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Landau damping is calculated using real variables, clarifying the physical mechanism.

[http://dx.doi.org/10.1063/1.4913426]

I. INTRODUCTION

Landau’s calculation of electron plasma oscillations

demonstrated the phenomenon now known as Landau

damping.1 The calculation used a Fourier-Laplace trans-

form and regarded the electron velocity as complex in order

to properly locate the pole in the complex frequency plane

that gives the dispersion relation containing the wave

damping.

Here, the same subject is examined using real variables

and straightforward algebra. The aim is to understand the

damping and growth of plasma oscillations, shown by

Landau to arise from particles with velocities close to that of

the plasma wave. It is found that the physics underlying the

damped oscillations is different from that in the case of

growth.

Discussions of the physical interpretation of Landau

damping usually rely on calculation of the dynamics of the

electrons and the resulting energy transfer between the

electrons and the electric field.2 Such calculations are

quadratic in the linear variables and are quite involved.

The present calculation is linear in the perturbed variables,

making the physics transparent. The treatment follows

Landau, using the Vlasov and Poisson equations. However,

it differs from Landau’s calculation in that the Vlasov

equation is solved for the electron distribution function

directly, whereas Landau first solved for the time depend-

ence of the electric field as an initial value problem; that

solution then determining the distribution function.

II. THE EQUATIONS

The governing equations for both growth and damping

are the linearised Vlasov equation for the distribution func-

tion f1

@f1

@t
þ v

@f1

@x
¼ E1e

m

@f0

@v
; (1)

where E1 is the electric field, and Poisson’s equation

@E1

dx
¼ � e

e0

n1 ¼ �
e

e0

ð
f1dv: (2)

For simplicity, the wave number k will be taken to be suffi-

ciently small that the wave velocity is much larger than the

thermal velocity vT, that is xp/k� vT where xp is the plasma

frequency.

III. THE FRAME

Since the Landau effect arises from particles travelling

close to the wave velocity, the algebra is more transparent if

the calculation is carried out in the frame of the wave, as

illustrated in Fig. 1. Damping and growth depend on the sign

of (@f0/@v) at the wave velocity and as the behaviour is dif-

ferent for the cases (@f0/@v)w> 0 and (@f0/@v)w< 0, the cal-

culations will be made clearer by treating them separately.

IV. THE CASE WITH (›f0/›v)w > 0

With (@f0/@v)w> 0 there is a homogeneous solution for

which all of the terms in Eqs. (1) and (2) have a factor ect.

So the electric field can be written

E1 ¼ Ê sin kx ect (3)

and the distribution function takes the form

f1 ¼ ðf̂ s sin kxþ f̂ c cos kxÞect: (4)

Substituting Eqs. (3) and (4) into Eq. (1) and equating sine

terms and cosine terms lead to the solution

f1 ¼
Êe

m

c

c2þ k2v2

@f0

@v
sinkx� kv

c2þ k2v2

@f0

@v
coskx

� �
ect: (5)

In calculating n1 there are two contributions from f1. One is

the contribution, nw
1 , localised around v¼ 0, coming from

velocities for which v� c/k. The other, nb
1, comes from the

basic thermal distribution around v¼�vw. Since vT� vw

and anticipating c/k� vw, the two contributions are well

separated and can be treated independently. The contribution

nb
1 is obtained by taking c� kvw, writing

FIG. 1. Illustrating the choice of frame. vw is the wave velocity in the frame

of the plasma.
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nb
1 ¼

Êe

m

ð
c

k2v2

@f0

@v
dv sin kx�

ð
1

kv

@f0

@v
dv cos kx

� �
ect

and integrating by parts to obtain

nb
1 ¼

Êe

m

ð
2c

k2v3
f0dv sin kx�

ð
1

kv2
f0dv cos kx

� �
ect:

The leading order terms in the required integrals are obtained

by taking f0 to have the form of a delta function at the velocity

�vw in the wave frame. Thus

nb
1 ¼

Êen

m
� 2c

k2v3
w

sin kx� 1

kv2
w

cos kx

 !
ect: (6)

In the localised contribution from particles with velocities

close to the wave velocity, @f0/@v can be taken to be con-

stant, and the resulting contribution to n1 is

nw
1 ¼

Êe

m

@f0

@v

� �
w

�ð
c

c2 þ k2v2
dv sin kx

�
ð

kv

c2 þ k2v2
dv cos kx

�
ect;

¼ Êe

m

@f0

@v

� �
w

1

k
tan�1 kv

c

����
kv�jcj

kv��jcj
sin kxþ 0

 !
ect;

¼ Êe

m

@f0

@v

� �
w

c
jcj

p
k

sin kx ect:

The integrand c
c2þk2v2 has the form shown in Fig. 2, the contri-

bution to nw
1 being independent of the magnitude of c.

The complete n1 is now given by nb
1 þ nw

1

n1¼
eÊ

m
� 2cn

k2v3
w

þ c
jcj

p
k

@f0

@v

� �
w

 !
sinkx� n

kv2
w

coskx

 !
ect

and the dispersion relation is obtained by its substitution into

Eq. (2) to obtain

1

x2
p

cos kx ¼
��

2c

k3v3
w

� c
jcj

1

n

p

k2

�
@f0

@v

�
w

�
sin kx

þ 1

k2v2
w

cos kx

�
; (7)

where xp ¼ ðne2=e0mÞ1=2:

Equating the cos kx terms in Eq. (7) gives the wave ve-

locity vw¼6xp/k and for the present case

vw ¼
xp

k
:

The sin kx term in Eq. (7) is zero, and this condition deter-

mines jcj

jcj ¼
px3

p

2k2n

@f0

@v

� �
w

: (8)

It is clear that Eq. (8) does not allow a solution for (@f0/

@v)w< 0, and for (@f0/@v)w> 0 the required solution is

c ¼
px3

p

2k2n

@f0

@v

� �
w

:

It is seen from the equation for nw
1 that the contribution that

leads to growth comes from sojourning particles which, dur-

ing a growth time, 1/c, travel a distance v/c that is less than

2p/k and so do not sample the whole wave.

The sojourning particles do not make a direct growth of

charge in phase with the basic charge of the wave, but pro-

duce an out-of-phase charge as illustrated in Fig. 3. This out-

of-phase charge is balanced out by the modified contribution

from the main particle distribution, which is proportional to

c. The balancing of these two contributions determines c, as

given by Eq. (7). The growth of the charge in the wave

actually arises simply from the divergence of the basic

“flow” of the particles in the main distribution passing

through the wave.

V. THE CASE WITH (›f0/›v)w < 0

It is necessary now to determine the procedure that

allows continuation of the case with (@f0/@v)w> 0 to that

with (@f0/@v)w< 0.

It was seen from Eq. (8) that a homogeneous solution is

only possible with (@f0/@v)w> 0. For (@f0/@v)w< 0, the out-

of-phase, sin kx, part of n1 cannot be made zero and a solu-

tion with c< 0 is not possible. This constraint arises from

Eq. (4) at the outset of the calculation.

FIG. 2. The form of the velocity dependence of the density contribution

around the phase velocity. FIG. 3. Sojourning particles produce an out-of-phase charge.
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Returning to Eq. (1), the treatment of f1 in calculating

the contributions to n1 for (@f0/@v)w< 0 is unaffected except

for the sin kx contribution for particles with velocities close

to that of the wave. This contribution needs closer attention.

With no assumed ect time dependence for f1, it can be

written

f1 ¼ fs sin kxþ fc cos kx:

Substituting f1 into Eq. (1) leads to the equation for fs

@2fs

@t2
þ k2v2fs ¼ c

e

m
Ê
@f0

@v
ect:

The calculation of fw
s , the wave contribution to fs, in the

(@f0/@v)w> 0 case used the particular integral solution. In

the case with (@f0/@v)w< 0, it is necessary to add the com-

plementary function to obtain

fw
s ¼

Êe

m

@f0

@v

� �
w

c

c2 þ k2v2
ect þ u vð Þcos kvtð Þ:

The factor u(v) represents the initial form of the complemen-

tary function contribution to fw
s . The procedure now is to

determine the solution for fw
s that allows continuity with the

@f0/@v)w> 0 case. The first step is to choose u(v) to make

the functional form of fw
s (v, t¼ 0) the same as that for

(@f0/@v)w> 0. fw
s then becomes

fw
s ¼

Êe

m

@f0

@v

� �
w

c

c2 þ k2v2
ect þ a cos kvtð Þð Þ ;

where a is a constant.

Noting that the contribution from the cos(kvt) term is

localised around v¼ 0 and that, for c< 0,

ðkv�jcj

kv��jcj

c

c2 þ k2v2
cos kvtð Þ dv ¼ � p

k
ect

integration of fw
s (v) over v gives

nw
1 ¼ �

Êe

m

@fo

@v

� �
w

1þ að Þ p
k

sin kx ect c < 0: (9)

Recalling that for ð@f0@vÞw > 0

nw
1 ¼

Êe

m

@fo

@v

� �
w

p
k

sin kx ect; (10)

continuity of nw
1 as expressed by Eqs. (9) and (10) requires

a¼�2.

Adding the nb
1 contribution, given in Eq. (6), the com-

plete sin kx component of n1 now becomes

ns
1 ¼

eÊ

m
� 2ckn

x3
p

þ p
k

@f0

@v

� �
w

 !
sin kx ect c < 0

and putting this out-of-phase term to zero gives the damping

rate for (@f0/@v)w< 0

c ¼
px3

p

2k2n

@f0

@v

� �
w

:

The mechanism of damping is not an inverse form of

the sojourning particle mechanism responsible for growth.

The additional part of the f1 arising from the comple-

mentary function has introduced an out-of-phase compo-

nent, which has a time dependence cos(kvt). Initially

cos(kvt)¼ 1, giving a full density contribution. As t

increases the particles involved see increasingly different

phases of the electric field and this phase mixing leads

to damping, as shown in Fig. 4. Since the particles

involved have v� c/k, the characteristic time for phase

mixing is 1/c as would be expected. There are equal

damping contributions from those particles moving faster

than the wave and those moving slower. The sojourning

particles are still there but their contribution is out-

weighed by the damping due to phase mixing.

VI. ENERGY BALANCE

In the present formulation, calculation of the energy bal-

ance is straightforward.

The energy exchange is between the particles in the out-

of-phase component of the distribution function fs
1 and the

electric field. The power transfer per unit volume, P, is

P ¼
ð

fs
1ev E dv:

In the frame of the wave, vf¼ 0, the distribution function fs
1

for particles with velocities close to the wave velocity is

symmetric in v and their contribution to P is therefore zero.

So the only contribution is that from the basic plasma, and

using Eq. (5) with c� kvw

P ¼
ð

Ee

m

c

k2v2

@f0

@v
: evEdv:

FIG. 4. The time development of the phase-mixing component of f1(v) is

illustrated by its form at t¼ 0, t¼ 2/c, and t¼ 10/c.

022519-3 John Wesson Phys. Plasmas 22, 022519 (2015)



Integrating by parts

P ¼ E2e2

m

c

k2

ð
1

v2
f0 dv

and putting v¼� vw,

P ¼ E2e2

m

cn

k2v2
w

:

Recalling that E / ect, putting k2vw
2 ¼ xp

2 and noting that

ne2=mk2v2
w ¼ e0, the energy balance equation becomes

P ¼ d

dt

e0E2

2
: (11)

Thus, in the wave frame damping of the electrical energy is

solely due to energy transfer to the particles in the main ther-

mal distribution.

However, in the frame of the plasma, vf¼�vw, there

are two additional contributions, one from the basic plasma

and the other from the particles around the wave speed.

Using the sine component of the basic plasma density pertur-

bation given by Eq. (6)

nb
s ¼ �

2Eenc

mk2v3
w

¼ � 2e0cE

evw

;

the change in the power transferred by the basic plasma con-

tribution is

DPb ¼ �
2e0cE

evw

: evwE

¼ �2
d

dt

e0E2

2
:

So adding DPb to the P given in Eq. (11), Pb in this frame is

Pb ¼ �
d

dt

e0E2

2
:

Since the out-of-phase density contribution of the par-

ticles close to the wave speed, nw
s , is equal to � nb

s ,

their power contribution, which was zero in the wave

frame, is now

Pw ¼ 2
d

dt

e0E2

2
:

Summing the two contributions, the total power is

P ¼ Pb þ Pw

¼ d

dt

e0E2

2
;

as before.

VII. DISCUSSION

In Landau’s treatment, an arbitrary initial perturbation,

f1(x, v, t¼ 0), of the distribution function is taken and the

time development of the electric field, E(x, t), is calculated

using a Fourier-Laplace transform. Each component of E(x, t)

has a time dependence e�ixt with an eigenvalue x(k).

“Landau damping” is associated with an eigenvalue for which

the real part of x is such that xr/k� vT, the thermal velocity,

and the imaginary part gives damping, or growth, proportional

to (@f0/@v)w.

In Landau’s derivation of the damping rate, there is no

involvement of the specific associated perturbed distribution

function, and little attention has been paid to it. However,

using the solution for E(x, t), the distribution function

f1(x, v, t) can be calculated retrospectively, thus identifying

the specific initial distribution function required to give the

Landau damping mode.

The present paper proceeds in a different way by

solving the Vlasov equation directly to obtain f1(k, v, t)

and substituting this solution into Poisson’s equation to

obtain the dispersion relation giving the damping or

growth rate.

For (@f0/@v)w> 0, the oscillation is unstable, and in this

case the calculation proceeds straightforwardly. But in the

damped case with (@f0/@v)w< 0, calculation of the f1(k, v, t)

requires the imposition of continuity with the (@f0/@v)w> 0

case, as in Landau’s calculation.

The focus on the distribution function in the present cal-

culation makes explicit the underlying mechanisms of

growth and damping. The growth associated with (@f0/

@v)w> 0 arises from the charge produced by electrons with

velocities sufficiently close to the wave velocity that they do

not sample all phases of the wave during a growth time. The

damping associated with @f0/@v)w< 0 is due to phase mixing

of particles with velocities close to the wave velocity.
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