnetic moment
magnitude also changes its slope near 160◦.

Using rare gas matrix isolation and extended x-ray ab-
sorption fine structures (EXAFS) technique, Rb of a Fe2

dimer in argon [66] was measured experimentally to be
1.87 ± 0.13 Å, and in neon [67] it is 2.02 ± 0.02 Å, where
the latter value should be considered as corresponding to a
mixture of multimers. Using collision-induced dissociation,
EB is determined to be [68] 1.14 ± 0.10 eV. Using the
Stern-Gerlach deflection method, the total magnetic moment
of a dimer was found to be [69] 6.5 ± 1μB .

Magnetic and electronic structures of a Fe2 dimer were
extensively studied in literature. Chen et al. [70] used an
all-electron linear combination of atomic orbitals (LCAO)
method in the local spin density approximation (LSDA)
and found equilibrium bond length Rb = 1.98 Å, EB =

TABLE I. The calculated and experimental values of the binding energy EB , bond length Rb, and magnetic moment of an atom |MI | in a
Fe2 dimer.

Authors DFT functional / Expt. method State EB (eV) Rb (Å) |MI | (μB )

Current work GGA-PBE [63] FM 3.02 2.03 2.796
AFM 1.59 2.25 2.753

Chen et al. [70] LSDA FM 4.095 1.98 3
AFM 1.95 2.20 4.8

Diéguez et al. [71] LSDA FM 4.5 1.96 3
Castro et al. [72,73] LSDA FM 4.38 1.95 –

GGA-P86 [74] FM 3.24 2.00 –
GGA-P86 (Non-spherical) FM 2.08 – –

Hobbs et al. [25] GGA-P92 [75] FM 3.54 1.98 2.83
AFM 2.246 2.24 2.98

Lian et al. [68] Expt. - Collision-induced dissociation ? 1.14 ± 0.10 – –
Montano et al. [66] Expt. - EXAFS (argon) ? – 1.87 ± 0.13 –
Purdum et al. [67] Expt. - EXAFS (neon) ? – 2.02 ± 0.02 -
Cox et al. [69] Expt. - Stern-Gerlach deflection ? – – 3.25 ± 0.5
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4.095 eV, and |MI | = 3μB /atom in the ferromagnetic, and
Rb = 2.20 Å, EB = 1.95 eV, and |MI | = 4.8μB /atom in the
antiferromagnetic configuration. Diéguez et al. [71] used
LSDA and eight valence electrons, and found Rb = 1.96 Å,
EB = 4.5 eV, |MI | = 3μB /atom in the ferromagnetic ground
state of the molecule. Castro et al. [72,73] used an all-electron
linear combination of Gaussian-type orbitals, and LSDA,
GGA-P86 [74], and GGA-P86 functional with nonspherical
(NS) charge density. In LSDA, the predicted bond length and
the binding energy are Rb = 1.95 Å and EB = 4.38 eV. Using
GGA-P86 they found Rb = 2.00 Å and EB = 3.24 eV. In the
GGA-NS the binding energy is relatively small EB = 2.08 eV.

Hobbs et al. [25] found Rb = 1.98 Å, EB = 3.54 eV, and
|MI | = 2.83μB /atom in the ferromagnetic state, and Rb =
2.24 Å, EB = 2.246 eV, and |MI | = 2.98μB /atom in the
antiferromagnetic state. The latter calculations were performed
using the GGA-P92 [75] functional, with the plane wave
energy cutoff of 350 eV, and R = 1.2 Å. We listed those
experimental and calculated results in Table I.

While the absolute values of energies predicted by DFT
for molecules are known to be of limited validity, the
above analysis confirms that calculations performed using the
new constrained functional methodology compare well with
literature data on ferromagnetic and antiferromagnetic states.
The scatter of results is largely due to the choice of exchange
correlation functionals. Here we used the same GGA-PBE
functional as in the rest of the paper, where we apply it to the
treatment of high-density atomic configurations where DFT
methodology is known to have high predictive capability.

C. Amorphous Fe

An atomic configuration of amorphous Fe containing 54
atoms in a unit cell was derived from molecular dynamic
(MD) simulations performed using the Dudarev-Derlet inter-
atomic potential [76]. A 54-atom bcc Fe cell was heated up
dynamically to 10 000 K and then relaxed using conjugate
gradient minimization. The resulting atomic configurations
were used as input for VASP calculations, performed using
GGA-PBE and a 4 × 4 × 4 k-point mesh. Other parameters are
the same as in calculations described above. Ionic relaxation is
performed in the unconstrained collinear approximation until
the interatomic forces decrease below 0.01 eV/Å. Magnetic
moments are evaluated by projecting the magnetization density
onto spheres with radius R = 1.0 Å.

Figure 10(a) shows a fully relaxed atomic and magnetic
configuration derived from an unconstrained collinear mag-
netic calculation. The magnitude of forces acting on atoms is
smaller than 0.01 eV/Å. This example shows that directions
and magnitudes of magnetic moments fluctuate strongly
depending on the local atomic environment. The magnitude
of |MI | varies from 0.034μB to 2.59μB .

We now generate a random magnetic configuration and
impose it onto the atomic configuration shown in Fig. 10(a)
through the application of the constrained method. Fig-
ure 10(b) shows directions and magnitudes of magnetic
moments in the resulting magnetic structure. The magnitudes
of magnetic moments |MI | vary from 0.86μB to 2.46μB ,
showing that magnetic moment magnitudes are highly sensi-
tive to the local magnetic environment, since in constrained

FIG. 10. (Color online) Directions and magnitudes of magnetic
moments in amorphous Fe. (a) Unconstrained collinear config-
uration computed using full ionic relaxation. (b) Constrained
noncollinear calculation with random orientations of magnetic
moments, generated using atomic positions derived from the un-
constrained collinear calculation. (c) Constrained noncollinear cal-
culation with the same magnetic moments as in (b) but with full
ionic relaxation. Colors refer to the magnitude of atomic magnetic
moments.
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FIG. 11. (Color online) Histogram distribution of angles be-
tween the local magnetic moments MI and their directions eI defined
in the constraining functional, evaluated for the configuration shown
in Fig. 10(c).

calculations the positions of atoms remain constant. The
energies of configurations shown in Fig. 10(b) are 2.98 eV
higher than the energies of collinear configuration shown in
Fig. 10(a).

To investigate the effect of magnetism on atomic positions
we now relax the atomic coordinates, keeping the same
directions of magnetic moments as in Fig. 10(b). Atomic
relaxation is performed until the forces acting on atoms, shown
in Fig. 10(c), become smaller than 0.01 eV/Å. The magnitude
of |MI | in the resulting atomically relaxed configuration
spans the interval from 0.22μB to 2.42μB . The energy of
configuration shown in Fig. 10(c) is 0.75 eV lower than the
energy of configuration shown in Fig. 10(b), showing that
atomic and directional magnetic degrees of freedom are fun-

FIG. 12. (Color online) Interatomic forces resulting from the
noncollinearity of local magnetic moments. The atomic configuration
is the same as in Fig. 10(b), with colors showing magnitudes of forces
acting on atoms, in eV/Å units.

FIG. 13. (Color online) Atomic displacements corresponding to
the difference between atomic positions in configurations shown
in Figs. 10(b) and 10(c). Colors denote the magnitude of atomic
displacements, in Å units.

damentally linked, with forces acting on atoms being sensitive
to the directions of magnetic moments and atomic relaxations
affecting the magnitudes of local magnetic moments.

In Fig. 11 we show a histogram of angles between the
local magnetic moments MI and their directions eI prescribed
in the constrained functional, computed for the configuration
shown in Fig. 10(c). The values deviate by no more than 0.02◦,
confirming that the constrained functional can be applied to
arbitrary atomic and magnetic configurations.

Figure 12 shows atomic forces in the configuration shown
in Fig. 10(b). The maximum force on an atom is 0.77 eV/Å. In
agreement with the case of a diatomic molecule, we find that
magnetic excitations induce forces and modify equilibrium
atomic configurations. To quantify this, in Fig. 13 we show
atomic displacements corresponding to configurations shown
in Figs. 10(b) and 10(c). The maximum displacement of atoms
from their initial position is approximately 0.039 Å.

We therefore conclude that directional degrees of freedom
of magnetic moments affect interatomic forces and equi-
librium atomic positions. Practical calculations required for
quantifying the effect of directional magnetic excitations on
atomic forces and positions of atoms, for even fairly complex
atomic configurations, can be performed using the constrained
density functional method with appropriately chosen Lagrange
multipliers, as illustrated by the examples given above.

V. CONCLUSIONS

In this paper we develop the formalism and give examples
of application of a constrained density functional method for
generating noncollinear magnetic configurations. We show
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that the method exhibits good convergence and is fairly easy
to implement. Using VASP platform for its implementation, we
explored the effect of magnetic noncollinearity on atomic con-
figurations of iron. The main advantage of the method is that
it makes it possible to explore magnetic configurations where
magnetic moments point in arbitrary directions, like in realistic
thermal excitations, whereas the majority of calculations
described in literature focus solely on collinear ferromagnetic
and antiferromagnetic states. For the collinear configurations,
the energies and atomic configurations predicted using the
constrained method agree well with published data. For the
noncollinear configurations, we are able to quantitatively
assess the effect of magnetic noncollinearity on interatomic
forces and equilibrium atomic positions.
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APPENDIX: VASP IMPLEMENTATION

There are two constrained approaches to the treatment of
noncollinear magnetic configurations presently implemented
in VASP. The first constrains atomic magnetic moments to
prescribed directions but is invariant with respect to the
reversal of directions of moments. The second method exhibits
good convergence in the limit of large λ. However, since no

convergence analysis is available in the literature, we present
such analysis here.

The constrained total energy functional described above has
the form,

E = E0 + Ep (A1)

= E0 +
∑

I

λ(�MI )2, (A2)

where �MI = MI − M0
I and M0

I is the desired magnetic
moment vector. At an extremum, for example, in the magnetic
ground state of the system, the derivative of the total energy
with respect to any �MI must vanish, namely

0 = δE

δMI

∣∣∣∣
�MI

= δE0

δMI

∣∣∣∣
�MI

+ 2λ�MI . (A3)

Hence

�MI = − 1

2λ

δE0

δMI

∣∣∣∣
�MI

. (A4)

For small �MI we perform Taylor expansion up to the first
order in the right-hand side, and find that

�MI = − 1

2λ
(K1 + K2 · �MI ), (A5)

where

K1 = δE0

δMI

∣∣∣∣
0

, (A6)

K2 = δ2E0

δM2
I

∣∣∣∣
0

. (A7)

Here K2 is a 3 × 3 matrix. After rearranging the terms, we
arrive at

�MI = − 1

2λ

(
I + 1

2λ
K2

)−1

· K1, (A8)

where I is a 3 × 3 identity matrix. We see that �MI ∝ 1/λ in
the limit where λ is large. Hence we conclude that Ep ∝ 1/λ

and in the limit where λ → ∞ we have Ep → 0.
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[10] K. Knöpfle, L. M. Sandratskii, and J. Kubler, Phys. Rev. B 62,
5564 (2000).

[11] O. N. Mryasov, A. I. Lichtenstein, L. M. Sandratskii, and V. A.
Gubanov, J. Phys. Condens. Matter 3, 7683 (1991).

[12] D. M. Bylander and L. Kleinman, Phys. Rev. B 58, 9207
(1998).
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